Lecture Quiz #11, Monday May 5.

Notice the freedom to choose different coordinate system for each mass.

(assume \(m_2 > m_1\))

For the pulley: \(\sum \text{Torque} = I \alpha\) calculating torques and moment of inertia about the center of mass:

\[
T_2 R - T_1 R = I_{\text{cm}} \alpha \\
(T_2 - T_1) R = \frac{1}{2} MR^2 \alpha
\]

\[\Rightarrow T_2 - T_1 = \frac{1}{2} MR \alpha \]

For object 1: \(\sum \text{Force} = m_1 a\)

\[T_1 - m_1 g = m_1 a\]

For object 2: \(\sum \text{Force} = m_2 a\)

\[m_2 g - T_2 = m_2 a\]

Note that \(\alpha\) is related to \(\alpha\) as \(\alpha = R \omega\).

You know why, right?

PAGE 1.
\[T_2 - T_1 = \frac{1}{2} M \alpha \frac{R}{R} \]

\[T_1 - m_1 g = m_1 a \Rightarrow T_1 = m_1 g + m_1 a \]

\[m_2 g - T_2 = m_2 a \Rightarrow T_2 = m_2 g - m_2 a \]

Substituting \((m_2 g - m_2 a) - (m_1 g + m_1 a) = \frac{1}{2} M a\)

\[m_2 g - m_1 g = \frac{1}{2} (M + m_1 + m_2) a \]

\[a = \frac{m_2 g - m_1 g}{2(M + m_1 + m_2)} \]

\[a = \frac{(m_2 - m_1) g}{2(M + m_1 + m_2)} \]

Note that if \(M = 0 \), then we go back to the result you would've gotten back in the earlier part of the semester when we didn't have to worry about the rotation of the pulley.

Also, in that case \(T_1 \) would be equal to \(T_2 \).