Q1). A ball is thrown with an initial velocity \(v_0 \) at an angle \(\theta \) with the vertical. On its way down, the ball gets stuck in a tree at height \(H \). A \(y \) vs \(x \) plot of its motion is given in Fig 1 below.

a). In term of unit vectors \(\hat{i} \) and \(\hat{j} \), write down the initial velocity vector \(\vec{v}_i \).

\[
\vec{v}_i = v_0 \sin \theta \hat{i} + v_0 \cos \theta \hat{j}
\]

b). Write down the velocity vector \(\vec{v}_{top} \) at the instant the ball reaches the peak of its trajectory. Indicate this velocity vector on the plot above.

\[
\vec{v}_{top} = v_0 \sin \theta \hat{i} + 0 \hat{j}
\]

c). Figure out \(\Delta \theta \) between \(t = 0 \) and \(t = t_{max} \) graphically i.e., by using the head-to-tail rule of vector addition. Here, \(t = t_{max} \) is the instant the ball reaches its maximum height. How is the direction of the average acceleration vector related to \(\Delta \theta \)? What about its magnitude?

\[
\Delta \vec{v} = \vec{v}_i - \vec{v}_{top} = V_0 \cos \theta \hat{i} \quad \text{and} \quad \Delta \vec{a} = \frac{\Delta \vec{v}}{\Delta t}
\]

The direction of the average acceleration \(\vec{a} \) is the same as \(\Delta \vec{v} \). The magnitude \(|\Delta \vec{a}| = |\Delta \vec{v}| / \Delta t \).

d). Using \(y(t) = y_0 + v_0 t + \frac{1}{2} a_s t^2 \), set up a quadratic equation to find the time it takes the ball to reach the tree at height \(H \).

\[
y = y_0 + v_0 t + \frac{1}{2} g t^2 = 0
\]

\[
\frac{1}{2} g t^2 - v_0 \cos \theta t + y - y_0 = 0
\]

\[
t^2 - \frac{2 v_0 \cos \theta}{g} t + \frac{2 y - y_0}{g} = 0
\]

e). Look at Fig 1 again carefully. How many valid solutions do you expect to find for \(t \) from this quadratic equation? What do each of these solutions correspond to?

2 Solutions, the first corresponds to \(\dot{y} = 0 \) with \(\frac{dy}{dt} < 0 \) the second \(\dot{y} = H, \frac{dy}{dt} > 0 \).
Q1). A ball is thrown with an initial velocity \(v_0 \) at an angle of \(\theta \) above the horizontal. A \(y \) vs \(x \) plot of its motion is given below.

a). Find the time \(t_{\text{up}} \) for the ball to reach its maximum height \(h_{\text{max}} \) in terms of \(v_0 \), \(\theta \) and \(g \).

\[
\frac{t}{2} = \frac{v_0 \sin \theta}{g}
\]

b). Find the time \(t_{\text{down}} \) for the ball to travel from \(y = h_{\text{max}} \) back down to \(y = 0 \).

What seems to be the relationship between \(t_{\text{up}} \) and \(t_{\text{down}} \)?

\[
y_y = y_0 + v_{y0} t - \frac{1}{2} g t^2
\]

\[
h = 0 + v_{y0} t - \frac{1}{2} g t^2
\]

\[
\frac{t}{2} = \frac{v_0 \sin \theta - g t}{g}
\]

c). Find the total distance \(x_{\text{total}} \) travelled by the ball in the \(x \)-direction in terms of \(v_0 \), \(\theta \) and \(g \).

\[
D = \frac{(v_0 \cos \theta)^2 + (v_0 \sin \theta)^2}{g}
\]

d & e & f). For a fixed \(v_0 \), suppose we increase \(\theta \). Let's call the smaller angle \(\theta_1 \) and the larger angle \(\theta_2 \).

d). Compare the total time of flight \(t_{\text{flight}}^{(1)} \) with \(t_{\text{flight}}^{(2)} \).

\[
\theta_2 > \theta_1 \Rightarrow \frac{\pi}{4} \Rightarrow v_{y2} > v_{y1} \Rightarrow t_{\text{flight}}^{(2)} > t_{\text{flight}}^{(1)}
\]

\[
v_{y2} = v_{y0} - g t_{\text{flight}}^{(2)}
\]

e). What would happen to \(h_{\text{max}} \)? Why?

\[
h_{\text{max}}^{(2)} > h_{\text{max}}^{(1)} \text{ because } v_{y2} > v_{y1}
\]

\[
h = \frac{v_{y2}^2}{2 g} = \frac{v_{y0}^2}{2 g}
\]

f). What would happen to the range \(x_{\text{total}} \)? Is it possible for \(h_{\text{max}} \) to change but \(x_{\text{total}} \) to remain the same? If so, find the condition that must be satisfied between \(\theta_1 \) and \(\theta_2 \) if \(x_{\text{total}}^{(1)} = x_{\text{total}}^{(2)} \).

If \(\theta_2 \theta_1 \), then \(x_{\text{total}}^{(2)} > x_{\text{total}}^{(1)} \).

\[
v_1 = v_0 - \alpha \epsilon \Rightarrow D = \frac{\alpha v_0^2}{2 g} \sin \theta \cos \theta
\]

\[
\frac{t}{2} = \frac{v_0 \sin \theta - \frac{1}{2} g t}{g}
\]

\[
\frac{D_2}{D_1} = \frac{\alpha}{j} = \frac{2 \sin \theta_1 \cos \theta_1}{\sin \theta_2 \cos \theta_2}
\]

\[
\Rightarrow \sin \theta_1 \cos \theta_1 \Rightarrow \sin \theta_2 \cos \theta_2
\]
Q1). A ball is thrown with an initial velocity \(\vec{v}_i \) with magnitude \(v_0 \) at an angle \(\theta \) above the horizontal. A \(y \) vs \(x \) plot of its motion is given below.

a). Find the time \(t_{up} \) for the ball to reach its maximum height \(h_{max} \) in terms of \(v_0 \), \(\theta \) and \(g \).

\[
\begin{align*}
V_{iy} &= V_{0y} + at \\
0 &= V_{0y} \sin \theta - gt \\
t &= \frac{V_{0y} \sin \theta}{g}
\end{align*}
\]

b). Find the time \(t_{down} \) for the ball to travel from \(y = h_{max} \) back down to \(y = 0 \).

What seems to be the relationship between \(t_{up} \) and \(t_{down} \)?

\[
\begin{align*}
y_t &= V_{0y} + V_{0y} + \frac{1}{2}gt^2 \\
h &= V_{0y} + \frac{1}{2}gt^2 \\
0 &= V_{0y} + \frac{1}{2}gt^2 \\
n &= V_{0y} + \frac{1}{2}gt^2 \\
t &= \frac{V_{0y} \sin \theta}{g}
\end{align*}
\]

c). Find the total distance \(x_{total} \) traveled by the ball in the \(x \)-direction in terms of \(v_0 \), \(\theta \) and \(g \).

\[
\begin{align*}
t_{up} &= \frac{V_{0y} \sin \theta}{g} \\
\Rightarrow x_{total} &= V_x t = 2\frac{V_0 \sin \theta \cos \theta}{g}
\end{align*}
\]

d). Find the final vertical velocity \(v_{fy} \) and the final horizontal velocity \(v_{fx} \) of the ball right before it hits the ground. What angle does the final velocity vector make with the horizontal?

\[
\begin{align*}
\theta \quad V_{f, y} &= -V_{i, y} \Rightarrow V_{f, y} = -V_0 \sin \theta \\
\text{\(V_f \) makes an angle of \(\theta \) below the horizontal.}
\end{align*}
\]

e). How does the magnitude of initial velocity \(v_i \) compare with the magnitude of the final velocity \(v_f \)?

\[
\begin{align*}
\vec{V}_i &= V_0 \cos \theta \hat{i} + V_0 \sin \theta \hat{j} \\
\vec{V}_f &= V_0 \cos \theta \hat{i} - V_0 \sin \theta \hat{j} \\
|V_i| &= |V_f| \\
\frac{V_f}{V_i} = \sqrt{\left(\frac{V_0 \cos \theta}{V_0 \cos \theta}\right)^2 + \left(\frac{V_0 \sin \theta}{V_0 \sin \theta}\right)^2}
\end{align*}
\]
f). Mark a pair of points (of your choice) on the trajectory of the ball that the same vertical position \(y \). What implications does your result for part (e) have for the ball's vertical velocity at any such pair of points.

\[
\begin{align*}
|V_i| &= |V_0| \\
V_{fy} &= -V_{iy} \\
V_{x_a} &= V_{x_b}
\end{align*}
\]