Thin Lenses

A lens is a piece of transparent material of refractive index \(n \) placed within a second material of refractive index \(n' \). (i) We will take the second material as air so \(n' = 1 \). (ii) We will consider only thin lenses whose surfaces are spherical. (iii) We will assume that the thickness of the lens is much smaller than the radius of its surfaces.

Sign Convention (Repeat)

Here, we will be dealing with the phenomenon of refraction only. The "Sign" Convention will be that distances measured along the direction of light travel will be labelled positive, those opposite to that direction will be taken as negative.

Lens Maker's Formula

We begin by stating, without proof, the lens maker's formula for thin lenses:

\[
\frac{1}{f} = (n-1) \left[\frac{1}{R_F} - \frac{1}{R_B} \right]
\]

where
- \(f \) = Focal length
- \(R_F \) = radius of front surface (facing the light ray)
- \(R_B \) = radius of back surface
CONVEX (CONVERGENT) LENS

Light Direction

F

\(\rightarrow \)

\(\leftarrow \)

\(\leftarrow t \)

\(\rightarrow \)

C_F, C_B \) are the centers of the front and back surfaces, respectively.

\[R_F = C_F P \] is positive \((t < R_F, R_B) \)

\[R_B = C_B P \] is negative

Hence, from Eq. (1) it follows that \(f \) is positive.

That is, the focal point \(F \) lies to the right of the lens. Result is that a parallel beam of light falling on such a lens will converge to a point after it passes through the lens.

Namely, two convex surfaces make a CONVEX LENS.
CONCAVE (DIVERGENT) LENS

Light Direction

\[\rightarrow \]

\[F \quad P \quad B \]

\[e_F \quad e_P \quad e_B \]

\[R_F = e_Fp \text{ is negative} \]

\[R_B = e_Bp \text{ is positive} \]

Hence from Eq. (1), \(f \) is negative and therefore the focal point \(F \) lies to the left of the lens (on dark side). Result is that a parallel beam of light falling on such a lens will appear to diverge from \(F \) after it passes through the lens. Namely, two Concave Surfaces make

\[\text{A DIVERGENT LENS.} \]
IMAGE FORMATION - CONVERGENT LENS

We will use the same method as before to locate the image. Take two rays starting from 0, go through the lens, look for point of intersection to find I.

Again, \(p = \) distance of object from lens
\(q = \) distance of image from lens

magnification \(m = -\frac{q}{p} \)

Please note that I2 goes through central portion of the lens which is more like a parallel plate of thickness \(t \). In this case, we have shown that the ray shifts sideways by

\[
S = t \sin i \left[1 - \frac{n_1}{n_2} \cos i \right]
\]

Since \(t \) is small and, as before, we deal only with paraxial rays \(\theta \) is small therefore \(S \) is negligible. That is, I2 goes
straight through.

Next, \(L(00', P) = L(I'P) \)

Therefore \(\frac{II'}{00'} = \frac{q}{p} \) \((3) \)

as expected from the formula for \(m \) [Note: image is inverted].

Next, consider angles \(P'FP \) and \(I'FI \)

\[
\frac{II'}{IF} = \frac{PP'}{PF}
\]

\[
\frac{II'}{PP'} = \frac{II'}{00'} = \frac{q-f}{f} \quad (4)
\]

From (3) and (4)

\[
\frac{q}{p} = \frac{q-f}{f}
\]

\[
\frac{1}{p} + \frac{1}{q} = \frac{1}{f}
\]

and combined with \(m = -\frac{q}{p} \)

we have a complete description for all possible images formed by a convergent lens.

SPECIAL CASES

a. Object far away, \(p \to \infty \), \(q \to f \), \(m \to 0 \). Parallel light falling on lens converges to \(F \).
With a convergent lens, a real image can never be at

\[p > 2f \]
\[\frac{1}{p} = \frac{1}{f} - \frac{1}{q} \]
\[\frac{b}{q} > 1 \] so \[q < 2f \].

and we will form a real, inverted, reduced image.

\[p = 2f, \quad q = 2f, \quad |m| = 1. \text{ Real, Inverted} \]
\[\text{image, same size as object.} \]
At p slightly larger than f:

\[\frac{1}{q} = \frac{1}{f} - 1 \]

$\frac{1}{q} \ll 1$ so q very large.

Very large, real, inverted image.

SLIDE PROJECTOR WORKS ON THIS PRINCIPLE

$-p = f$, $\frac{1}{q} = 0$, $q \to \infty$. Light becomes parallel on emerging from lens.
\[
f \leq f \quad \frac{f}{d} = \frac{b}{f} = 1\
\]
so \(q \) must be negative, \(m = \frac{q}{p} \).
The image switches to "upstream" side of lens.
The image is virtual, enlarged and upright.

Note: This is how a Magnifying Glass Works.

Image Formation - Divergent Lens

If \(f \) is \(-ive \)

\[
OP = p
\]

\[
IP = q \quad [\text{-ive}]
\]

\[
FP = f \quad [\text{-ive}]
\]

As before \(\frac{II'}{00'} = \frac{q}{p} \) \((= m) \)
\[
\frac{\frac{1}{p'}}{\frac{1}{p}} = \frac{q}{f} = \frac{f-q}{f}
\]

\[
\frac{1}{p'} - \frac{1}{q} = -\frac{1}{f}
\]

However, both \(q\) and \(f\) are negative, so we can write

\[
\frac{1}{p} + \frac{1}{q} = \frac{1}{f} \left(\frac{q}{f} - \text{ive} \right)
\]

\[
m = -\frac{q}{p}.
\]

For a divergent lens as well, in this case \(m\) as in divergent minus. The image is always virtual, always reduced, and always upright.