DEVICES – AC CIRCUITS

Battery Source of Coulomb E-field
- Output is emf: ε

Capacitor Container for E-field $C = \frac{Q}{V}$
- Potential Energy $U_B = \frac{Q^2}{2C}$
- $\eta_E = \text{Energy stored per } m^3 = \frac{1}{2} \varepsilon_0 E^2$
- $\varepsilon_0 = 9 \times 10^{-12} \text{ F/m}$

Resistor Represents that it costs energy to transport charge through a conductor

- V
- $\rightarrow \text{ MMMM }$
- $R = \frac{V}{I}$
- $J = \sigma E$

Power loss $P = I^2 R = \frac{V^2}{R}$

Inductor A time varying current causes a Non-Coulomb E-field, induced emf, $L = \frac{-\varepsilon}{\Delta i/\Delta t}$

- Container for B-field, Potential Energy $U_B = \frac{1}{2} Li^2$
- $\eta_B = \text{Energy stored per } m^3 = \frac{B^2}{2\mu_0}$

A.C. Generator Wire loops of area A rotated at $\omega \text{ rad/s}$ in a B-field. Generates non-coulomb E-field in the loops, produces an emf: $\varepsilon = \omega NBA \sin(\omega t)$

Where N = # of turns in the loop. Hence ac-generator

- $\Phi_B = NBA \cos(\omega t)$
 - where θ is angle
 - between \hat{A} and \hat{B}
 - Rottn by $\omega \text{ rad/s}$ makes $\omega = \omega t$, $\Phi_B = NBA \cos(\omega t)$
 - So $\frac{\Delta \Phi_B}{\Delta t} = -NBIA \omega \sin(\omega t)$, $\varepsilon = -\frac{\Delta \Phi_B}{\Delta t} = \omega NBA \sin(\omega t)$
I. RC with battery, close switch at $t=0$, current flows immediately, potential across C appears later $\varepsilon = \frac{q}{C} + iR$

\[i = \frac{\varepsilon}{R} e^{-\frac{t}{RC}} \]

\[v_c = \varepsilon \left[1 - e^{-\frac{t}{RC}} \right] \]

\[\tau = RC \]

III. LC-Circuit: Undamped Oscillator

First charge C to Q_0. Close switch at $t=0$. Energy stored in capacitor $U_c = \frac{Q_0^2}{2C}$

Charge begins to flow. Total Energy $= (\text{Energy in } E\text{-field}) + (\text{Energy in } B\text{-field})$

$= (\text{Energy in } C) + (\text{Energy in } L)$

\[\frac{Q_0^2}{2C} = \frac{q^2}{2C} + \frac{1}{2} L \left(\frac{\Delta q}{\Delta t} \right)^2 \]
Recognize, similarity to spring-mass oscillator

\[\frac{1}{2} kA^2 = \frac{1}{2} kx^2 + \frac{1}{2} m \left(\frac{\Delta x}{\Delta t} \right)^2 \]

\[x \rightarrow q \quad x = A \cos \omega t \]

\[m \rightarrow L \]

\[k \rightarrow \frac{1}{C} \]

\[\omega_0 = \sqrt{\frac{k}{m}} \]

Now

\[q = Q_0 \cos \omega_0 t \]

\[\omega_0 = \frac{1}{\sqrt{LC}} \]

\[E \text{-field collapses giving rise to } B \text{-field and vice versa.} \]

\[\text{Charge} \]

\[q = Q_0 \cos \omega_0 t \]

\[i = -Q_0 \omega_0 \sin \omega_0 t \]

\[\text{Period } T = \frac{2\pi}{\omega_0} \]
IV. LCR-CIRCUIT: DAMPED OSCILLATOR.

At $t=0$, charge C to Q_0 close switch. Now driving i through R costs i^2R per second.

So $\left(\frac{q^2}{2C} + \frac{1}{2}Li^2\right)$ is not constant

$$\frac{\Delta \left(\frac{q^2}{2C} + \frac{1}{2}Li^2\right)}{\Delta t} = -i^2R$$

-negative sign on right because energy is being lost (R is getting warmer).

Now $q = Q_0 e^{-\frac{R}{2L}t} \cos \omega t$

$$\omega = \omega_0 \left[1 - \frac{1}{(2\omega_0\tau)^2}\right]^{\frac{1}{2}}$$

$$\tau = \frac{L}{R}$$

$$\omega_0 \tau = \text{Quality factor} = Q_e$$

Note 1: smaller R, larger the duration for which the oscillations persist.

Note 2: R plays role of friction; as always energy lost goes to raise temperature. Electrical Equivalent of Heat.
CIRCUITS: AC

I. Resistor and Generator

\[Y_R = IR \]

so

If \(\varepsilon = \epsilon_0 \sin \omega t \)

\[i = \frac{\epsilon_0}{R} \sin \omega t \]

Current and voltage are in phase.

Power

\[P(t) = iv \]

\[= \frac{\epsilon_0}{R} \sin^2 \omega t \]

\[\langle \sin^2 \omega t \rangle = \frac{1}{2} \]

averaged over a cycle. \(\langle P \rangle = \frac{\epsilon_0^2}{2R} = \frac{i_0^2 \epsilon_0}{2} = \frac{i_0^2 R}{2} \) and the power loss is as if \(R \) was connected to a

whole battery \(\varepsilon = \frac{\epsilon_0}{\sqrt{2}} \). In this sense one talks of \(\frac{\epsilon_0}{\sqrt{2}} \) and \(\frac{i_0}{\sqrt{2}} \) as root-mean-square or r.m.s.

voltage and current.

RMS voltage in our house, \(V_{rms} = 115 \text{ Volts} \)

\[f = 60 \text{ Hz} \]

\[\omega = 377 \text{ rad/sec} \]

\[V_{\text{max}} = 155 \text{ Volts} \]