Theme Music: Mary Chapin Carpenter

Down at the Twist and Shout

Cartoon: Mort & Greg Walker

Beetle Bailey
Outline

■ Recap of forces in circular motion
■ Rotational Kinematics
 – angles (radians)
 – angular velocity and angular acceleration
 – trig for large angles
■ Thinking about balance:
 The Rotational Effect of Forces
Uniform Circular Motion

Position

Velocity

Acceleration

\[
\frac{v \Delta t}{R} = \frac{a \Delta t}{v}
\]

\[
\frac{a}{v} = \frac{v}{R}
\]

\[
a = \frac{v^2}{R}
\]
Uniform Circular Motion: Forces

\[\vec{a} = \frac{\vec{F}^{\text{net}}}{m} \]

always

\[\vec{a} = -\frac{v^2}{R} \hat{r} \]

in order for the object to move in a circle with constant speed.

\[\frac{\vec{F}^{\text{net}}}{m} = -\frac{v^2}{R} \hat{r} \]

Therefore, to do this, we need a net force.

\[\vec{F}^{\text{net}} = -\frac{mv^2}{R} \hat{r} \]
Radian

The radian is an angle measure defined as the ratio of the arc length of the circle spanned by the angle to the radius of the circle.

\[\theta = \frac{L}{R} \quad \text{(in radians)} \]

\[\theta_{\text{whole circle}} = \frac{2\pi R}{R} = 2\pi \]

\[\frac{\theta_{\text{rad}}}{\theta_{\text{deg}}} = \frac{2\pi}{360} \]
Rotational Kinematics: Polar Description of Motion

- Describing the angular position of an object.
 - Angle (radians) θ
 - Angular velocity ω
 - Angular acceleration α

\[\theta \text{ (in radians)} = \frac{2\pi}{360} \theta \text{ (in degrees)} \]

\[\langle \omega \rangle = \frac{\Delta \theta}{\Delta t}, \quad \langle \alpha \rangle = \frac{\Delta \omega}{\Delta t} \]

Uniform motion: $\Delta \theta = \omega_0 \Delta t$
Trigonometry for big angles

\[\vec{r} = xi + yj = (R \cos \theta)\hat{i} + (R \sin \theta)\hat{j} \]
\[\theta = \theta_0 + \omega_0(t - t_0) \]

What happens as \(t \) (and \(\theta \)) gets large (bigger than \(2\pi \))?