The Ideal Gas Law: \[PV = nRT_A = N kT_A \]
and the inference that \(T_A \propto (KE) \) of average gas molecule, can be obtained by elementary considerations.

Take the container to be a cube \(< \) on each side.

Assume that each gas particle has speed \(v \) and all velocity directions equally probable.

1. Compute the force exerted by the particles hitting the Right side of the cube & Divide this Avg. Force by \(L^2 = \text{Area of Right Face} \) to obtain:

\[P = \frac{F_{\text{AV}}}{L^2} \]

2. To compute \(F_{\text{AV}} \), consider one molecule of gas, which has a component \(v_x \) of +\(v_x \) as it hits the Right face. It rebounds elastically with a final component \(-v_x \) of velocity, \(-v_x \). Its x-component of momentum is changed by \(\Delta p_x = -2mv_x \xi + m\xi = 2mv_x \), and this requires an impulse, \(F_i \Delta t = -2mv_x \), where \(F_i \) is the force exerted by the wall on the \(i \)th molecule during the collision. (And the force on the face is \(F_i = +2mv_x \) by Newton III.)

3. Compute the rate, \(R \), at which molecules strike the right face, assuming that there are \(N \) molecules in the box. During a small interval \(\Delta t \), all of the molecules within \(v_x \Delta t \) of the right face which are travelling to the Right (as \(v_x \) are at any moment) will hit the face. Thus box \(R = \frac{N}{2} \frac{v_x \Delta t}{2} \) molecules hit the Right face during \(\Delta t \). [The fraction of such molecules is \(\frac{v_x \Delta t}{2} \).]

4. The average force on the right face during a small interval \(\Delta t \) is

\[F_{\text{US}} = \frac{F_{i} \Delta t}{2} = \frac{2m v_x \xi}{\Delta t} \frac{N}{2} \frac{v_x \Delta t}{L} = \frac{N}{2} m v_x^2 \]

& The Pressure is

\[P = \frac{F_{\text{US}}}{\Delta t} = \frac{N}{2} m v_x^2 = \frac{1}{3} N (m v_x^2) \]

\[PV = N (m v_x^2) = kT_A \]

5. In this way \(kT_A = m v_x^2 = \frac{3}{2} \left(\frac{m (v_x^2 + v_y^2 + v_z^2)}{3} \right) = \frac{3}{2} (KE) \); Thus,

average \((KE) \) of a molecule \(\overline{KE} = \frac{3}{2} kT_A \), the gas law follows.