Dow Jones data, 1982-2001

Scaling in the long-time limit, $\gamma t \gg 1$

Dow-Jones data, 1982-2001

$P_{t}(x) \rightarrow P_{*}(z)=\frac{K_{1}(z)}{z}$, where $z=a \sqrt{x^{2}+(c t)^{2}}$

The simplest model: stock price S_{t} obeys the stochastic differential equation of a multiplicative Brownian motion

$$
d S_{t}=\mu S_{t} d t+\sigma S_{t} d W_{t}^{(1)}
$$

where W_{t} is a Wiener process, σ is called volatility.
The distribution of log-returns $r_{t}=\ln \left(S_{t} / S_{0}\right)$ is Gaussian

$$
P_{t}(r)=\frac{\exp \left\{-\left[r-\left(\mu+\sigma^{2} / 2\right) t\right]^{2}\right\}}{\sqrt{2 \pi \sigma^{2} t}}
$$

and the distribution of prices $P_{t}(S)$ is log-normal.

Shortcomings of multiplicative Brownian model:

- The tails of real data are heavier than Gaussian.
- Volatility σ is not constant, but stochastic.
- Limited success of the Black-Scholes model for option pricing.

Multiplicative Brownian motion + stochastic variance

$$
\left\{\begin{aligned}
d x_{t} & =-\frac{v_{t}}{2} d t+\sqrt{v_{t}} d W_{t}^{(1)} \\
d v_{t} & =-\gamma\left(v_{t}-\theta\right) d t+\kappa \sqrt{v_{t}} d W_{t}^{(2)}
\end{aligned}\right.
$$

$$
v=\sigma^{2}
$$

The model is truly $2 \mathrm{D} \neq 1 \mathrm{D}+1 \mathrm{D}$.
The transition probability $P_{t}\left(x, v \mid v_{i}\right)$ satisfies the Fokker-
Planck equation

$$
\begin{aligned}
\frac{\partial}{\partial t} P= & \frac{1}{2} \frac{\partial}{\partial x}(v P)+\gamma \frac{\partial}{\partial v}[(v-\theta) P] \\
& +\frac{1}{2} \frac{\partial^{2}}{\partial^{2} x}(v P)+\frac{\kappa^{2}}{2} \frac{\partial^{2}}{\partial^{2} v}(v P)
\end{aligned}
$$

with the initial condition $P_{t=0}\left(x, v \mid v_{i}\right)=\delta(x) \delta\left(v-v_{i}\right)$.
Take two Fourier transforms

$$
P_{t}\left(x, v \mid v_{i}\right) \rightarrow \bar{P}_{t, p_{x}}\left(v \mid v_{i}\right) \rightarrow \widetilde{P}_{t, p_{x}}\left(p_{v} \mid v_{i}\right)
$$

The transformed PDE is of the first order

$$
\left[\frac{\partial}{\partial t}+\left(\gamma p_{v}+\frac{i \kappa^{2}}{2} p_{v}^{2}+\frac{i p_{x}^{2}+p_{x}}{2}\right) \frac{\partial}{\partial p_{v}}\right] \widetilde{P}=-i \gamma \theta p_{v} \widetilde{P}
$$

with the initial condition $\widetilde{P}_{t=0, p_{x}}\left(p_{v} \mid v_{i}\right)=\exp \left(-i p_{v} v_{i}\right)$.
The solution is obtained using the method of characteristics or path integrals

$$
\widetilde{P}_{t, p_{x}}\left(p_{v} \mid v_{i}\right)=\exp \left(-i \tilde{p}_{v}(0) v_{i}-i \gamma \theta \int_{0}^{t} d \tau \tilde{p}_{v}(\tau)\right)
$$

where the function $\tilde{p}_{v}(\tau)$ is the solution of the characteristic equation

$$
\frac{d \tilde{p}_{v}(\tau)}{d \tau}=\gamma \tilde{p}_{v}(\tau)+\frac{i \kappa^{2}}{2} \tilde{p}_{v}^{2}(\tau)+\frac{i p_{x}^{2}+p_{x}}{2} \quad \text { with } \quad \tilde{p}_{v}(t)=p_{v}
$$

Averaging over variance

We integrate $P_{t}\left(x, v \mid v_{i}\right)$ over the final variance v

$$
P_{t}\left(x \mid v_{i}\right)=\int_{-\infty}^{+\infty} d v P_{t}\left(x, v \mid v_{i}\right)
$$

Assuming that v_{i} to has the stationary distribution $\Pi_{*}\left(v_{i}\right)$, we average over the initial variance

$$
P_{t}(x)=\int_{0}^{\infty} d v_{i} \Pi_{*}\left(v_{i}\right) P_{t}\left(x \mid v_{i}\right)
$$

The final result

The probability distribution of returns is given by the Fourier integral

$$
P_{t}(x)=\int_{-\infty}^{+\infty} \frac{d p_{x}}{2 \pi} e^{i p_{x} x+F_{t}\left(p_{x}\right)}
$$

where

$$
F_{t}\left(p_{x}\right)=\frac{\gamma^{2} \theta t}{\kappa^{2}}-\frac{2 \gamma \theta}{\kappa^{2}} \ln \left[\cosh \frac{\Omega t}{2}+\frac{\Omega^{2}+\gamma^{2}}{2 \gamma \Omega} \sinh \frac{\Omega t}{2}\right]
$$

and the frequency $\Omega=\sqrt{\gamma^{2}+\kappa^{2}\left(p_{x}^{2}-i p_{x}\right)}$.

Asymptotic behavior for Iong time t

In the limit $\gamma t \gg 2, \quad F_{t}\left(p_{x}\right) \approx \frac{\gamma \theta t}{\kappa^{2}}(\gamma-\Omega)$.
The Fourier integral can be taken analytically, and the probability distribution has the scaling form

$$
P_{t}(x)=N_{t} e^{-x / 2} P_{*}(z), \quad P_{*}(z)=\frac{K_{1}(z)}{z}
$$

where $K_{1}(z)$ is the first-order modified Bessel function, and

$$
z=\frac{\omega_{0}}{\kappa} \sqrt{x^{2}+\left(\frac{\gamma \theta}{\kappa}\right)^{2} t^{2}}, \quad \omega_{0}=\sqrt{\gamma^{2}+\kappa^{2} / 4}
$$

For $z \gg 1$, the Bessel function is $K_{1}(z) \approx e^{-z} \sqrt{\pi / 2 z}$,

$$
\ln P_{t}(x) \approx-\frac{x}{2}-z=-\frac{x}{2}-\frac{\omega_{0}}{\kappa} \sqrt{x^{2}+\left(\frac{\gamma \theta}{\kappa}\right)^{2} t^{2}}
$$

- When $|x| \gg \gamma \theta t / \kappa, \quad \ln P_{t}(x) \approx-\frac{x}{2}-\frac{\omega_{0}}{\kappa}|x|$.

The probability distribution has exponential tails in x with time-independent slope.

- When $|x| \ll \gamma \theta t / \kappa, \quad \ln P_{t}(x) \approx-\frac{x}{2}-\frac{\omega_{0}}{2 \gamma \theta t} x^{2}$,

The probability distribution for small x is Gaussian. For long time t, the probability weight in the Gaussian part tends to one.

Singularities of $F_{t}\left(p_{x}\right)$ in the complex plane of p_{x}

Quantum-mechanical analogy

Define the momentum operator $\hat{p}_{v}=-i \frac{d}{d v}$ conjugate to v. The Fokker-Planck PDE is a Schrödinger equation in imaginary time

$$
t \frac{\partial}{\partial t} \bar{P}=-\hat{H} \bar{P}
$$

with "Hamiltonian"

$$
\widehat{H}=\frac{\kappa^{2}}{2} \hat{p}_{v}^{2} \widehat{v}+i \gamma \widehat{p}_{v}(\widehat{v}-\theta)+\frac{p_{x}^{2}-i p_{x}}{2} \widehat{v}
$$

Notice that the "Hamiltonian" \hat{H} is linear in v.

Path Integral Solution: Integrate over all trajectories

$$
\bar{P}_{t, p_{x}}\left(v_{f} \mid v_{i}\right)=\int \mathcal{D} v(\tau) \int \mathcal{D} p_{v}(\tau) e^{S\left[p_{v}(\tau), v(\tau)\right]}
$$

where the action $S\left[p_{v}(\tau), v(\tau)\right]$ for a given path is

$$
S=\int_{0}^{t} d \tau\left\{i p_{v}(\tau) \dot{v}(\tau)-H\left[p_{v}(\tau), v(\tau)\right]\right\}
$$

The action is linear in $v(\tau)$. First take the integral over $\mathcal{D} v(\tau)$. The result is a delta-functional

$$
\delta\left[\dot{p}_{v}(\tau)-\gamma p_{v}(\tau)-\frac{\kappa^{2}}{2} p_{v}^{2}(\tau)-\frac{p_{x}^{2}-i p_{x}}{2}\right]
$$

Taking the integral over $\mathcal{D} p_{v}(\tau)$ replaces $p_{v}(\tau)$ by $\tilde{p}_{v}(\tau)$, which is the solution of characteristic ordinary differential equation.

