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Abstract. Probability distributions of money, income and energy consumption
per capita are studied for ensembles of economic agents. The principle of
entropy maximization for partitioning of a limited resource gives exponential
distributions for the investigated variables. A non-equilibrium difference of
money temperatures between different systems generates net fluxes of money
and population. To describe income distribution, a stochastic process with
additive and multiplicative components is introduced. The resultant distribution
interpolates between exponential at the low end and power law at the high end,
in agreement with the empirical data for the USA. We show that the increase
in income inequality in the USA originates primarily from the increase in
the income fraction going to the upper tail, which now exceeds 20% of the
total income. Analyzing the data from the World Resources Institute, we find
that the distribution of energy consumption per capita around the world can be
approximately described by the exponential function. Comparing the data for
1990, 2000 and 2005, we discuss the effect of globalization on the inequality of
energy consumption.
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1. Introduction

Two types of approaches are utilized in science to describe the natural world around us. One
approach is suitable for systems with a small number of degrees of freedom, such as a harmonic
oscillator, a pair of gravitating bodies and a hydrogen atom. In this case, the goal is to formulate
and solve dynamical equations of motion of the system, be it within Newtonian, relativistic or
quantum mechanics. This approach is widely used beyond physics to study dynamical systems
in chemistry, biology, economics, etc. In the opposite limiting case, we deal with systems
consisting of a very large number of degrees of freedom. In this case, statistical description is
employed, and the systems are characterized by probability distributions. In principle, it should
be possible to derive a statistical description from microscopic dynamics, but it is rarely feasible
in practice. Thus, it is common to use general principles of the theory of probabilities to describe
statistical systems, rather than to derive their properties from microscopic equations of motion.
Statistical systems are common in physics, chemistry, biology, economics, etc.

Any probability distribution can be thought of as representing some sort of ‘inequality’
among the constituent objects of the system, in the sense that the objects have different values
of a given variable. Thus, a study of probability distributions is also a study of inequality
developing in a system for statistical reasons. To be specific, let us consider an economic system
with a large number of interacting agents. In the unrealistic case where all agents have exactly
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the same values of economic variables, the system can be treated as a single agent called the
‘representative agent’. This approach is common in traditional economics, but by construction
it precludes a study of inequality among the agents. However, social and economic inequality
is ubiquitous in the real world, and its characterization and understanding are a very important
issue.

In this paper, we apply the well-developed methods of statistical physics to economics
and society in order to gain insights into probability distributions and inequality in these
systems. We consider three specific cases: the distributions of money, income and global energy
consumption. In all three cases, the common theme is entropy maximization for partitioning of
a limited resource among multiple agents. Despite the difference in the nature of the considered
variables, we find a common pattern of inequality in these cases. This approach can also be
useful for studying other statistical systems beyond the three specific cases considered in this
paper.

Applications of these ideas to money and income have been published in the literature
before: see review [1]. To introduce these ideas and to make the paper self-contained, we briefly
review the applications to money and income in sections 2 and 3. Section 3 also shows the latest
available data for income distribution in 2007, not published before. In section 4, we present a
quantitative study of the probability distribution of energy consumption per capita around the
world. This is a new kind of study that, to the best of our knowledge, has not appeared before in
the literature.

2. Statistical mechanics and thermodynamics of money

2.1. Entropy maximization for division of a limited resource

Let us consider a general mathematical problem of partitioning (dividing) a limited resource
between a large number of agents. The solution of this problem is similar to the derivation of
the Boltzmann–Gibbs distribution of energy in physics [2]. To be specific, let us apply it to the
probability distribution of money in a closed economic system.

Following [3], let us consider a system consisting of N economic agents. At any moment
of time, each agent i has a money balance mi . Agents make pairwise economic transactions
with each other. As a result of a transaction, the money 1m is transferred from an agent i to an
agent j , so their money balances change as follows:

mi → m ′

i = mi − 1m,

m j → m ′

j = m j + 1m.
(1)

The total money of the two agents before and after transaction remains the same

mi + m j = m ′

i + m ′

j , (2)

i.e. there is a local conservation law for money. It is implied that the agent j delivers some goods
or services to the agent i in exchange for the money payment 1m. However, we do not keep
track of what is delivered and only keep track of money balances. Goods, such as food, can be
produced and consumed, so they are not conserved.

Rule (1) for the transfer of money is analogous to the transfer of energy from one molecule
to another in molecular collisions in a gas, and rule (2) is analogous to conservation of energy in
such collisions. It is important to recognize that ordinary economic agents cannot ‘manufacture’
money (even though they can produce and consume goods). The agents can only receive money
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from and give it to other economic agents. In a closed system, the local conservation law (2)
implies the global conservation law for the total money M =

∑
i mi in the system. In the real

economy, M may change due to money emission by the central government or central bank, but
we will not consider these processes here. Another possible complication is debt, which may
be considered as negative money. Here, we consider a model where debt is not permitted, so all
money balances are non-negative mi > 0.

After many transactions between different agents, we expect that a stationary probability
distribution of money would develop in the system. It can be characterized as follows. Let us
divide the money axis m into the intervals (bins) of a small width m∗ and label them with an
integer variable k. Let Nk be the number of agents with the money balances between mk and
mk + m∗.2 Then, the probability to have a money balance in this interval is P(mk) = Nk/N . We
would like to find the stationary probability distribution of money P(m), which is achieved in
statistical equilibrium.

Because the total money M in the system is conserved, the problem reduces to partitioning
(division) of the limited resource M among N agents. One possibility is an equal division, where
each agent gets the same share M/N of the total money. However, such an equal partition would
be extremely improbable. It is more reasonable to obtain the probability distribution of money
from the principle of entropy maximization. Let us consider a certain set of occupation numbers
Nk of the money bins mk . The multiplicity � is the number of different realizations of this
configuration, i.e. the number of different placements of the agents into the bins preserving the
same set of occupation numbers Nk . It is given by the combinatorial formula in terms of the
factorials3

� =
N !

N1! N2! N3! . . .
. (3)

The logarithm of multiplicity is called the entropy S = ln �. In the limit of large numbers, we
can use the Stirling approximation for the factorials:

S = N ln N −

∑
k

Nk ln Nk = −

∑
k

Nkln

(
Nk

N

)
. (4)

In statistical equilibrium, the entropy S is maximized with respect to the numbers Nk under
the constraints that the total number of agents N =

∑
k Nk and the total money M =

∑
k mk Nk

are fixed. To solve this problem, we introduce the Lagrange multipliers α and β and construct
the modified entropy

S̃ = S + α
∑

k

Nk − β
∑

k

mk Nk. (5)

Maximization of entropy is achieved by setting the derivatives ∂ S̃/∂ Nk to zero for each Nk .
Substituting equation (4) into (5) and taking the derivatives4, we find that the equilibrium
probability distribution of money P(m) is an exponential function of m:

P(mk) =
Nk

N
= eα−βmk = e−(mk−µ)/T . (6)

2 Throughout the paper, we use the indices k and n to label the money bins mk and the indices i and j to label the
individual money balances mi of the agents.
3 Note that human agents, unlike particles in quantum physics, are distinguishable.
4 Note that N =

∑
k Nk in (4) should also be differentiated with respect to Nk .
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Here the parameters T = 1/β and µ = α/T are the analogues of temperature and chemical
potential for money. Their values are determined by the constraints

1 =

∑
k Nk

N
=

∑
k

P(mk) =

∫
∞

0

dm

m∗

e−(m−µ)/T
⇒ µ = −T ln

(
T

m∗

)
, (7)

〈m〉 =
M

N
=

∑
k mk Nk

N
=

∑
k

mk P(mk) =

∫
∞

0

dm

m∗

m e−(m−µ)/T
= T . (8)

We see that the money temperature T = 〈m〉 (8) is nothing but the average amount of money
per agent. The chemical potential µ (7) is a decreasing function of T .

Equation (6) shows quite generally that division of a conserved limited resource using
the principle of entropy maximization results in the exponential probability distribution of this
resource among the agents. In physics, the ‘limited resource’ is the energy E divided between
N molecules of a gas, and the result is the Boltzmann–Gibbs distribution of energy [2]. The
exponential distribution of money (6) was proposed in [3], albeit without explicit discussion
of the chemical potential, as well as in [4]. Various models for kinetic exchange of money are
reviewed in [1] and in the popular article [5]. The applicability of the underlying assumptions of
money conservation and random exchange of money is discussed in [1, 6]. The analogy between
energy and money is mentioned in some physics textbooks [7], but not developed in detail.

2.2. Flow of money and people between two countries with different temperatures

To illustrate some consequences of the statistical mechanics of money, let us consider two
systems with different money temperatures T1 > T2. These can be two countries with different
average amounts of money per capita: the ‘rich’ country with T1 and the ‘poor’ with T2.5

Suppose that a limited flow of money and agents is permitted between the two systems. Given
that the variation δ S̃ vanishes due to maximization under constraints, we conclude from (5) that

δS = β δM − α δN ⇔ δM = T δS + µ δN . (9)

If δM and δN denote the flow of money and agents from system 1 to system 2, then the change
in the total entropy of the two systems is

δS = (β2 − β1) δM − (α2 − α1) δN =

(
1

T2
−

1

T1

)
δM + ln

(
T2

T1

)
δN . (10)

According to the second law of thermodynamics, the total entropy should be increasing, so
δS > 0. Then, the first term in (10) shows that money should be flowing from the high-
temperature system (rich country) to the low-temperature system (poor country). This is called
the trade deficit—a systematic net flow of money from one country to another, which is best
exemplified by the trade between USA and China. The second term in (10) shows that the agents
would be flowing from high to low chemical potential, which corresponds to immigration from
a poor to a rich country. Both trade deficit and immigration are widespread global phenomena.
The direction of these processes can be understood also from (8). The two systems are trying to
equilibrate their money temperatures T = M/N , which can be achieved by changing either the
numerators due to money flow or the denominators due to people flow.
5 For simplicity, let us assume that the two countries use the same currency or the currency exchange rate is fixed,
so that an equivalent currency can be used.
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2.3. Thermodynamics of money and wealth

Thermal physics has two counterparts: statistical mechanics and thermodynamics. Statistical
mechanics of money was outlined in section 2.1. Is it possible to construct an analogue of
thermodynamics for money? Many attempts have been made in the literature, but none is
completely successful: see reviews [5] and [8].

One of the important concepts in thermodynamics is the distinction between heat and
work. In statistical physics, this distinction can be microscopically interpreted as follows [2].
The internal energy of the system is U =

∑
k εk Nk , where εk is an energy level and Nk is the

occupation number of this level. Suppose the energy levels εk(λ) depend on some external
parameters λ, such as the volume of a box in quantum mechanics or an external magnetic field
acting on spins. Then, the variation of U contains two terms δU =

∑
k(δεk)Nk +

∑
k εk(δNk) =

δW + δQ. The first term has mechanical origin and comes from the variation δεk = (∂εk/∂λ) δλ

of the energy levels due to changes in the external parameters λ. This term is interpreted as the
work δW done on the system externally. The second term has statistical origin and comes from
the changes δNk in the occupation numbers of the energy levels. This term is interpreted as the
heat δQ.

An analogue of this construction does not seem to exist for money M =
∑

k mk Nk . A
variation δM =

∑
k mk(δNk) is possible due to changes in the occupation numbers, but there

is no analogue of the variation δmk of the ‘money levels’ due to changes in some external
parameters. Thus, we can only define the heat term, but not the work term in the money variation.
Indeed, (9) is the analogue of the first law of thermodynamics for money, but there is no term
corresponding to work in this equation.

Nevertheless, statistical mechanics of money can be extended to a form somewhat
resembling conventional thermodynamics if we take into account the material property of the
agents. Let us define the wealth wi of an agent i as the sum of two terms. One term represents
the money balance mi , and another term the material property, such as a house, a car or stocks.
For simplicity, let us consider only one type of property, so that the agent has vi physical units
of this property. In order to determine the monetary value of this property, we need to know
the price P per unit. Then, the wealth of the agent is wi = mi + Pvi . Correspondingly, the total
wealth W in the system is6

W = M + PV, (11)

where V =
∑

i vi is the total ‘volume’ of the property in the system. If money M is analogous to
the internal energy U in statistical physics, then wealth W is analogous to the enthalpy H . The
wealth W includes not only the money M , but also the money equivalent necessary to acquire
the volume V of property at the price P per unit.

Let us consider the differential of wealth:

dW = dM + P dV + V dP = V dP. (12)

Here, the first two terms cancel out, and only the last term remains. Indeed, when the volume
dV > 0 of property is acquired, the money dM = −P dV < 0 is paid for the property, i.e.
money is exchanged for property. Equation (12) is also valid at the level of individual agents,
dwi = vi dP . These equations show that wealth changes only when the price P changes.

To advance the analogy with thermodynamics, let us consider a closed cycle in the (V, P)

plane illustrated in figure 1. This cycle can be interpreted as a model of stock market speculation,

6 From now on, we use the letter W to denote wealth, not work.
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Figure 1. A closed cycle of speculation or trading. V and P represent the volume
and price of goods.

in which case V is the volume of stock held by a speculator. Starting from the lower left corner,
the speculator purchases the stock at the low price P2 and increases the owned volume from V1

to V2. Then, the price increases from P2 to P1. At this point, the speculator sells the stock at
the high price P1, reducing the owned volume from V2 to V1. Then, the price of the stock drops
to the level P2, and the cycle can be repeated. From (12), we find that the wealth change of
the speculator is 1W =

∮
V dP , which is the area (P1 − P2)(V2 − V1) enclosed by the cycle in

figure 1. From (11), we also find that 1W = 1M , because P and V return to the initial values
at the end of the cycle. Thus, the monetary profit 1M is given by the area enclosed by the
cycle. This money is extracted by the speculator from the other players in the market, so the
conservation law of money is not violated. In the ideal economic equilibrium, there should be
no price changes allowing one to make systematic profits, which is known as the ‘no-arbitrage
theorem’. However, in the real market, significant rises and falls of stock prices do happen,
especially during speculative bubbles.

The cycle in figure 1 also illustrates the trade between China and the USA. Suppose that
a trade company pays money M2 to buy the volume V2 − V1 of the products manufactured in
China at the low price P2. After shipping across the Pacific Ocean, the products are sold in the
USA at the high price P1, and the company receives money M1. Empty ships return to China,
and the cycle repeats. As shown in [3], the price level P is generally proportional to the money
temperature T . Thus, the profit rate in this cycle is

M1 − M2

M2
=

P1 − P2

P2
=

T1 − T2

T2
. (13)

By analogy with physics, one can prove that (13) gives the highest possible profit rate
for the given temperatures T1 and T2. Indeed, from (9) with δN = 0, we find that M1 =

T1 1S1 and M2 = T2 1S2. Under the most ideal circumstances, the total entropy of the whole
system remains constant, so 1S1 = 1S2. Then, M1/M2 = T1/T2, and (13) follows. Here we
assumed that the profit money M1 − M2 has low (ideally zero) entropy, because this money is
concentrated in the hands of just one agent or trading company and is not dispersed among
many agents of the systems.

Thermal machines have cycles analogous to figure 1, and equation (13) is similar to the
Carnot formula for the highest possible efficiency [2, 7]. The China–USA trade cycle resembles
an internal combustion engine, where the purchase of goods from China mimics fuel intake,
and the sales of goods in the USA mimics expulsion of exhaust. The net result is that goods
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are manufactured in China and consumed in the USA. The analogy between trade cycles and
thermal machines was highlighted by Mimkes [9, 10]. Although somewhat similar to [10], our
presentation emphasizes a conceptual distinction between money and wealth, and explicitly
connects statistical mechanics and thermodynamics.

Empirical data on the international trade network between different countries were
analyzed in several papers. Serrano et al [11] analyzed trade imbalances, defined as the
difference between exports and imports from one country to another. Their paper classified
countries as net consumers and net producers of goods. The typical examples are the USA and
China, respectively, as illustrated in figure 2 of [11] for 2000, in qualitative agreement with our
discussion above. In contrast, Bhattacharya et al [12] studied trade volumes, defined as the sum
of exports and imports from one country to another. Their paper found that the trade volume s of
a country is proportional to the gross domestic product (GDP) of the country: s ∝ (GDP)γ with
the exponent γ ≈ 1. This means that the trade volume and GDP are extensive variables in the
language of thermodynamics, so the biggest volumes of trade are between the countries with the
biggest GDPs. In thermal equilibrium, money flows between two countries in both directions as
payment for traded goods, but the money fluxes in the opposite directions are equal, so there is
trade volume, but no trade imbalance. Trade imbalance may develop when the two systems have
different values of intensive parameters, such as the money temperature. Then, the direction of
net money flow is determined by the sign of the temperature difference.

Of course, there may be other reasons and mechanisms for trade imbalance besides the
temperature difference. Normally, the flow of money from the high- to the low-temperature
system should reduce the temperature difference and eventually bring the systems to equili-
brium. Indeed, in global trade, many formerly low-temperature countries have increased their
temperatures as a result of such trade. However, the situation with China is special, because the
Chinese government redirects the flow of dollars back to the USA by buying treasury bills from
the US government. As a result, the temperature difference remains approximately constant
and does not show signs of equilibration. The net result is that China supplies vast amounts of
products to the USA in exchange for debt obligations from the US government. The long-term
global consequences of this process remain to be seen.

2.4. The circuit of money and the circuit of goods

Section 2.3 illustrates that there are two circuits in a well-developed market economy [10].
One is the circuit of money, which consists of money payments between the agents for goods
and services. As argued in section 2.1, money is conserved in these transactions and, thus,
can be modeled as flow of liquid, e.g. blood in the vascular system. (A hydraulic device, the
MONIAC, was actually used by William Philips, the inventor of the famous Philips curve, to
illustrate money flow in the economy [5].) The second circuit is the flow of goods and services
between the agents. This circuit involves manufacturing, distribution and consumption. The
goods and services are inherently not conserved. They represent the material (physical) side of
the economy and, arguably, are the ultimate goal for the well-being of a society. In contrast,
money represents the informational, virtual side of the economy, because money cannot be
physically consumed. Nevertheless, money does play a very important role in the economy
by enabling its efficient functioning and by guiding resource allocation in a society7. The two

7 Here we consider the modern fiat money, declared to be money by the central bank or government. We do not
touch the origin of money in the early history as some kind of special goods.
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circuits interact with each other when goods and services are traded (exchanged) for money.
However, money cannot be physically transformed into goods and vice versa. To illustrate
this point, we draw an analogy with fermions and bosons in physics. While the ‘circuits’ of
fermions and bosons interact and transfer energy between each other, it is not possible to convert
a fermion into a boson or vice versa.

An important consequence of this consideration is that an increase in material production
in the circuit of goods and services does not have any direct effect on the amount of money in
the monetary circuit. The amount of money in the system depends primarily on the monetary
policy of the central bank or government, who have monopoly on issuing money. Technological
progress in material production does not produce any automatic increase in money in the system.
Thus, the expectation of continuous monetary growth, where the agents would be getting more
and more money as a result of technological progress, is false. It is not possible for all businesses
to operate with profit on average, i.e. to have a greater total amount of money at the end of a
cycle than at the beginning. The agents can get more money on average only if the government
decides to print money, i.e. to increase the money temperature T = M/N .8 Thus, monetary
growth of the economy is directly related to the deficit spending by the central government.
On the other hand, it is very well possible to have technological progress and an increase in the
physical standards of living without monetary growth. The monetary and physical circuits of the
economy interact with each other, but they are separate circuits. Unfortunately, this distinction
is often blurred in the econophysics and economics literature [10], as well as in the public
perception.

3. Two-class structure of income distribution

3.1. Introduction

Although the exponential probability distribution of money (6) was proposed 10 years ago [3, 4],
no direct statistical data on money distribution are available to verify this conjecture. Normally,
people do not report their money balances to statistical agencies. Given that most people keep
their money in banks, the distribution of balances on bank accounts can give a reasonable
approximation of the probability distribution of money. However, these data are privately held
by banks and not available publicly.

On the other hand, a lot of statistical data are available on income distribution, because
people report income to the government tax agencies. To some extent, income distribution
can also be viewed as a problem of partitioning of a limited resource, in this case of the
total annual budget. Following section 2.1, we expect to find the exponential distribution for
income. Drăgulescu and Yakovenko [13] studied the data on income distribution in the USA
from the Internal Revenue Service (IRS) and from the US Census Bureau. They found that
income distribution is indeed exponential for incomes below 120 k$ per year. However, in the
subsequent papers [14, 15], they also found that the upper tail of income distribution follows a
power law, as was first pointed out by Pareto [16]. So, the data analysis of income distribution
in the USA reveals coexistence of two social classes. The lower class (about 97% of population)
is characterized by the exponential Boltzmann–Gibbs distribution, and the upper class (the top
3% of the population) has the power-law Pareto distribution. Time evolution of the income
classes in 1983–2001 was studied by Silva and Yakovenko [17]. They found that the exponential

8 For discussion of the issues related to debt, see the review [1].
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distribution in the lower class is very stable in time, whereas the power-law distribution of the
upper class is highly dynamic and volatile. They concluded that the lower class is in thermal
equilibrium, whereas the upper class is out of equilibrium.

Many other papers investigated income distributions in different countries: see the
review [1] for references. The coexistence of two classes appears to be a universal feature of
income distribution. In this section, we present a unified description of the two classes within a
single mathematical model.

3.2. Income dynamics as a combination of additive and multiplicative stochastic processes

The two-class structure of income distribution can be rationalized on the basis of a kinetic
approach. Suppose the income r of an agent behaves like a stochastic variable. Let P(r, t)
denote the probability distribution of r at time t . Let us consider a diffusion model, where the
income r changes by 1r over a time period 1t . Then, the temporal evolution of P(r, t) is
described by the Fokker–Planck equation [18]:

∂ P(r, t)

∂t
=

∂

∂r
[A(r)P(r, t)] +

∂2

∂r 2
[B(r)P(r, t)]. (14)

The coefficients A(r) and B(r) are the drift and diffusion terms, which are determined by the
first and second moments of the income changes 1r per unit time:

A(r) = −
〈1r〉

1t
, B(r) =

〈(1r)2
〉

21t
. (15)

The stationary solution Ps(r) of (14) satisfies ∂t Ps = 0; thus we obtain

∂(BPs)

∂r
= −APs. (16)

The general solution of (16) is

Ps(r) =
c

B(r)
exp

(
−

∫ r A(r ′)

B(r ′)
dr ′

)
, (17)

where c is a normalization factor, such that
∫

∞

0 Ps(r) dr = 1.
For the lower class, the income comes from wages and salaries, so it is reasonable to assume

that income changes are independent of income itself, i.e. 1r is independent of r . This process
is called the additive diffusion [17]. In this case, the coefficients in (14) are some constants A0

and B0. Then (17) gives the exponential distribution

Ps(r) =
1

T
e−r/T , T =

B0

A0
. (18)

On the other hand, the upper-class income comes from bonuses, investments and capital
gains, which are calculated in percentages. Therefore, for the upper class, it is reasonable
to expect that 1r ∝ r , i.e. income changes are proportional to income itself. This is known
as the proportionality principle of Gibrat [19], and the process is called the multiplicative
diffusion [17]. In this case, A = ar and B = br 2, and (17) gives a power-law distribution:

Ps(r) ∝
1

r 1+α
, α = 1 +

a

b
. (19)
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The multiplicative hypothesis for the upper-class income was quantitatively verified in [20] for
Japan, where tax identification data are officially published for the top taxpayers.

The additive and multiplicative processes may coexist. For example, an employee may
receive a cost-of-living raise calculated in percentages (the multiplicative process) and a merit
raise calculated in dollars (the additive process). Assuming that these processes are uncorrelated,
we find that A = A0 + ar and B = B0 + br 2

= b(r 2
0 + r 2), where r 2

0 = B0/b. Substituting these
expressions into (17), we find

Ps(r) = c
e−(r0/T ) arctan(r/r0)

[1 + (r/r0)2]1+a/2b
. (20)

The distribution (20) interpolates between the exponential law for low r and the power law for
high r , because either the additive or the multiplicative process dominates in the corresponding
limit. A crossover between the two regimes takes place at r ∼ r0, where the additive and
multiplicative contributions to B are equal. The distribution (20) has three parameters: the
temperature T = A0/B0, the Pareto exponent α = 1 + a/b and the crossover income r0. It is a
minimal model that captures the salient features of the two-class income distribution. A formula
similar to (20) was also derived by Fiaschi and Marsili [21] for a microscopic economic model,
which is effectively described by (14).

3.3. Comparison with the personal income data from the Internal Revenue Service (IRS)

In this section, we compare (20) with the annual income data from the IRS for the years
1996–2007 [22]. Because the IRS releases the data with a delay of a couple of years, 2007 is the
latest year for which the data are currently available. The IRS data are given for a set of discrete
income levels. Thus, it is more practical to construct the cumulative distribution function (CDF),
which is the integral C(r) =

∫
∞

r P(r ′) dr ′ of the probability density. For the probability density
(20), C(r) is not available in analytical form; therefore it has to be calculated by integrating
Ps(r) numerically. We use the theoretical CDF Ct(r) to fit the empirical CDF Ce(r) calculated
from the IRS data.

Determining the best values of the three fitting parameters in the theoretical CDF is a
computationally challenging task. Thus, we do it step by step. For each year, we first determine
the values of T and α by fitting the low-income part of Ce(r) with an exponential function and
the high-income part with a power law. Then, keeping these two parameters fixed, we determine
the best value of r0 by minimizing the mean-square deviation 6nln2[Ct(rn)/Ce(rn)] between the
theoretical and empirical functions, where the sum is taken over all income levels rn for which
empirical data are available.

Table 1 shows the values of the fit parameters obtained for different years. The data points
for the empirical CDF and their fits with the theoretical CDF are shown in figure 2 in the log–log
scale versus the normalized annual income r/T . For clarity, the curves are shifted vertically
for successive years. Clearly, the theoretical curves agree well with the empirical data, so the
minimal model (20) indeed captures the salient features of income distribution in the USA.

In previous papers [15, 17], fits of the income distribution data were made only to the
exponential (18) and power-law (19) functions. The income r∗, where the two fits intersect, can
be considered as a boundary between the two classes. The values of r∗ are shown in table 1. We
observe that the boundary r∗ between the upper and lower classes is approximately 3.5 times
greater than the temperature T . Given that the CDF of the lower class is exponential, we find
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Table 1. T , α and r0 are the parameters in (20), obtained by fitting the annual
income data from the IRS. r∗ is the income separating the upper and lower
classes. f is the fraction of income going to the upper class, given by (21). G is
the Gini coefficient.

Year T (k$) α r0 (k$) r∗ (k$) f (%) G

1996 33 1.63 76 116 11.8 0.55
1997 35 1.57 79 120 13.8 0.56
1998 36 1.55 80 122 16.4 0.57
1999 38 1.54 83 124 16.8 0.58
2000 40 1.34 105 150 18.4 0.59
2001 41 1.46 99 152 14.4 0.56
2002 41 1.51 99 154 12.6 0.55
2003 41 1.48 101 156 13.7 0.56
2004 43 1.41 105 158 16.7 0.58
2005 44 1.36 108 159 19.5 0.59
2006 46 1.36 107 160 20.5 0.60
2007 48 1.34 113 166 21.5 0.60

that the upper class population is approximately exp(−r∗/T ) = exp(−3.5) = 3%, which indeed
agrees with our observations.

3.4. The fraction of income in the upper tail and speculative bubbles

Let us examine the power-law tail in more detail. Although the tail contains a small fraction
of population, it accounts for a significant fraction f of the total income in the system. The
upper-tail income fraction can be calculated as

f =
R − NeT

R
≈

R − N T

R
= 1 −

T

〈r〉
. (21)

Here, R is the total income, N is the total number of people and 〈r〉 = R/N is the average
income for the whole system. In addition, Ne is the number of people in the exponential part of
the distribution and T is the average income of these people. Since the fraction of people in the
upper tail is very small, we use the approximation Ne ≈ N in deriving the formula (21) for f .
The values of f deduced from the IRS data using (21) are given in table 1.

Figure 3(c) shows the historical evolution of 〈r〉, T and f for the period 1983–2007.
We see that the average income T of the lower class increases steadily without any large
jumps. In contrast, the fraction f going to the upper class shows large variations and now
exceeds 20% of the total income in the system. The maxima of f are achieved at the peaks
of speculative bubbles, first at the end of the ‘.com’ bubble in 2000 and then at the end
of the subprime mortgage bubble in 2007. After the bubbles collapse, the fraction f drops
precipitously. We conclude that the upper tail is highly dynamical and out of equilibrium. The
tail swells considerably during the bubbles, whereas the effect of the bubbles on the lower class
is only moderate. As a result, income inequality increases during bubbles and decreases when
the bubbles collapse.
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Figure 2. CDFs constructed from the IRS data (symbols) and their fits with the
theoretical distribution (20), shown in the log–log scale versus the normalized
annual income r/T . Plots for different years are shifted vertically for clarity.

In view of the argument about the conservation of money presented in section 2.1,
what is the source of money for the enormous increase in the upper tail income during
speculative bubbles? The stock market bubble in the late 1990s was actually predicted in the
book [23] published in 1993. The prediction was based on the population data, showing that the
demographic wave of aging baby boomers will be massively investing their retirement money
in the stock market in the second half of the 1990s, which indeed happened. The stock prices
rose when millions of boomers paid for the stocks of ‘.com’ companies. When the demographic
wave reached its peak around 2000 and the influx of money to the stock market started to
saturate (at its highest level), the market crashed precipitously, and the population was left with
worthless stocks. One can see an analogy with the cycle in figure 1. The net result of this
bubble is the transfer of money from the lower to the upper class under the cover of ‘retirement
investment’.

As it is clear now, the second bubble in 2003–2007 was based on the enormous growth in
debt due to proliferation of subprime mortgages. As discussed in [1, 3], debt can be considered
as negative money, because debt liabilities are counted with a negative sign towards the net
worth of an individual. The conservation law (2) is still valid, but money balances mi can
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class (the temperature of the exponential part), and the percentage of income f
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take negative values. So, the first moment (the ‘center of mass’) of the money distribution
〈m〉 = M/N remains constant. However, now some agents can become super-rich with very
high positive money balances at the expense of other agents plunging deeply into debt with
negative money balances. Thus, relaxing the boundary condition m > 0 undermines the stability
of the Boltzmann–Gibbs distribution (6). This is what happened during the subprime mortgages
bubble. The money flowing to the upper tail was coming from the growth of the total debt in the
system. Eventually, the bubble collapsed when the debt reached a critical level. Now the bailout
effort by the government, effectively, represents the transfer of debt from economic agents to
the government. The overall result is that the income growth of the upper class in 2003–2007
was coming from the bailout money that the government is printing now. As emphasized in
sections 2.1 and 2.4, the government and central bank are the ultimate sources of new money
because of the government monopoly on fiat money.

The discussion and the data presented in this section indicate that, by combining the
demographic data with the principle of money conservation, it may be possible to predict, to
some degree, the macroeconomic behavior of the economy. In fact, the book [23] predicted in
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1993 that ‘the next great depression will be from 2008 to 2023’ (page 16). This is a stunning
prediction 15 years in advance of the actual event. For an update, see the follow-up book [24].

3.5. The power-law exponent of the upper tail

Another parameter of the upper tail is the power-law exponent α in (19). Table 1 and figure 3(b)
show historical evolution of α from 1983 to 2007. We observe that α has decreased from about 2
to about 1.3. The decrease in α means that the power-law tail is getting ‘fatter’, i.e. the inequality
of income distribution increases. It looks like the system is approaching dangerously closely the
critical value α = 1, where the total income in the tail

∫
∞

r∗
r P(r) dr would formally diverge [25].

On top of the gradual decrease, α dived down and up sharply around 1987 and 2000. The dive-
downs of α represent sharp increases in income inequality due to the bubbles, followed by
crashes of the bubbles in 1987 and 2000 and subsequent contractions of the upper tail. Thus, the
behavior of the tail exponent α is qualitatively consistent with the behavior of the tail fraction f
discussed in section 3.4. A similar behavior was found for Japan [20], where α jumped sharply
from 1.8 to 2.1 between 1991 and 1992 due to the crash of the Japanese market bubble.

During the times of bubbles, the sharp decrease in α is clearly a dynamical process, which
cannot be described adequately by stationary equations. On the other hand, during the time
between bubbles, which economists may call ‘recession’ or ‘depression’, the market is quiet,
and it may be possible to describe it using a stationary approach. Even during these times,
the power-law tail does not disappear, but the exponent α takes a relatively high value. From
figure 3(b), it appears that the upper limit for α is about 2. This limiting value is supported
by other observations in the literature. Analysis of Japanese data [20] shows that α changes
in the range between 1.8 and 2.2. Drăgulescu and Yakovenko [14] found α = 1.9 for wealth
distribution in the UK for 1996. Thus, we make a conjecture that α = 2 is a special value of the
power-law exponent corresponding to a quiet, stationary market.

In order to understand what is special about α = 2, let us examine the moments of the
income change 1r . The first moment 〈1r〉 is always negative. This condition ensures that
A > 0 in (15), so that (16) has a stationary solution. The condition 〈1r〉 < 0 indicates that,
on average, everybody’s income is decreasing due to the drift term, yet the whole income
distribution remains stationary because of the diffusion term. In stochastic calculus, the first
〈1r〉 and the second 〈(1r)2

〉 moments are of the same order in 1t , so they must be treated on
an equal footing. Thus, instead of considering the changes in r , let us discuss how r 2 changes
in time. Using (15), we find

〈1(r 2)〉 = 〈(r + 1r)2
− r 2

〉 = 2r〈1r〉 + 〈(1r)2
〉 = 2(−r A + B) 1t. (22)

For the additive stochastic process (18), we find from (22) that 〈1(r 2)〉 > 0 for r < T and
〈1(r 2)〉 < 0 for r > T . These conditions indicate a stabilizing tendency of the income-squares
to move in the direction of the average income T .

Now, let us apply (22) to the multiplicative process (19). In this case, we find

〈1(r 2)〉 = 2(−a + b) r 21t. (23)

For a = b, equation (23) gives 〈1(r 2)〉 = 0 for all r . This condition can be taken as a criterion
for the inherently stationary state of a power-law tail, because r 2 does not change (on average)
for any r in a scale-free manner. From (19), we observe that the condition a = b corresponds to
the value α = 1 + a/b = 2, which is indeed the upper value of the power-law exponent observed
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for stationary, quiet markets:

〈1(r 2)〉 = 0 ⇔ a = b ⇔ α = 2. (24)

On the other hand, for a < b, we find 〈1(r 2)〉 > 0 and α < 2. In this case, the income-square
increases on average, which correlates with the upper tail expansion during the boom times.
Note that the value α = 2 in (24) is different from the value α = 1 found for the models of
random saving propensity and earthquakes in [5, 6, 26].

3.6. The Lorenz plot and Gini coefficient for income inequality

The standard way of representing income distribution in the economic literature is the Lorenz
plot [27]. It is defined parametrically in terms of the two coordinates x(r) and y(r) depending
on a parameter r :

x(r) =

∫ r

0
dr ′ P(r ′), y(r) =

∫ r
0 dr ′r ′ P(r ′)∫
∞

0 dr ′r ′ P(r ′)
. (25)

Here, x(r) is the fraction of the population with incomes below r , and y(r) is the total income
of this population, as a fraction of the total income in the system. When r changes from 0 to
∞, the variables x and y change from 0 to 1, producing the Lorenz plot in the (x, y)-plane.
The advantage of the Lorenz plot is that it emphasizes the data where most of the population
is. In contrast, the log–linear and log–log plots, like figure 2, emphasize the upper tail, which
corresponds to a small fraction of population, and where the data points are sparse. Another
advantage of the Lorenz plot is that all available data are represented within a finite area in the
(x, y) plane, whereas in other plots, the upper end of the data at r → ∞ is inevitably truncated.

For the exponential distribution P(r) = exp(−r/T )/T , it was shown in [13] that the
Lorenz curve is given by the formula y = x + (1 − x)ln(1 − x). Note that this formula is
independent of T . However, when the fat upper tail is present, this formula is modified as
follows [15, 17]:

y = (1 − f )[x + (1 − x) ln(1 − x)] + f 2(x − 1). (26)

Here, 2(x − 1) is the step function equal to 0 for x < 1 and 1 for x = 1. The jump at x = 1 is
due to the fact that the fraction of the population in the upper tail is very small, but their fraction
f of the total income is substantial.

The data points in figure 4 show the Lorenz plots calculated from the IRS data for 1996
and 2007. The solid lines in figure 4 are the theoretical Lorenz curves (26) with the values of
f obtained from (21). The theoretical curves agree well with the data. The distance between
the diagonal line and the Lorenz curve characterizes income inequality. We observe in figure 4
that income inequality increased from 1995 to 2007, and this increase came exclusively from
the growth of the upper tail, which pushed down the Lorenz curve for the exponential income
distribution in the lower class.

The standard way of characterizing inequality in the economic literature [27] is the Gini
coefficient 06 G 6 1, defined as twice the area between the diagonal line and the Lorenz curve.
It was shown that G = 1/2 for the exponential distribution [13], and

G =
1 + f

2
(27)
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Figure 4. Lorenz plots for income distribution in 1996 and 2007. The data points
are from the IRS, and the theoretical curves represent (26) with f from (21).

when taking into account the fraction f going to the upper class on top of the exponential
distribution [17]. The values of G deduced from the IRS data are given in table 1 and shown
in figure 3(a) by the connected line, along with (27) shown by open circles. The increase in
G indicates that income inequality has been rising since 1983. The agreement between the
empirical values of G and the formula (27) in figure 3 demonstrates that the increase in income
inequality from the late 1990s comes from the upper tail growth relative to the lower class.

4. Probability distribution of the global energy consumption

4.1. Introduction

In the preceding sections, we studied monetary aspects of the economy and discussed
probability distributions of money and income. We found that significant inequality of money
and income distributions can develop for statistical reasons. Now we would like to discuss
physical aspects of the economy. Since the beginning of the industrial revolution several
centuries ago, rapid technological development of society has been based on consumption of
fossil fuel, such as coal, oil and gas, accumulated in the Earth for billions of years. The whole
discipline of thermodynamics was developed in physics to deal with this exploitation. Now it is
becoming exceedingly clear that these resources will be exhausted in the not-too-distant future.
Moreover, consumption of fossil fuel releases CO2 to the atmosphere and affects the global
climate. These pressing global problems pose great technological and social challenges.

As shown below, energy consumption per capita by human population around the world
shows significant variation. This heterogeneity is a challenge and a complication for reaching a

New Journal of Physics 12 (2010) 075032 (http://www.njp.org/)

http://www.njp.org/


18

global consensus on how to deal with the energy problems. Thus, it is important to understand
and quantitatively characterize the global inequality of energy consumption. In this section, we
present such a study using the approach developed in the preceding sections of the paper.

4.2. Energy consumption distribution as division of a limited resource

Let us consider an ensemble of economic agents and characterize each agent i by the energy
consumption εi per unit time. Note that here εi denotes not energy but power, which is measured
in kilowatts (kW). Similarly to section 2.1, we can discuss the probability distribution of
energy consumption in the system and introduce the probability density P(ε), such that P(ε) dε

gives the probability of having energy consumption in the interval from ε to ε + dε. Energy
production, based on extraction of fossil fuel from the Earth, is physically limited. So, energy
production per unit time is a limited resource, which is divided for consumption among the
global population. As argued in section 2.1, it would be very improbable to divide this resource
equally. More likely, this resource would be divided according to the entropy maximization
principle. Following the same procedure as in section 2.1, with money m replaced by energy
consumption ε, we arrive at the conclusion that the probability distribution of ε should follow
the exponential law analogous to (6):

P(ε) ∝ e−ε/T , T = 〈ε〉. (28)

Here, the ‘temperature’ T is the average energy consumption per capita9.
Now we would like to compare the theoretical conjecture (28) with the empirical data for

energy consumption around the world. For this purpose, it is convenient to introduce the CDF:

C(ε) =

∫
∞

ε

P(ε′) dε′. (29)

Operationally, C(ε) is the number of agents with energy consumption above ε divided by the
total number of agents in the system. If P(ε) is an exponential function, then C(ε) is also
exponential.

4.3. Empirical data analysis

We downloaded empirical data from the World Resources Institute (WRI) website [28]. The
data on energy consumption are listed under the topic ‘Energy and Resources’. We downloaded
the variable ‘Total energy consumption’ [29], which contains the annual energy consumption for
various countries for the years 1990, 2000 and 2005 (only these years are available). Population
data are listed under the topic ‘Population, Health and Human Well-being’. We downloaded
the variable ‘Total population, both sexes’ [30], which contains the total population of various
countries for the same years. From these two data files, we selected the countries for which both
energy and population data are available. Our final data files have 132 countries for 1990 and
135 countries for 2000 and 2005. Then we divided the annual energy consumption in a given
country by the population of this country to obtain the average energy consumption per capita ε.
The values of ε are listed in table 2 for some countries. A spreadsheet with our complete dataset
is available for download as the supplementary online material of this paper.

Then we proceeded to construct the cumulative probability distribution for ε. First, we
sorted the countries into ascending order of their energy consumption per capita εn, so that n = 1

9 To make it clear, this effective T is not the temperature as it is known in physics.
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Table 2. Energy consumption per capita for the countries labeled in figures 5–7.
The units are converted from kilotons of oil equivalent per year to kW (1 ton =
41.85 × 109 J). The last three columns show GDP per capita taken from [34].

Country Label Energy use (kW) GDP per capita (k$)

1990 2000 2005 1990 2000 2005

Australia AUS 6.9 7.7 7.9 18.9 20.9 36.3
Bahrain BHR 13.0 12.8 14.9 8.6 12.3 22.1
Brazil BRA 1.2 1.4 1.5 3.1 3.7 4.7
Canada CAN 10.0 10.9 11.3 21.0 23.6 35.1
China CHN 1.0 1.2 1.7 0.3 0.9 1.7
Cuba CUB 2.1 1.4 1.2
France FRA 5.3 5.8 6.0 21.9 22.4 35.0
Germany DEU 6.0 5.6 5.6 21.6 23.1 33.7
Iceland ISL 11.3 15.3 16.3 24.5 30.9 54.8
India IND 0.5 0.6 0.6 0.4 0.4 0.7
Iran IRN 1.6 2.4 3.1 2.0 1.5 2.8
Israel ISR 3.6 4.2 3.9 11.6 19.9 19.4
Japan JPN 4.8 5.5 5.5 24.4 36.7 35.6
Kenya KEN 0.7 0.6 0.7 0.4 0.4 0.5
Kuwait KWT 5.3 12.2 13.9 8.6 16.9 29.9
Mexico MEX 2.0 2.0 2.3 3.1 5.8 7.4
Netherlands Antilles ANT 10.4 10.2 11.9
Russia RUS 7.9 5.6 6.0 3.5 1.8 5.3
Arab Emirates ARE 16.1 14.7 15.2 18.0 21.7 31.6
The United Kingdom GBR 4.9 5.3 5.2 17.3 24.5 37.0
The United States USA 10.0 10.8 10.4 22.5 34.3 41.3
Qatar QAT 18.1 25.6 26.5 15.8 28.8 53.3

World average 2.2 2.2 2.3 4.2 5.2 7.0

corresponds to the country with the lowest consumption and n = L to the maximal consumption,
where L is the total number of countries. We denoted the population of a country n as Nn. Then,
the cumulative probability for a given εn is

Ce(εn) =

∑L
k=n Nk∑L
k=1 Nk

. (30)

Effectively, this construction assigns the same energy consumption εn to all Nn residents of the
country n. Of course, this is a very crude approximation, but it is the best we can do in the
absence of more detailed data. The empirically constructed function Ce(εn) is shown in figure 5
by different colors for the years 1990, 2000 and 2005. Table 2 and figure 5 illustrate the great
variation and inequality of energy consumption per capita around the world. Let us focus on the
data for 2005. In the USA, ε is about 5 times greater than the global average; in China, ε is close
to the global average; and in India, ε is about 1/4 of the global average.

By construction, Ce(εn) exhibits discontinuities at each εn because of the approximation
used in our procedure. Given the relatively small number of data points (L = 135) and
discontinuities of the plot, it is not practical to do a quantitative fit of the data. Nevertheless,
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2000 and 2005. The solid curve is the exponential function.

the empirically constructed function Ce(ε) can be compared with the theoretical function
Ct(ε) = exp(−ε/T ), which is shown by the solid line in figure 5. Here, the temperature
T = 2.2 kW is the average global energy consumption per capita, obtained by dividing the total
energy consumption of all countries by their total population. This value is indicated by the
arrow in figure 5. (For comparison, the physiological energy consumption at rest by a female
of weight 53 kg is 63 W [31].) The exponential function does not fit the data perfectly, but it
captures the main features reasonably well, given the crudeness of the data. The agreement is
remarkable, given that the solid line is not a fit, but a plot of a function with one parameter T
fixed by the global average.

In order to make an additional visual comparison between the theory and the data, the
functions Ce(εn) and Ct(ε) are plotted in figure 6 in the log-linear scale and in figure 7 in
log–log scale. In figure 6, we see that the empirical data points oscillate around the theoretical
exponential function shown by the straight line. The data jumps for high ε are unnaturally
magnified in the logarithmic scale. Figure 7 demonstrates that the empirical data points do not
fall on a straight line in the log–log scale, so the energy consumption per capita is not described
by a power law. Indeed, energy production and consumption are physically limited and have
the characteristic average scale T , so a scale-free power-law distribution would not be expected
here.

We have also constructed the plots for CO2 emission per capita using the data from
WRI [28]. They look essentially the same as the plots for energy consumption per capita, in
agreement with the findings by other authors [32], because most of the energy in the world is
currently generated from fossil fuel.
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Figure 6. The same data as in figure 5, but plotted in the log-linear scale.
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4.4. The effect of globalization on the inequality of energy consumption

Figures 5–7 give different visual representations of C(ε) but have certain shortcomings. Figure 5
emphasizes the low end of the data, whereas figures 6 and 7 emphasize the high end. All figures
suffer from discontinuities.

A smoother visualization can be achieved in the Lorenz plot for energy consumption per
capita. As in (25), the empirical Lorenz curve is constructed parametrically:

x(εn) =

∑n
k=1 Nk∑L
k=1 Nk

, y(εn) =

∑n
k=1 εk Nk∑L
k=1 εk Nk

. (31)

The horizontal coordinate x(εn) gives the fraction of global population with energy consumption
per capita below ε, and y(εn) gives the total energy consumption of this population as a fraction
of the global consumption. When n runs from 1 to L , we obtain a set of points in the (x, y)-plane
representing the Lorenz plot.

The empirically constructed Lorenz plots for 1990, 2000 and 2005 are shown in figure 8
using different colors. By construction, the Lorenz plots are continuous without jumps, although
the slope (the derivative) of the y(x) curve is discontinuous. Another advantage of the Lorenz
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plot is that it emphasizes the data where most of the population is, i.e. the range from the bottom
5% to the top 95% of the population sorted according to their energy consumption per capita.

The black solid line shows the theoretical Lorenz curve y = x + (1 − x)ln(1 − x) for the
exponential distribution. We observe that, in the first approximation, the theoretical curve
captures the data reasonably well, especially given that the curve has no fitting parameters at all.
Upon closer examination, we notice a systematic historical evolution of the empirical curves.
From 1990 to 2005, the data points moved closer to the diagonal, which indicates that global
inequality of energy consumption decreased. This is confirmed by the decrease in the calculated
Gini coefficient G, which is listed in figure 8.

On the Lorenz plot for 1990, we notice a kink or a knee indicated by the arrow, where the
slope of the curve changes appreciably. This point represents the boundary between developed
and developing countries. Indeed, below this point we find Mexico, Brazil, China and India,
whereas above this point we find Britain, France, Australia, Russia and the USA. The conclusion
is that the difference between developed and developing countries lies in the degree of energy
consumption and utilization. This criterion provides a physical measure for such a distinction,
as opposed to more ephemeral monetary measures, such as dollar income per capita.

Comparing the Lorenz plots for 2000 and 2005 with the plot for 1990, we observe that the
kink in the plots is progressively smoothed out. It means that the gap in energy consumption per
capita between developed and developing countries is shrinking. We attribute this result to rapid
globalization of the world economy in the last 20 years. Nevertheless, the distribution of energy
consumption per capita around the world still remains highly unequal. We observe in figure 8
that the Lorenz plot has moved closer to the solid curve representing the exponential distribution.
Based on the general arguments about partitioning of a limited resource, we expect that the result
of a well-mixed globalized world economy would not be an equal energy consumption, but the
exponential distribution. Thus, it is not likely that the energy consumption inequality will be
eliminated in the foreseeable future.

It is generally known that energy consumption per capita and GDP per capita are positively
correlated, and energy consumption is the physical basis for economic prosperity [32]. Brown
et al [33] found a power-law relation ε ∝ (GDP per capita)0.76 between these two variables by
analyzing the data for different countries around the world (see figure 3A in [33]). The last three
columns in table 2 show the data for GDP per capita [34]. Although this variable is generally
correlated with the energy consumption per capita, the monetary and physical measures are not
always well aligned. The movement of sustainable economics [35] criticized GDP as a useful
measure of economic prosperity.

5. Conclusions

In this paper, we study probability distributions of money, income and energy consumption per
capita for ensembles of economic agents. Following the principle of entropy maximization for
the partitioning of a limited resource among many agents, we find exponential distributions
for the investigated variables. Using an analogy with thermodynamics, we discuss trade deficit
and immigration between two countries with different money temperatures. Considering a cycle
similar to a thermal engine, we discuss how a monetary profit can be extracted in the presence
of non-equilibrium due to a temperature difference.

Then we study a Fokker–Planck equation for income diffusion with additive and
multiplicative components. The resulting probability distribution of income interpolates

New Journal of Physics 12 (2010) 075032 (http://www.njp.org/)

http://www.njp.org/


24

between the exponential function (Boltzmann–Gibbs) at the low end and the power law (Pareto)
at the high end. This function agrees well with the empirical income distribution data in the
USA obtained from the IRS. While the exponential distribution in the lower class remains
stable in time, the income fraction f going to the upper tail expands dramatically during
speculative bubbles and shrinks when the bubbles burst. Overall, income inequality in the USA
has increased significantly from 1983 to 2007, so that now f exceeds 20% of the total income
in the system. We also discuss reasons why the Pareto exponent tends to have the value about
α = 2 in the steady state in the absence of bubbles.

Finally, we analyze the probability distribution of energy consumption per capita around
the world using the data from the WRI. We find that the distribution is reasonably described
by the exponential function with the average global consumption as the effective temperature.
A closer examination finds a gap in energy consumption between developed and developing
countries, which tends to shrink as time progresses. We attribute this effect to globalization of
the world economy. The inequality of energy consumption decreased from 1990 to 2005, while
the corresponding Lorenz plot moved closer to the exponential distribution.

In conclusion, we observe that statistical problems of different nature have a common
mathematical description and exhibit similar and universal patterns of inequality. Thus, the
statistical approach gives an insight into the persistent and ubiquitous nature of inequality in the
world around us. The approach presented here can also be applied to other statistical problems.
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