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Anisotropic surface-state-mediated RKKY interaction between adatoms
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Motivated by recent numerical studies of Ag on Pt(111), we derive an expression for the RKKY interaction
mediated by surface states, considering the effect of anisotropy in the Fermi edge. Our analysis is based
on a stationary phase approximation. The main contribution to the interaction comes from electrons whose
Fermi velocity vF is parallel to the vector R connecting the interacting adatoms; we show that, in general,
the corresponding Fermi wave vector kF is not parallel to R. The interaction is oscillatory; the amplitude
and wavelength of oscillations have angular dependence arising from the anisotropy of the surface-state band
structure. The wavelength, in particular, is determined by the projection of this kF (corresponding to vF ) onto
the direction of R. Our analysis is easily generalized to other systems. For Ag on Pt(111), our results indicate
that the RKKY interaction between pairs of adatoms should be nearly isotropic and so cannot account for the
anisotropy found in the studies motivating our work. However, for metals with surface-state dispersions similar
to Be(101̄0), we show that the RKKY interaction should have considerable anisotropy.
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I. INTRODUCTION

Surface reconstruction and self-assembly at interfaces have
attracted considerable interest due to the desire to tailor
electronic and other properties of semiconductor devices.
Understanding the dominant interactions between atoms on
surfaces is crucial for describing these larger-scale recon-
struction processes. Classical models of surface stress, such
as the Frenkel-Kontorova model,1,2 have been successful in
describing many experimental systems.3–6 However, recent
work suggests that classical theories are unable to predict the
formation of structures on certain heteroepitaxial systems. By
comparing numerical results to experimental data, Stepanyuk
et al. showed how quantum-mechanical interactions could
lead to the self-assembly of one-dimensional Co chains and
Fe superlattices on Cu(111).7,8 More recently, Refs. 9 and
10 used density functional theory (DFT) and kinetic Monte
Carlo simulations to show that anisotropy in the quantum-
mechanical interactions between adsorbed atoms (adatoms) is
crucial for the formation of striped dislocation patterns seen
when Ag is deposited on Pt(111).11

Motivated by these works, our primary goal in this
paper is to derive an analytic expression for the anisotropic
surface-state12,13 (SS) mediated Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction14–17 between adatoms on an
fcc surface. While perturbative calculations of the RKKY
interaction have been performed in two dimensions by Lau
and Kohn18 and others,19 we emphasize that, to the best of our
knowledge, these previous studies only considered isotropic
band structures.20–22 Our analysis, however, specifically ac-
counts for the anisotropy in the interaction, which is induced
by a more realistic SS band. In this paper, we focus our analysis
primarily on the the (111) surface of an fcc crystal so that, as a
secondary goal, we may compare our results with Refs. 7–10.
However, the techniques we employ are easily generalized
to other lattice geometries and systems; we will show, for
example, how our main result can be used to describe the

RKKY interaction on surfaces such as Be(101̄0) and Cu(110),
which both have a highly anisotropic surface-state band.23

In Ref. 24, one of us proposed that the main contribution
to the RKKY interaction comes from electrons whose Fermi
velocity (rather than Fermi wave vector) is parallel to the vector
separating the adatoms. A version of this idea was, in fact,
shown earlier by Roth et al.,25,26 whose analysis we extend
to surfaces and two-dimensional (2D) systems. Our main
analytical tool will be a stationary phase approximation of the
relevant, oscillatory integrals. This technique has the benefit of
revealing the essential physics of the RKKY interaction, at the
cost of limiting our result to the far-field regime; we provide a
criterion that indicates when our result is valid. The generality
of our approach is closely related to the stationary phase
approximation and stems from the fact that, in the far-field
limit, the interaction is determined by the local structure of
the Fermi edge (i.e., a few electron states); thus, one need not
perform complicated integrals over all surface states.

We find that the 2D RKKY interaction is oscillatory and
bounded by an envelope that decays as inverse distance
squared, in agreement with experimental and numerical
studies.7,8,18–21 For a (111) fcc surface, our analysis predicts
a sixfold anisotropy in the interaction; however, we find less
variation in the interaction wavelength than in Ref. 9. Below
we indicate conceptual differences between our approach and
those of the aforementioned references.

The remainder of the paper is organized as follows. In
Sec. II, we evaluate an analytical formula for the anisotropic,
RKKY interaction in two dimensions. In Sec. III A we discuss
the essential physics of the interaction and give a criterion that
indicates when our main result is valid. In Sec. III B we briefly
review experimental evidence of the 2D RKKY interaction,
while in Sec. III C we discuss our main result in the context
of Ag on Pt(111) (Refs. 9 and 10). In Sec. III D 1 we highlight
the key quantities needed to determine the RKKY interaction
for different lattice geometries, and in Sec. III D 2 we consider
complications that arise in metals such as Be(101̄0), i.e., when
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the SS band is centered at special points on the boundary of
the surface Brillouin zone. Section III E compares our work
with other analytical treatments of the RKKY interaction, and
Sec. III F discusses complications beyond the scope of our
work. Section III G explores open questions and extensions of
our analysis. Section IV restates our main conclusions.

II. 2D ANISOTROPIC RKKY INTERACTION

It is well known that the {111} surfaces of each noble metal
possess a partially filled, “metallic” sp Shockley surface state
(with its minimum at the zone center �),27 which can mediate
interactions between adatoms.28,29 The general form of the
corresponding 2D RKKY interaction is25

�= −P
∫

d2kd2k′ e−i(k−k′)·R|Jkk′ |2
Ek′ − Ek

f (Ek)[1−f (Ek′)], (1)

where P indicates that the integral should be interpreted as
a principal value. The vector R connects the positions of the
interacting adatoms. The Fermi function is denoted by f (Ek),
and Ek is the energy of a SS with the wave vector k. When
multiplied by f (Ek)[1−f (Ek′)], the exchange integral Jkk′

describes a coupling event whereby a SS below the Fermi
energy is upscattered to a state above the Fermi energy via
an interaction with an adatom; the conjugate transpose J

†
kk′

describes the opposite process in which the upscattered SS re-
turns to its original state. The presence of exp [−i(k − k′) · R)]
reveals that the interaction is mediated by a weighted sum of
symmetric and antisymmetric surface states. Here we refer
specifically to the symmetry of cos[(k − k′) · R)] under the
reflections about the midpoint of R [cf. Eq. (4) for motivation].
Integration runs over all k in the first Brillouin zone of a single
band; we neglect contributions from other bands.

We assume that the coupling between a SS and an adatom
is the same at both adatom locations; consequently, R is a
Bravais lattice vector. This is a reasonable assumption since
the adatoms typically adsorb at energetically favored high-
symmetry sites [atop, bridge, or center (hollow), depending
on the adatom and substrate]. In such cases, adatom pairs will
be separated by 2D Bravais lattice vectors, regardless of their
registry with the substrate. The 2D SS wave vectors k and
k′, which mediate the interaction, can be regarded as free-
electron-like states for the case of the metallic Shockley state
but in general must be treated as Bloch states (cf. Sec. III D 2).

For simplicity, we assume that one s orbital from each
substrate atom contributes to the SS conduction band; we
calculate the conduction band using a nearest-neighbor, tight-
binding approximation, which provides a semiquantitative
approximation for the metallic surface state on Cu(111).29,30

For the (111) face of an fcc crystal,

E(k)=ε

[
3−cos

(
2√
3

k·a‖

)
− cos(k+) − cos(k−)

]
, (2)

where k = (kx,ky)/a, k± = (k · a⊥) ± (1/
√

3)(k · a‖), a‖ =
a(sin(θ ), cos(θ )), and a⊥ = a(cos(θ ), − sin(θ )). The constant
a is the interatomic spacing of the substrate atoms (kx and
ky are dimensionless), and ε is a parameter having units of
energy. When the crystal axes are held fixed, −θ is the angular
coordinate of R.

FIG. 1. (Color online) Constant-energy curves [via Eq. (2)] for
E/ε when θ = π/15. The vertical dotted line points in the ky direction
and is parallel to R. The slanted dotted line shows the angle through
which the constant-energy curves have been rotated. The black dashed
contour is the boundary of the first Brillouin zone. The solid black
curve connecting the origin to the E/ε = 4 contour intersects the
point on each constant-energy contour for which ky is maximized, so
that dky/dkx = 0 (which is the stationary phase condition for the dkx

integration). The intersection of this curve and the Fermi edge marks
the location of the surface states that dominate the RKKY interaction.
The solid black curve was found by numerically solving Eqs. (2) and
(11) as a function of E/ε.

Concerning the rotation angle, however, we adopt the
alternate perspective that R is always fixed in the ŷ direction,
so that the crystal axes are rotated by θ (cf. Fig. 1): R = R ŷ.
We make this choice to clarify the analysis; specifically, we
anticipate24 that the dominant contribution to the interaction
comes from electrons whose Fermi velocity is parallel to R.
By applying a stationary phase approximation to Eq. (1), we
will show that this idea arises naturally in the rotated frame.

By inversion symmetry, we may replace 1 − f (Ek′) by
1, as this does not change the principal value expressed by
Eq. (1).25 We may also simplify Eq. (1) by applying the
substitution k(k′) → −k(−k′) to all k(k′) for which ky(k′

y) <

0.31 Changing variables from ky(k′
y) to E(E′) then yields

� = P
∫ Emax

0
dE

∫ Emax

0
dE′

∫
dkx

∫
dk′

x

f (E) |Jkk′ |2
E − E′

× V−1
y (E,kx)V−1

y (E′,k′
x)P (ky,k

′
y), (3)

P (ky,k
′
y) = [e−i(ky−k′

y )R + e−i(ky+k′
y )R + c.c.], (4)

where c.c. stands for complex conjugate and V−1
y (E,kx) =

∂ky/∂E. The product aVy(E)/h̄ is the ky component of the
group velocity of a wave packet centered about h̄k.32 Note that
ky = ky(kx,E).

In the limit of large R (we specify this condition more
precisely below), the integrand in Eq. (3) oscillates rapidly
when ky(kx,E) changes as a function of only kx , keeping
E fixed. We expect cancellation of the integrand due to
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destructive interference, except when ∂ky/∂kx |E = 0, when ky

is a maximum on each constant-energy curve (cf. Fig. 1).25,33,34

These extrema correspond to a SS whose group velocity is
parallel to R.

Thus, fix E and expand ky about its maximum; namely,

ky(E,kx) ≈ ky(E,k̆x,E) − (kx − k̆x,E)2/n(E), (5)

1/n(E) = − 1
2∂2ky(E,kx)/∂k2

x

∣∣
kx=k̆x,E

, (6)

where k̆x,E maximizes ky(E,kx) for a given E. Equation (5)
states that for each E, there is a group of k states centered
around (k̆x,ky(E,k̆x)) mediating the interaction in a coherent
manner. The function n(E) measures the approximate number
of k states that contribute to the interaction for a given E.
We will show later how Eqs. (3), (5), and (6) provide a more
precise definition of the far-field limit.

We substitute Eq. (5) into Eq. (3) and extend the in-
tegration in kx,k

′
x from −∞ to ∞. Approximating Jkk′ ≈

Jkk′ |kx=k̆x,E, k′
x=k̆′

x,E
= JEE′ and Vy(E,kx) ≈ Vy(E,k̆x,E) yields

�= π

R

∫ Emax

0
dE

∫ Emax

0
dE′ |JEE′ |2[f (E)−f (E′)]

√
n(E)n(E′)

2[E − E′]Vy(E,k̆x,E)Vy(E′,k̆′
x,E)

×{exp[i(k̆y − k̆′
y)R]+ i exp[i(k̆y + k̆′

y)R]+ c.c.}. (7)

The substitution f (E) → [f (E) − f (E′)]/2 is valid by in-
version symmetry;25 that is, switching E and E′ in Eq. (3)
is equivalent to multiplying the expression by −1. This
substitution eliminates the pole along the real E axis, so that
Eq. (7) is the principal value of Eq. (3).

In the spirit of Ref. 25, we assume that the major contri-
bution to Eq. (7) comes from the Fermi energy εF . We make
the substitution E = E′ = εF and approximate ky |kx=k̆x,F

≈
k̆y,F + V−1

F (E − εF ), neglecting terms O[(E − εF )2].35 The
vector k̆F = (k̆x,F ,k̆y,F ) points to the maximum of the Fermi
edge in the rotated reference frame, and VF = Vy(εF ,k̆x,F )
is proportional to the Fermi velocity vF via VF = h̄vF /a.
Hereafter, for brevity, we refer to k̆y,F as ks ; the subscript
s is intended to remind the reader that 2k̆F spans the Fermi
edge.

When the limits of integration are extended to ±∞,33

Eq. (7) simplifies to

� = π |JεF ,εF
|2n(εF )

2V2
F R

∫ ∞

−∞
dE

∫ ∞

−∞
dE′ f (E) − f (E′)

E − E′

× [
eiV−1

F [E−E′]R−i ei[2ks+V−1
F (E+E′−2εF )]R+ c.c.

]
. (8)

Equation (8) can be evaluated by the residue theorem.
By definition, f (E) = {exp[(E − μ)/τ ] + 1}−1 ≈ {exp[(E −
εF )/τ ] + 1}−1 (μ is the chemical potential, and τ = kBT

is Boltzmann’s constant times the temperature); the Fermi
function has poles at E = εF ± (2n + 1)πiτ,n = 0,1,2 . . .

Carrying out the two integrations yields an odd-power geo-
metric series, which reduces to

� = −2π3τ
|JεF ,εF

|2n(εF )

V2
F

sin(2ksR)

sinh[2πτR/VF ]R
(9a)

→ [τ → 0] − π2 |JεF ,εF
|2n(εF )

VF

sin(2ksR)

R2
. (9b)

We emphasize that the wavelength of this oscillatory expres-
sion is π/ks , where ks = k̆y,F is the projection onto the unit
vector R̂ of the Fermi wave vector whose velocity is parallel to
R; i.e., it is πR/(k̆F · R). We treat JεF ,εF

as a free parameter;
strictly speaking then, Eq. (9) is well defined only for R,
a Bravais lattice vector. This becomes important when the
surface state does not have simple 2D free-electron behavior
(cf. Sec. III D 2). The factor of τ appearing in the coefficient
of (9) comes from the ratio E/τ in the chemical potential.

To complete the analysis, we must compute Vy(E,kx), ks ,
and n(E). Implicit differentiation of Eq. (2) with respect to ky ,
keeping kx fixed, gives Vy(E,kx);

Vy(E,kx) = ∂E

∂ky

∣∣∣∣
kx

= aε

[
2√
3

cos(θ ) sin

(
2√
3

k·a‖

)

− (p·a‖) sin(k−) − (q·a‖) sin(k+)

]
, (10)

where p = a−1(1,1/
√

3),q = a−1(1, − 1/
√

3). To find k̆y(E),
differentiate Eq. (2) with respect to kx for fixed E, which gives

0 = ∂ky

∂kx

= 2√
3

sin(θ ) sin

(
2√
3

k·a‖

)
+ (p·a⊥) sin(k−)

+ (q · a⊥) sin(k+). (11)

Solving Eqs. (2) and (11) simultaneously yields k̆y(E)
and k̆x(E). Equation (6) defines n(E); using Eq. (11) and
∂ky/∂kx |kx=k̆x,E

= 0, one finds

n(E)−1 = 1

2

{
4

3
sin2(θ ) cos

(
2√
3

k̆·a‖

)
+(p·a⊥)2 cos(k̆−)

+ (q·a⊥)2 cos(k̆+)

}/{
2√
3

cos(θ ) sin

(
2√
3

k̆ · a‖

)

− (p·a‖) sin(k̆−)−(q·a‖) sin(k̆+)

}
, (12)

where k̆ = (k̆x,k̆y) and k̆± = k±(k̆x,k̆y).

III. DISCUSSION

A. Elements of the 2D RKKY interaction for a (111) fcc surface

Equations (2) and (9)–(12) completely describe the RKKY
interaction for a (111) fcc surface. The essential physics,
however, is manifest in Eq. (9). Specifically, (i) the interaction
becomes stronger as more SS contribute [n(εF ) increases]
and/or the coupling between a SS and an adatom becomes
stronger (|JεF ,εF

|2 increases), (ii) the interaction amplitude
decreases as the SS Fermi velocity increases (VF increases),
and (iii) the interaction oscillates with a periodicity determined
by 2ks , twice the ky component of the Fermi wave vector
corresponding to the Fermi velocity that is parallel to R. The
oscillations arise from the symmetry (with respect to R) of the
SS mediating the interaction.

When τ → 0, Eq. (9) decays as 1/R2. The low-temperature
limit is defined by estimating VF = O(h̄2kF /a meff), where
kF and meff are the Fermi wave vector and effective mass of
the SS. For Ag(111), Table 1 of Ref. 20 gives experimental
values of these quantities; one finds that VF = O(1eV), so
that Eq. (9) decays as 1/R2 whenever Rτ 	 1 eV. At room
temperature (τ = 1/40 eV), for example, we estimate that
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FIG. 2. RKKY interaction −�/(π 2|JεF ,εF
|2) [Eq. (9)] on a (111)

fcc surface as a function of R (in units of a = 0.289 nm for Ag and
a = 0.256 nm for Cu) at zero temperature when εF /ε = 3. Values
of θ are approximately the angles an adatom makes with its second,
ninth, seventh, fourteenth, and first nearest neighbors, from bottom
to top. All curves oscillate about zero, indicated for each curve by
a dashed line; these lines are separated by intervals of 0.1 along the
vertical axis. Values of ks are in units of a−1.

such an exponential decay in Eq. (9) only becomes appreciable
when Ra � 10a for this system (recall that a is the interatomic
distance).

Equation (9) differs in several respects from its 3D
counterpart. In the bulk of a crystal, the RKKY interaction falls
off as 1/R3 when τ = 0 due to the increased dimensionality of
the lattice.25 Also, in 3D the number of electrons contributing
to the interaction is proportional to n(εF )2 since the dominant
electrons live on a Fermi surface (as opposed to an edge).

Numerically solving the system of Eqs. (2) and (11) for k̆
reveals that k̆y is a function of θ (cf. Figs. 1 and 2). This implies
that anisotropy in the SS band structure induces anisotropy in
both the amplitude [via VF and n(εF )] and the periodicity of
the interaction (cf. Fig. 2). From the structure of the lattice, we
find (i) that the anisotropy is sixfold and (ii) that the interaction
amplitude is strongest for θ = 0,π/3,2π/3, . . ., i.e., when R
is perpendicular to the flattest part of the Fermi edge (cf.
Figs. 1–3).

Inspection of Fig. 1, however, reveals that the SS band
structure is nearly isotropic when E/ε � 3. This observation
is confirmed by expanding Eq. (2) for small k:

E(k)

ε
≈ (a|k|)2− (a|k|)4

12
+ [10 + cos(6θ )](a|k|)6

3240
. (13)

The dispersion relation is isotropic up through O(|k|4). When
the Fermi energy εF /ε � 3, the component k̆x,F ≈ 0 and
aks ≈ 61/2[1 + √

1 − (εF /3ε)]1/2. In this limit, the interaction
given by Eq. (9) is approximately independent of θ (cf. Fig. 2).
Anisotropy in the interaction becomes apparent only when
εF /ε � 3.

We identify the far-field regime by determining the min-
imum values of R for which our model is valid. Returning
to Eqs. (3) and (7), when R/n(εF ) 	 1, extending the limits
of integration of kx,k

′
x to infinity grossly overestimates the

number of k states contributing to the interaction. In particular,
for E/εF = 4 and θ = 0, the amplitude of the interaction

FIG. 3. The function n(εF ) of the constant energy contour max-
ima for different angles [cf. Eqs. (5), (6), and (12)]. Note that for θ = 0
the amplitude diverges when εF /ε → 4, so that Eq. (5) overestimates
the number of surface states contributing to the interaction. For all
other values of θ , n(εF ) → 0 when εF /ε → 4 since the maximum of
the constant energy curves becomes infinitely sharp in this limit. The
far-field regime in which Eq. (9) is valid is given by R/n(εF ) 
 1.

diverges, which indicates a total failure of the approximation
for all R at this angle. Hence, Eq. (9) is valid, provided that
not too many k states contribute to the interaction; namely,
R/n(εF ) 
 1 (cf. Fig. 3). When the opposite limit holds
[R/n(εF ) 	 1], Eq. (9) can be corrected by not extending
the limits of integration of kx,k

′
x to ±∞ in Eq. (3); e.g., for

θ = 0 and εF /ε = 4, a suitable range of integration in kx,k
′
x

would be [−π/2,π/2], which corresponds to the length of a
side of the E/ε = 4 constant-energy curve in Fig. 1.

B. Experimental evidence of isotropic 2D RKKY interactions

At low temperatures, scanning tunneling microscopy
(STM) measurements of Co adatoms on Cu(111) are capable
of directly imaging standing waves in the electronic density
of states (DOS).7 By comparing such experiments with DFT
calculations [based on the Korringa-Kohn-Rostoker (KKR)
Green’s function method] of the SS-mediated interaction,
Stepanyuk et al.7 showed that the envelope bounding oscil-
lations in the interaction energy falls off as 1/R2 for distances
larger than roughly ten atomic spacings.36 In the far-field limit,
this implied that (i) the interaction is dominated by the SS and
(ii) bulk electronic states do not contribute to the R dependence
of the coupling between adatoms. Stepanyuk et al. also found
that the interaction wavelength is π/kF at large distances. At
short and intermediate distances (corresponding to R � 10 in
our model), they found that screening by bulk electrons affects
the location of the first energy minimum.

These conclusions are in agreement with our main result,
Eq. (9). In particular, we note that the Fermi energy for
Cu(111) is well within the quadratic regime;30 Eq. (9) thus
predicts that the interaction is isotropic, as seen in Fig. 2 of
Ref. 7. We estimate also that the corresponding ratio εF /ε � 1,
which suggests n(εF /ε) < O(1) (cf. Fig. 3). The far-field limit,
defined as R/n(εF /ε) 
 1, should be satisfied for Cu(111) at
distances R � 10 (at least ten atomic spacings), in agreement
with the results of Ref. 7; corrections to Eq. (9) are O(R−1),
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less than about 10% as large as the leading-order expression
for the interaction.

C. The anisotropic interaction on Ag(111)

In Ref. 10, the SS-mediated adatom interaction is calculated
in the far-field regime for an Ag(111) surface using DFT. Our
analysis agrees with their results, insofar as Eq. (9) predicts
a sixfold anisotropy in the interaction wavelength. However,
Ref. 10 predicts that the wavelength may change by almost
50% as a function of θ . Comparing their numerics with our
(one parameter) band structure suggests that εF /ε < 0.5 for
strained Ag(111), so that Eq. (13) is a good approximation
to Eq. (2), and Eq. (9) is well within the isotropic regime.
Since the tight-binding ansatz might modestly underestimate
the actual leading-order anisotropy, we considered the effect
of enhancing this anisotropy by an order of magnitude; to more
emphatically rule out the role of the leading-order anisotropy,
we also examined the effect of enhancement by 2 and by 3
orders of magnitude. Our conclusion remains valid even when
the anisotropy in Eq. (13) is increased by 103 (cf. Fig. 4).
Thus, our analysis predicts negligible anisotropy in the adatom
interaction on Ag.

Reference 10 also indicates that the amplitude of the
interaction can decrease by as little as a factor of 2 over five or
six atomic lengths; this does not agree with the 1/R2 envelope
bounding oscillations in Eq. (9). Our analysis therefore implies
that the SS-mediated RKKY interaction alone cannot account
for the results found in Refs. 9 and 10.

FIG. 4. Equations (2) and (13) as functions of k for θ = 0 and θ =
30◦. For Eq. (13), we also magnify the leading-order anisotropy, [1 +
cos(6θ )](a|k|)6/3240, by factors of 10,100, and 1000. For εF /ε <

0.5 [corresponding to Ag(111)], the inset shows that even with a
thousandfold enhancement, the leading-order anisotropy does not
contribute significantly to the band structure in the vicinity of the
Fermi energy. Consequently, our model predicts an isotropic RKKY
interaction between adatoms on Ag(111).

Our model does not incorporate surface stress.37 In Ag/Pt
systems, lattice mismatch creates strain in the Ag layers,
which, in principle, affects the band structure of the SS.
References 9 and 10 included the effects of strain in their DFT
calculations, which could account for discrepancies between
Eq. (9) and their results. Furthermore, Eq. (1) neglects certain
quantum-mechanical effects17 (e.g., correlation energies) that
are, in principle, incorporated into DFT; such effects could
be responsible for the variation of the interaction found in
Refs. 9 and 10.

D. Extensions to other systems

1. Key quantities determining the RKKY interaction

The steps leading to Eq. (9) can easily be generalized to
systems having different band structures or indirect coupling
modes. Our key approximation is that, in the far-field limit,
Eq. (1) is dominated by the local behavior of the band structure
at the points where the Fermi velocity is parallel or antiparallel
to the adatom separation vector. This local behavior is
contained explicitly in Eq. (6), and the implementation of our
approximation comes when Eq. (5) is substituted into Eq. (3),
rendering the subsequent integral (effectively) Gaussian.

To compute the anisotropic RKKY interaction for a dif-
ferent band structure, it is therefore sufficient to know only
the second derivative (as a function of arc length) and the
critical points of the constant-energy curves (in the vicinity
of the Fermi contour) in a rotated frame in which R points
in the ŷ direction (cf. Fig. 1). These derivatives may be
calculated numerically when experimental data provides the
best available representations of the SS band structure.

Our main result, Eq. (9), can also be applied to magneti-
cally coupled systems (without spin-orbit coupling) since the
exchange integral |Jkk′ |2 can accommodate information about
spin states.

2. Surface states at special points on the surface
Brillouin zone edges

On the (110) faces of Cu, Ag, and Au, there is a metallic
surface state centered at Ȳ , the middle of the longer edge
of the rectangular surface Brillouin zone (SBZ).38–40 There
is no reason to expect that these SSs are isotropic; indeed,
Simon et al.40 calculate the semiminor and semimajor axes
of the elliptical Fermi edge on Cu to be 1.38 and 1.64
nm−1, respectively, with a ratio 0.84. In their computation
of RKKY interactions in these principal directions, they find
what amounts to π/λF = 1.41 and 1.72 nm−1, respectively.

For the unusual41 hcp metal beryllium, there are similar
observations. On the close-packed, basal, (0001) face there
is a nearly isotropic metallic surface state42 centered at
�. On Be(101̄0) there is a metallic surface state with its
minimum at Ā, the center of the longer edge of the rectangular
surface Brillouin zone, with anisotropic (elliptical) constant-
energy contours43,44 and consequent anisotropy in the resulting
RKKY interactions.43 The Fermi ellipse is more eccentric
than that of Cu(110), with an aspect ratio of about 0.71 (and
semiaxes 2.2 and 3.1 nm−1).23 The ratio of the wavelengths of
charge-density oscillations spawned by step edges in the two
principal directions has a similar, though slightly higher, value
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FIG. 5. (Color online) The normalized interaction energies
VF �/(π 2|JεF ,εF

|2) for the elliptic Fermi edge of Be(101̄0) (shown,
to scale, in the inset) drawn by choosing k̆F = k̆Ā

F . Stars are Bravais
lattice positions. The vector kĀ ≡ 1

2 G�̄Ā�̄ points from �̄ to Ā. In the
inset, we show two choices of the spanning vector k̆F , viz., k̆Ā

F and k̆�̄

F ,
and the corresponding separation vector R. Note that k̆Ā

F = k̆�̄

F − kĀ.
In the main figure, we omit a circular region whose radius is roughly
1 nm since (i) the far-field approximation is not valid near the origin
and (ii) the interaction energy diverges as R → 0.

around 0.74. However, we are not aware of any data for the
dependence of oscillations on steps with arbitrary azimuthal
orientation that would allow comparison with our analysis.
Charge-density oscillations were also observed around
pointlike scatterers. The experiments noted the asymmetry of
these contours.

Assuming an elliptical Fermi edge, we can apply Eq. (9b)
to predict the azimuthal dependence of the RKKY interaction
for Be(101̄0) as well as Cu(110). In Fig. 5 we carry out this
task for Be(101̄0) by numerically computing n(εF ) and k̆F .
The plot shows interaction energy as a function of azimuthal
orientation and distance from a central atom. The inset shows
the upper half of the rectangular first surface Brillouin zone.
Recalling the discussion after Eq. (1), we reemphasize that
when comparing energies given by Eq. (9) and Fig. 5, care
must be taken to ensure that R is a Bravais lattice vector.

We note that, as a consequence, the vector k̆F underlying
ks in Eq. (9) is only determined modulo the addition of a
reciprocal lattice vector. The crucial quantity in Eq. (9) is
sgn[VF ] 2 ks R = sgn[VF ] 2k̆F · R, where sgn is the signum
function. The above product is invariant (modulo factors of
2π ) under subtraction of a reciprocal lattice vector G from 2k̆F

since any change of sign in k̆F · R will be accompanied by a
corresponding change of sign in VF (see Fig. 5, for example).

The two wave vectors k̆F and k̆F − 1
2 G then correspond to

different choices of the origin in k space.
In Fig. 5 we show two possible choices of k̆F having �̄

and Ā as their respective origins. When applying Eq. (9)
to Be(101̄0), we can view the Fermi contour as a single
contiguous ellipse with “inner” spanning vectors across it and
energy gradients pointing outward, rather than (or as well as)
a pair of semiellipses with “outer” spanning vectors across the
SBZ and with inward-pointing (toward �) gradients. We note
that when used in conjunction with Eq. (9), different choices
of k̆F will result in different (and physically unmeaningful)
interpolations of the interaction between Bravais lattice points.

E. Comparison to other analytical approaches

In Ref. 20 Hyldgaard and Persson calculate the SS-mediated
adatom interaction using a technique based on the Harris en-
ergy functional.45,46 Their approach yields a nonperturbative,
analytic estimate of the indirect interaction that accounts for
(i) a phase shift, which occurs when a SS scatters from an
adatom, and (ii) damping of the interaction amplitude due to
screening by bulk atoms.

While both of these effects are seen in some experimental
systems,20 we emphasize that they arise from localized aspects
of adatom coupling to the SS and so do not affect the
characteristic wavelength or decay of the interaction. Since
our main task is to account for anisotropy in the adatom-pair
interaction, we choose not to complicate our calculation with
these effects to avoid clouding our discussion on the origin of
anisotropy. Analytically, this choice was made when we set
the exchange integral |Jkk′ |2 equal to a constant; as this term
describes the detailed coupling between an adatom and surface
state, its careful evaluation should yield information about the
phase shift and screening.

F. Systems with complications not considered
in the present analysis

For heavy metals, spin-orbit coupling plays a significant
role in determining the SS band structure; for the present
problem, it leads to splittings of SS bands, called Bychkov-
Rashba splitting.40,47 Perhaps the most widely known example
is the metallic surface state on Au(111) at � in the L gap of
the projected band states; a splitting of 0.25 nm−1, with no
detectable azimuthal dependence, is observed (viz., kF = 1.72,
1.97 nm−1).48,49 Excellent agreement is obtained with fully
relativistic DFT calculations,49 while a simple tight-binding
model50 yields a splitting several orders of magnitude smaller
than the relativistic calculations.49 In fits of their calculations
of the RKKY exchange interaction, Simon et al.40 obtained
good agreement with their calculated results by using the sum
of two oscillatory curves with kF = 1.04, 1.42 nm−1.51

The distinctive52 semimetal Bi displays the strongest
reported spin-orbit splitting of surface bands, thrice that in
Au, and considerable anisotropy.53 Furthermore, theoretical
analysis for Bi is more taxing: For Au(111) one can adequately
describe the electronic dispersion by adding a Rashba term to
the nonrelativistic Hamiltonian since the SS is free-electron-
like and centered at �; consequently, the splitting is linear
in k.53 For Bi, the surface states are not free-electron-like
and are distributed over the surface Brillouin zone; hence,
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first-principles relativistic band structure methods are needed
to model the complex behavior SS dispersion.53 For the
(111) surface there are six elongated hole pockets along
�M surrounding a ring-shaped electron pocket centered at
�, all with 2D character.53,54 Spin-orbit coupling not only
decreases the size of the Fermi surface hexagon by 30% but
also introduces hole lobes and turns the SS into a surface
resonance. On the (110) surface there is a hole metallic surface
band centered at �, and only one branch of the split state can
be observed.53,55 On the (001) surface, there is a hexagonal
electron pocket around � and six hole lobes along the �-M̄
directions as well as indication of an electron pocket around
M̄ .52,53,56

When considering exchange coupling between magnetic
adatoms, spin-orbit coupling introduces another complication:
the exchange coupling can lead to canting of the two spins
in a coupled pair,57 which often must be neglected to make
calculations feasible.58

Another complication is that surface states can produce
surface relaxation.59 In particular, unusually large inward
relaxations were noted on Cu(110)60 and Be(101̄0).61 Lat-
eral relaxations due to perturbations are known to compli-
cate the description of lattice gases in terms of adsorbate
interactions.62

In graphene all one-electron states are ipso facto 2D states.
Not surprisingly, then, many theory groups have recently
devoted attention to the prospect of RKKY interactions.63–74

They and others pointed out a variety of complicating issues
and idiosyncrasies of monolayer graphene, such as the
bipartite nature of the lattice (leading to ferromagnetic or
repulsive coupling for impurities on the same hexagonal,
Bravais sublattice of the honeycomb graphene lattice63,64 and
antiferromagnetic or attractive coupling when on opposite
Bravais sublattices64,65,68,69), the vanishing density of states
at the Fermi level in undoped and ungated lattices, the
suppression of backscattering (leading to R−3 rather than R−2

decay75),63,64 the role of electron-electron interactions,70 etc.
Usually, the adsorbates are taken in atop sites but sometimes
in bridge sites above bonds or hollow sites at the center of the
hexagon.63,71 Since the Dirac cones are circularly symmetric,
our analysis suggests that there should not be anisotropy in the
RKKY interaction, but this neglects the chiral nature of the
electrons: sizable threefold anisotropy is observed, which is
typically attributed to intervalley scattering.67,71 Hence, more
detailed discussion of graphene is inappropriate here and
distracting from the theme of this paper. Furthermore, actually
observing the asymptotic oscillatory behavior typifying
RKKY will generally pose a great challenge unless the
graphene is heavily doped.

In topological insulators, a combination of spin-orbit cou-
pling and time-reversal symmetry leads to protected metallic
surface states.76 Thus, RKKY interactions can be expected to
play an important role. Examples of very recent studies are
Refs. 77, 78, and 79.

G. Open directions

Our analysis could, in principle, be extended to treat
trio (three-adatom nonpairwise) interactions.24,80 Such inter-
actions typically decay asymptotically as d 5/2, where d is

the perimeter of the triangle made by the three interacting
adatoms.81 While any particular trio interaction is expected
to be weaker than the three associated pair interactions, the
difference in the decay envelope is just a half power (5/2 vs 2)
for SS mediation. More significantly, the multiplicity of trios is
greater; hence, trio interactions could still play a prominent role
in the ordering of surface structures. The resulting extension of
Eq. (9) would, in general, contain three different wavelengths
and would be cumbersome to apply. This analysis is beyond
the scope of the present study. We also note that multisite
nonpairwise interactions between four or more adatoms could
come into play, with even greater multiplicities and modest
increases in the decay envelope. Checking how such a series
converges to the energy of an ordered fractional overlayer
was a challenge never fully met for rapidly decaying (∝ R−5)
interactions mediated by bulk states.82 For an overlayer deter-
mined by surface-state-mediated interactions, with density so
sparse that asymptotic interactions determine the ground state,
verifying convergence would present a truly daunting task.

IV. CONCLUSION

In this paper, we derive an analytic formula for the
surface-state-mediated RKKY interaction between adatoms.
The main contribution to the interaction comes from surface
states whose Fermi velocity is parallel to the vector connecting
the adatoms. The interaction is oscillatory and has an envelope
that falls off as 1/R2 (but eventually transitioning, at finite
temperature, to exponential decay at distances larger than
germane to this problem), in agreement with experimental
results for Cu(111).7,8 The amplitude and frequency of the
interaction are anisotropic; they depend on the surface-state
dispersion relation. Comparison with Refs. 9 and 10 indicates
that the RKKY interaction alone, at least to the extent that
the SS dispersion is adequately described by the tight-binding
model, cannot be responsible for the anisotropy in the
interaction between Ag adatoms adsorbed on Pt(111). Our
work suggests that analytic treatment of other quantum-
mechanical interactions (e.g., arising from correlations)
and/or strain-induced effects in the SS band structure may be
necessary to account for this anisotropy. We also show how our
analysis can be applied to other systems such as Be(101̄0) and
discuss extensions of our work to multiadatom interactions.
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Phys. Rep. No. 1999-36, 1999 (unpublished).

46J. Harris, Phys. Rev. B 31, 1770 (1985).
47Yu. A. Bychkov and E. I. Rashba, JETP Lett. 39, 78 (1984).
48S. LaShell, B. A. McDougall, and E. Jensen, Phys. Rev. Lett. 77,

3419 (1996).
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