University of Maryland Physics Education Research Group


UMD PERG PhD Dissertations:
Tim McCaskey

PERG Info | PERG materials | PERG HOMEPAGE | PER on the web | Resources on the web

The Dynamics of Variability in Introductory Physics Students' Thinking: Examples from Kinematics

Brian W. Frank , Doctor of Philosophy, 2009

Dissertation directed by: Dr. Rachel Scherr, Department of Physics
Dissertation committee chaired by: Prof. David Hammer, Departments of Physics and Curriculum and Instruction


Physics education research has long emphasized the need for physics instruction to address studentsí existing intuitions about the physical world as an integral part of learning physics. Researchers, however, have not reached a consensus-view concerning the nature of this intuitive knowledge or the specific role that it does (or might) play in physics learning. While many early characterizations of student misconceptions cast studentsí intuitive thinking as largely static, unitary in structure, and counter-productive for the purpose of learning correct physics, much of contemporary research supports a conceptualization of intuitive thought as dynamic, manifold in structure, and generative in the development of expertise. This dissertation contributes to ongoing inquiry into the nature of studentsí intuitive thought and its role in learning physics through the pursuit of dynamic systems characterizations of student reasoning, with a particular focus on how students settle into and shift among multiple patterns of reasoning about motion.

In one thread of this research, simple experimental designs are used to demonstrate how individual students can be predictably biased toward and away from different ways of thinking about the same physical situation when specific parameters of questions posed to students are varied. I qualitatively model studentsí thinking in terms of the activations and interactions among fine-grained intuitive knowledge and static features of the context. In a second thread of this research, case studies of more dynamic shifts in studentsí conceptual reasoning are developed from videos of student discussions during collaborative classroom activities. These show multiple local stabilities of studentsí thinking as well, with evidence of group-level dynamics shifting on the time scale of minutes.

This work contributes to existing research paradigms that aim to characterize student thinking in physics education in two important ways: (1) through the use of methods that allow for forms of empirical accountability that connect descriptive models 2 of student thinking to experimental data, and (2) through the theoretical development of explanatory mechanisms that account for patterns in studentsí reasoning at multiple levels of analysis.

Thesis in PDF format.

Table of Contents

Chapter 1 Introduction and Dissertation Overview
Chapter 2 Review of Literature
Chapter 3 Models of Student Thinking about Motion
Chapter 4 Experimental Measures of Variability
Chapter 5 Student Thinking in the Classroom
Chapter 6
Dynamic Shifts Among Multiple Stabilities
Chapter 7
Dissertation Summary and Future Directions

Back to UMD PERG PhD Dissertations

Information about PERG Resource materials from PERG PERG Homepage PER elsewhere on the web Resource materials for teachers

Maintained by University of Maryland PERG
Com8ments and questions may be directed to E. F. Redish
Last modified 7 October 2009