Improving Student Expectations in a Large Lecture Class

Edward F. Redish
Rebecca Lippmann
University of Maryland

Supported in part by NSF grant REC-0087519

Learning How to Learn Science: Physics for bioscience majors

- This is a new research grant for the University of Maryland PERG
- Funded by NSF-ROLE (Research on Learning in Education)
- Focus on algebra-based physics
- Supports
 - research into “meta-learning”
 - development of learning environments to help foster meta-learning in College Physics

What is “meta-learning”?

- **Metacognition** — analyzing their own thinking including self-knowledge and assessment and control decisions
- **Epistemology** — what students believe about knowledge and learning
- **Expectations** — what students think is appropriate for a physics course
- **Mental models** — coherent organizational structures providing access to associated knowledge

Personnel: Learning How to Learn Science

- Faculty
 - David Hammer
 - Joe Redish
- Visitors
 - Seth Rosenberg (AY ’00-01)
 - Lubna Rana (summer ’01)
- Postdocs
 - Andy Elby
 - Laura Lising
 - Rachel Scherr
- Grad Students
 - Rebecca Lippmann
 - Jon Tuminaro
 - Tim McCaskey
 - Paul Gresser
- Undergraduates
 - Leila Malieri
 - Nora McDermott-Taboori (Vassar)

Algebra-Based Physics:

- Environment (2 14 week semesters)
 - Lecture (150 minutes / week)
 - Recitation (50 minutes / week)
 - Lab (110 minutes / week)
 - Partially graded homework each week
- Population Characteristics
 - Predominantly female. (~60%)
 - Completed two semesters of calculus (~95%) but less confident about math than engineers.
 - Mostly biological science majors. (50-80%) (The college of life sciences requires physics.)
 - Not all pre-meds. (~30-40%)
 - Often juniors and seniors. (50-80%)

Some “meta-learning” changes

- Lecture
 - enhanced ILDs
 - focus on problem solving using core (conceptual) equations
 - use of occasional “Elby pairs”
- Tutorial
 - mix of UW-PEG and ABP Tutorials
 - coordinated with lab (traditional)
- Homework
 - fewer, harder, thinking problems
 - context relevant problems
 - regular block office hours
Conceptual Equations

- Kinematics are handled with only two equations.
- These equations are related directly to the conceptual ideas.
- Other equations are (always in lecture) obtained from processing these equations.
- If students put in numbers early, intermediate variables appear, and not the traditional equations (e.g., \(s = \frac{1}{2} at^2 \))

Typical homework problem

- A motion detector measures the time delay for a click to echo and return. The computer uses the speed of sound (~ 330 m/s at room temperature) to calculate the distance to the object.

The speed of sound changes with temperature. At 72 °F, \(v_s \approx 330 \text{ m/s} \). At 62 °F it is about 1% smaller. Suppose we measure an object 2 m from the motion detector.
- If \(T=72 \) °F what is the time delay \(\Delta t \) the computer detects before the echo returns?
- If \(T=62 \) °F what distance would the computer report?

“Elby pairs”

- Elby introduced a method that carried the cognitive conflict approach a step farther.
- He creates paired questions,
 - one which most students are likely to answer correctly,
 - one which students are likely to answer with a common misconception.
- He then leads them to see there is a contradiction in their thinking and helps them resolve it.
- It sends a different “meta-message”:
 - not that “physics is right, your intuition wrong”
 - rather, that “physics helps you resolve contradictions in your intuitions.”

Look at the population in 3 ways

- MPEX pre-post survey (Redish)
- “Fishing expedition” interviews pre-post, our students and from other classes (Lippmann)
- Actual observed behavior in group-learning environments — tutorial and lab (Lising)

The MPEX Survey*

- The goal is to determine the distribution and evolution of students’ cognitive attitudes — beliefs that have an effect on what they learn in a physics class.
- The MPEX contains 34 statements with which students are asked to agree or disagree on a 5 point scale.
- The MPEX has been delivered at more than 20 colleges and universities to more than 5000 students.
- It probes independence, coherence, concepts awareness, reality link, and math link.

Overall Results: Large Universities (M)

Overall MPEX Results

- In large lecture classes, a semester of physics instruction produces a deterioration.
- This is even true in reformed classes that are successful in producing substantial gains in students’ learning of basic concepts.
- Smaller classes where the class focuses on explicit discussion of intuition building can produce substantial improvements.

MPEX Improvements in Elby’s Metalearning oriented class

- In his class at TJ HS in Virginia, Andy Elby focused on meta-learning and obtained substantial improvements on the MPEX variables.

Preliminary Results

- Introducing some of these elements in Fall 2000 (N = 60)
 - We obtained the largest percentage gains we have ever recorded at Maryland on a standard mechanics conceptual test.
 - We recorded the first improvement on the MPEX that we have ever obtained in a large lecture class.

Some notable gains (N = 60; F = disagree)

- “Problem solving” in physics basically means matching problems with facts or equations and then substituting values to get a number. (#4)
- My grade in this course is primarily determined by how familiar I am with the material. Insight or creativity has little to do with it. (#13)
- Learning physics is a matter of acquiring knowledge that is specifically located in the laws, principles, and equations given in class and/or in the textbook. (#14)
- The most crucial thing in solving a physics problem is finding the right equation to use. (#19)

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>N</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre</td>
<td>66%</td>
<td>30%</td>
<td>4%</td>
</tr>
<tr>
<td>Post</td>
<td>91%</td>
<td>9%</td>
<td>0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Pre</th>
<th>Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coherence</td>
<td>57%</td>
<td>40%</td>
</tr>
<tr>
<td>Math</td>
<td>79%</td>
<td>19%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Pre</th>
<th>Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coherence</td>
<td>36%</td>
<td>53%</td>
</tr>
<tr>
<td>Math</td>
<td>64%</td>
<td>34%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Pre</th>
<th>Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coherence</td>
<td>45%</td>
<td>45%</td>
</tr>
<tr>
<td>Math</td>
<td>72%</td>
<td>26%</td>
</tr>
</tbody>
</table>