1. Problems 5.2a,b. (*Pressure gradient*) (For 5.2a, scan, photocopy, or trace the map.) For 5.2b, you’ll have to work out or look up the distance across Ireland in the relevant direction.) [5+5=10 pts.]

2. Consider the function $f(x, y, z) = ax^2 + by^2 + cz^2$. [2+2+2+2+2=10 pts.]
   
   (a) Find $\nabla f$.
   
   (b) Find the rate of change of $f$ at the point $(1, 1, 1)$ in the direction of the position vector $\mathbf{r}$. (*Caution: $\mathbf{r}$ is not a unit vector.*)
   
   (c) Find the rate of change of $f$ at the point $(1, 1, 1)$ in the direction of most rapid increase of $f$.
   
   (d) The level sets $f = \text{const.}$ are ellipsoids. Find the unit normal to the ellipsoid at the point $(1, 1, 1)$.
   
   (e) What is the angle between $\mathbf{r}$ and the normal to the ellipsoid at $(1, 1, 1)$? Check that in the spherically symmetric case $a = b = c$ the angle is zero.

3. Derive the following identities [2+2=4 pts]:
   
   (a) If $f$ is a scalar field and $\mathbf{v}$ is a vector field then
   $$\nabla \cdot (f \mathbf{v}) = \nabla f \cdot \mathbf{v} + f \nabla \cdot \mathbf{v}. \quad (1)$$
   
   (b) If $f$ is a scalar field and $h$ is a function of one variable, then
   $$\nabla h(f) = h'(f) \nabla f. \quad (2)$$

4. In this problem $r$ and $\mathbf{r}$ are the distance and the position vector from the origin. [20 pts.]
   
   (a) (i) Show using both cartesian and spherical coordinates that $\nabla r = \hat{r}$. (ii) Explain why this is dimensionally balanced. (iii) Derive this equation by a geometrical discussion of the properties of the direction and magnitude of $\nabla r$. [(2+2)+2+2=8 pts.]
   
   (b) Show that $\nabla \cdot \mathbf{r} = 3$. [2 pts.]
   
   (c) Show that $\nabla \cdot \hat{\mathbf{r}} = 2/r$ by the following method: write $\hat{\mathbf{r}} = r^{-1}\mathbf{r}$, and use the results of problem 3 and problem 4b. [2 pts.]
   
   (d) Show that if $\mathbf{m}$ is a constant vector, then (i) $\nabla (\mathbf{m} \cdot \mathbf{r}) = \mathbf{m}$ and (ii) $\nabla (\mathbf{m} \cdot \hat{\mathbf{r}}) = r^{-1}(\mathbf{m} - (\mathbf{m} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}})$. [2+2=4 pts.]
   
   (e) The magnetic field of a dipole moment $\mathbf{m}$ is $\mathbf{B}(\mathbf{r}) = (3(\mathbf{m} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}} - \mathbf{m})/r^3$. Use the above results to show that this has zero divergence (as does any magnetic field satisfying Maxwell’s equations). (The textbook does this using the explicit cartesian components of $\mathbf{B}$ for the case $\mathbf{m} = m\hat{z}$.) [4 pts.]

*(another problem follows)*
5. Problems 8.2a,b,c,d (*Gravitational field of a spherically symmetric mass*) For part (c) you may just sketch the graph. No careful plot is required. [2+2+4+2=10 pts.]