Resonant-Mass Gravitational Wave Detector

Gravitational waves (GWs) are
ripples in spacetime fabric. The
principle of a resonant-mass GW
detector is shown in Figure 1. The
hyperbolas represent force patterns
on test masses resulting from a GW
traveling into the screen. If the
masses A and B are connected by a
spring, the spring will be stretched
and compressed as a GW passes by,
absorbing energy from the GW
[Weber, 1960].

Figure 1. A simple GW detector. Two
masses connected by a spring can
absorb energy from a GW.

A GW pulse is characterized by a
dimensionless metric perturbation h
with a dominant frequency ws and
duration zs. For a short pulse with zs
~ 2nws", the energy that the GW deposits into a favorably oriented,
noiseless, cylindrical antenna becomes
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where M and D are the effective mass and effective length of the antenna.

The total intrinsic noise of the detector, referred to the input of the
noiseless antenna, can be shown [Giffard, 1976] to be
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where w,, Q,, and T, are the (angular) resonance frequency, quality factor,
and temperature of the antenna; /1 and p;, are the forward and reverse
energy coupling coefficients of the transducer; Ty, 7, and ¢ are the noise
temperature, integration time, and dimensionless impedance matching
parameter of the ampifier. For a passive transducer, f,, = B, = B, where

s is the signal coupling coefficient to the ampilifier.
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The GW pulse is detectable if Es > Ey. According to Eq. (2), Ey comes
from three terms: the Brownian motion noise and the forward and reverse
action noise of the amplifier. The amplifier noise contribution can be

minimized by choosing
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Substituting this into Eq. (2) leads to
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From Egs. (3) and (4), three optimization conditions follow:
¢ <1, Aog/log=p,, T,/10,<< BTy, (5)

where Aws ~ nr " is the bandwidth of the detector. Thus a large s allows
for a large fractional bandwidth, which reduces the Brownian motion noise
of the antenna. If a near-unity fs could be achieved without restricting the
bandwidth of the transducer, a completely wideband detector (dws = ws)
could be realized without compromising the signal-to-noise ratio.

When conditions (5) are satisfied, the total detector noise becomes
amplifier-limited at 2kgTy. A more rigorous theory with application of the
optimal filter [Price, 1987] leads to the true amplifier limit of kgTy.
Combining this with Eq. (1) gives
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For linear (phase-preserving) amplifiers, Ty has a quantum limit:

Ty o = hog | ky. (7)

Back-action-evasion techniques allow, in principle, to beat this “standard
quantum limit”. For a cylindrical antenna with M = 1200 kg, D = 3 m and ws
/27 = 900 Hz at the quantum limit, we find Ty ~ 0.04 puK and Amin ~ 3 x 102",
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