
Resonant-Mass Gravitational Wave Detector 
 

 
Figure 1. A simple GW detector.  Two 
masses connected by a spring can 
absorb energy from a GW. 

Gravitational waves (GWs) are 
ripples in spacetime fabric.  The 
principle of a resonant-mass GW 
detector is shown in Figure 1.  The 
hyperbolas represent force patterns 
on test masses resulting from a GW 
traveling into the screen.  If the 
masses A and B are connected by a 
spring, the spring will be stretched 
and compressed as a GW passes by, 
absorbing energy from the GW 
[Weber, 1960]. 
 

A GW pulse is characterized by a 
dimensionless metric perturbation h 
with a dominant frequency ωS and 
duration τS.  For a short pulse with τS 
≈ 2πωS

-1, the energy that the GW deposits into a favorably oriented, 
noiseless, cylindrical antenna becomes 
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where M and D are the effective mass and effective length of the antenna.   
 

The total intrinsic noise of the detector, referred to the input of the 
noiseless antenna, can be shown [Giffard, 1976] to be 
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where ωa, Qa, and Ta are the (angular) resonance frequency, quality factor, 
and temperature of the antenna;  β21 and β12 are the forward and reverse 
energy coupling coefficients of the transducer; TN, τ, and ζ are the noise 
temperature, integration time, and dimensionless impedance matching 
parameter of the ampifier.  For a passive transducer, ,1221 Sβββ ≡= where 
βS is the signal coupling coefficient to the amplifier. 



The GW pulse is detectable if ES > EN.  According to Eq. (2), EN comes 
from three terms: the Brownian motion noise and the forward and reverse 
action noise of the amplifier.  The amplifier noise contribution can be 
minimized by choosing 
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Substituting this into Eq. (2) leads to 
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From Eqs. (3) and (4), three optimization conditions follow: 

  ,1≤ζ  ,/ SSS βωω ≈∆  ,/ NSaa TQT β<<    (5) 

where ∆ωS ≈ πτ -1 is the bandwidth of the detector.  Thus a large βS allows 
for a large fractional bandwidth, which reduces the Brownian motion noise 
of the antenna.  If a near-unity βS could be achieved without restricting the 
bandwidth of the transducer, a completely wideband detector (∆ωS ≈ ωS) 
could be realized without compromising the signal-to-noise ratio. 
  

When conditions (5) are satisfied, the total detector noise becomes 
amplifier-limited at 2kBTN.  A more rigorous theory with application of the 
optimal filter [Price, 1987] leads to the true amplifier limit of kBTN.  
Combining this with Eq. (1) gives 
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For linear (phase-preserving) amplifiers, TN has a quantum limit: 

  T ./, BSQLN kωh=      (7) 

Back-action-evasion techniques allow, in principle, to beat this “standard 
quantum limit”.  For a cylindrical antenna with M = 1200 kg, D = 3 m and ωS 
/2π = 900 Hz at the quantum limit, we find TN ≈ 0.04 µK and hmin ≈ 3 × 10-21. 
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