An advanced transducer for ALLEGRO

Ho Jung Paik, M. Vol Moody, and Andrew Weber Department of Physics University of Maryland, College Park

- Two-mode superconducting inductive transducer
- Integrated with two-stage Quantum Design dc SQUID

July, 2003 Amaldi 5, Pisa, Italy

Present single-mode Maryland transducer

Specifications and expected performance

Specs or measured parameters

- Antenna (AI): @ 4.4 K,
 *m*₁ = 1150 kg, Q₁ = 9 x 10⁶
- Transducer mass (Nb): $m_2 = 0.62 \text{ kg}, Q_2 = 2 \times 10^6$
- Measured parameters: coil spacing = 25 µm, β = 0.10 (with I_0 = 16 A) $Q_{\rm M}$ = 2 x 10⁶, $Q_{\rm E} \approx 10^5$
- SQUID noise: 5000 $\hbar \omega_0 / k_B$ (Quantum Design dc SQUID)

Calculated performance

- Bandwidth: 34 Hz
- Strain sensitivity: *h* = 1.7 x 10⁻¹⁹
- Detector noise temperature: $T_N = 3.3 \times 10^{-4} \text{ K}$
- Overall efficiency = 36000 $\hbar \omega_0$

New two-mode Maryland transducer

Exploded views showing components

Specifications and expected performance

Specifications

- Antenna (AI): @ 4.4 K,
 *m*₁ = 1150 kg, *Q*₁ = 9 x 10⁶
- Intermediate mass (Nb): $m_2 = 5.35 \text{ kg}, Q_2 = 3 \times 10^6$
- Final mass (Nb):
 m₃ = 0.050 kg, Q₃ = 3 x 10⁶

(4.8 cm in diameter, 0.30 cm thick, coil spacing = $50 \ \mu$ m)

• SQUID noise: $300 \hbar \omega_0 / k_B$ (two-stage QD dc SQUID)

Calculated performance

- Bandwidth: 100 Hz
- Strain sensitivity: *h* = 7.6 x 10⁻²⁰
- Detector noise temperature: $T_N = 1.3 \times 10^{-5} \text{ K}$
- Overall efficiency = 1430 $\hbar \omega_0$

Modal analysis

653 Hz	M2 rocking
823 Hz	Axial (common)
930 Hz	Axial (differential)
1443 Hz	M3 rocking
2055 Hz	M2 torsional
2970 Hz	Mass cover

Comparison with other transducers

