Right side

From imaginary experiments to quantum information
 Luis A. Orozco

Public lecture
Williams College, March 2024
Supported by DLS APS
www.jqi.umd.edu

With special thanks to:

William D. Phillips Howard J. Carmichael Pablo Barberis Blostein

Work supported by National Science Foundation

Travelling Lecturer of the Division of Laser Science, American Physical Society

Everything is made of parts

Nature is discretized, it comes in quanta. There are no half electrons!

Everything is made of parts, and

there is a minimum size where our intuition fails.

It all started in the $19^{\text {th }}$ century Black Body radiation

Spontaneous Radioactivity:

Something probabilistic in nature!

Henry Becquerel

Pierre Curie

Marie Curie

February 27, 1896

The birth of quantum theory on October 7, 1900

Coffee and cake with the Rubens

$$
\rho(\nu, T)=\frac{8 \pi h v^{3}}{c^{3}} \frac{1}{e^{h v / k T}-1}
$$

Plank says that in an act of desperation he assumed:
The energy is also made out of parts and there is one which is the smallest, the quantum of energy.

1905 the "photon", is the quantum of light

Albert Einstein

1913 visit to Rutherford

Niels Bohr

Hydrogen Emission Spectrum

Explanation of

 the spectrum of Hydrogen1920-1930 - Development of Quantum Mechanics. (Solvay Conference). One particle QM

The wave-particle duality.

1905 Einstein assigns a particle (photon) to a wave (light)
1924 De Broglie assigns a Wave to a particle (matter)
1925-6 Schrödinger states the wave equation for those waves

But something was strange

In the imaginary experiments everything works well

Imaginary experiment by Bohr

One particle quantum weirdness

How can something be "in two positions at the same time"?

Fred Alan Wolf, "Taking the Quantum Leap" (Harper \& Row, San Francisco, 1981)

How can something be "in two positions at the same time"?

No classical analog for matter to superposition exists.

Two or more particles quantum weirdness

Einstein was not happy with the consequences of quantum mechanics

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?
A. Einstein, B. Podolsky and N. Rosen, Institute for Advanced Study, Princeton, New Jersey

EINSTEIN ATTACKS QUANTUM THEORY

Scientist and Two Colleagues
Find It is Not 'Complete' Even Though 'Correct.'
\qquad
SEE FULLER ONE POSSIBLE

Believe a Whole Description of 'the Physical Reality' Can Be Provided Eventually.

New York Times 4 Mayo 1935

Schroedinger reacted to the questions of Einstein with the term Entanglement.

A Probability Problem

If I flip a coin there is a 50% chance that it will come up heads and a 50% chance of tails

$$
p_{1}(H)=1 / 2, p_{1}(T)=1 / 2 \text {. The sum is } 1
$$

If I take a second coin and toss it in the air, there is a 50% chance that it will come out heads and 50% tails:
$p_{2}(H)=1 / 2, p_{2}(T)=1 / 2$. The sum is 1

If I toss the two coins in the air then The results may be:

HH TT HT TH

Probabilities:

$$
\begin{gathered}
\begin{array}{cccc}
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4
\end{array} \begin{array}{c}
\text { Total sum 1 } \\
\mathrm{p}_{1}(\mathrm{H}) \mathrm{p}_{2}(\mathrm{H})+\mathrm{p}_{1}(\mathrm{~T}) \mathrm{p}_{2}(\mathrm{~T})+\mathrm{p}_{1}(\mathrm{H}) \mathrm{p}_{2}(\mathrm{~T})+\mathrm{p}_{1}(\mathrm{~T}) \mathrm{p}_{2}(\mathrm{H})= \\
\left(\mathrm{p}_{1}(\mathrm{H})+\mathrm{p}_{1}(\mathrm{~T})\right)\left(\mathrm{p}_{2}(\mathrm{H})+\mathrm{p}_{2}(\mathrm{~T})\right)
\end{array}
\end{gathered}
$$

The result is factorizable into the probabilities of each coin. Probability is the product of probabilities.

If the result were:

$$
\begin{aligned}
& \mathrm{HH} \quad 50 \% \quad \mathrm{TT} \quad 50 \% \\
& \mathrm{p}_{1}(\mathrm{H}) \mathrm{p}_{2}(\mathrm{H})+\mathrm{p}_{1}(\mathrm{~T}) \mathrm{p}_{2}(\mathrm{~T})=1
\end{aligned}
$$

It would be weird, it is not factorizable but the sum gives 1 Missing cross-terms to factor probability What would we think about the coins?

There is a strange correlation

We let them interact and then separate them a long way
The same results follow
It seems like there is something inside that we donot see that creates the correlation.

Think of two twins separated at birth.
They share the DNA of their chromosomes, they are highly correlated

If the coins are separated, and I know they are highly correlated, as soon as I get H, I know that the other is also H .

I make one prediction based on measuring the other.
Einstein was bothered by that.
The result is random but highly correlated
The same thing happens with twins when we ask them certain questions about preferences and tastes, we donot know the answer but it will surely be the same in both.

The coins are entangled.

Change the heads or tails to colors, use two different pairs separable with glasses.

Blue and Red

Green and Orange

With the first pair of glasses If I see red, the other is red.

If I change glasses
If I see the first one green, the second one is

green

No matter the glasses, the correlation remains
Therein lies the objection of Einstein, red is red from the start. Not dependent on glasses used to observe them.
That does not happen with twins.

Is entanglement (two or more particles) a resource?

1964 John Bell:
Is entanglement measurable?
It can be a resource!

John Clauser

Alain Aspect

Anton Zeilinger

2022 Nobel Prize in Physics

Quantum mechanics

- It is the language of microscopic nature.
- It follows a mathematical structure, Hilbert space.
- Predictions checked to more than twelve digits.
- It may not be able to describe everything and can have contradictions (it is a language).
- We do not know yet how to write the general theory of relativity with quantum mechanics.

Quantum mechanics is a language to describe our (incomplete) knowledge of nature, not of nature itself.

It is the best tool (language) we have to explain (predict) detections (outcomes) in the laboratory.

First quantum revolution

The first transitor

Superb understanding of chemistry and materials

Single Particle Quantum Mechanics has made possible

- The transistor (1948)
- Microelectronics (~1950s)
- The laser (1960)
- Magnetic memories (~1960s)

Everything is made of parts, even information

Codified information in 0 and 1

Information in physical

Second quantum revolution

Technological uses of entanglement and superposition:

QKD (Quantum Key Distribution)

Quantum Sensing

Quantum Simulation
Quantum Computing

QKD

Use entanglement to ensure security

amostia 〈InfiniQuant〉

国㕆量子 QuantumCTek

Quantum Sensors

Many companies around the world
Atoms are very sensitive magnetometers, uses from medical, measuring the currents in the brain to microscopy.

Quantum Computer

IBM Quantum Experience (QX)

012018

50 Qubit

Innovation Roadmap

[^0]
Quantum Error correction is necessary

Uses entanglement thoroughly. Recent demonstration with programable atomic arrays by the group of Misha Lukin at Harvard.
-IBM offers cloud-based quantum computing services.
-Google Quantum Al focuses on integrating quantum computing with machine learning.
-Microsoft develops quantum software and hardware.
-AWS (Amazon Braket) provides a platform for accessing various quantum computers through the cloud.
-Alibaba Group has established a quantum computing laboratory. -Atos Quantum (EVIDEN) offers the Quantum Learning Machine.
-Baidu runs the Baidu Quantum Computing Institute, developing quantum computing software and hardware.
-Intel, known for semiconductor expertise, is working on 'hot' silicon spin-qubits and other quantum technologies.

The Second Quantum Revolution is here

THANK YOU

Classical bits vs quantum bits

Classical bit: 0 or $1 ; \downarrow$ or \uparrow
Quantum bit (qubit) is in a superposition:

$$
|\psi\rangle_{\text {oubit }}=|\downarrow\rangle+|\uparrow\rangle
$$

Classical: a 3-bit register can store one number from 0 to 7

Quantum: a register of 3 entangled qubits can store numbers in superposition:
$\mathrm{a}|000\rangle+\mathrm{b}|001\rangle+\mathrm{c}|010\rangle+\mathrm{d}|011\rangle+\mathrm{e}|100\rangle+\mathrm{f}|101\rangle+\mathrm{g}|110\rangle+\mathrm{h}|111\rangle$
2^{N} (all possible) N -bit numbers

Summary of quantum mechanics:

- Describe probabilities.
- The uncertainty principle: two properties (position and velocity) can not be known simultaneously with arbitrary precision, there is always intrinsic noise.
- Superposition - systems can be in two (or more) states at the same time
- There are strong correlations: entanglement
- Wave-particle duality
- The result of a measurement changes the knowledge of the state of a system.
- Nature answers the questions we ask

Quantum Information

From imaginary experiments by Niels Bohr

To quantum information by IBM

Benioff

 (1982)Reversible computing (thermodynamics)
Quantum simulations
Model of a universal quantum circuit

Quantum Information
Feynman
(1982)

Deutsch
(1985)

[^0]: IBM Quantum / © 2023 IBM Corporation

