Left side

TEST

Right side

bottom

Тор

An introduction to light-matter interaction, from cavity QED to waveguide QED 4

USTC, Hefei, China July 2019 Luis A. Orozco www.jqi.umd.edu

NIST

JOINT QUANTUM INSTITUTE

The presentation will be available at:

http://www.physics.umd.edu/rgroups/amo/orozco/results/2019/Results19.htm

What happens on a photonic structure?

The alligator photonic crystal waveguide (Cal Tech)

Mode area:
$$A_k = \frac{\int_{\text{area}} d^2 \mathbf{r} \,\epsilon(\mathbf{r}) |\mathbf{E}_k(\mathbf{r})|^2}{\max\left[\epsilon(\mathbf{r}) |\mathbf{E}_k(\mathbf{r})|^2\right]}.$$

Scanning electron microscope

Cross section of the intensity

Because there is a bandgap, the cooperativity grows with it. It can also create a "cavity mode" that does not move attached to the atom

Figure 1.12: Atoms coupled to the bandgap of a photonic crystal waveguide. The atoms and photon cloud form atom-photon bound states.

Optical Dipole Trap

Air bubble in water

What causes the electromagnetic pressure on the atomic dipole? In a plane wave is the magnetic field wave.

Careful with resonances on the surface if the diameter $\sim\lambda$. Light can escape in a different direction and the pressure decreases.

QM: transfer of the momentum of light to the atom.

Oscillator model of an atom

- The glass sphere in air responds as if it were an oscillator excited below resonance: Red detuned $(\delta = \omega \omega_0 < 0)$ the atom is attracted towards the regions of higher intensity (I).
- The air bubble in water responds as an oscillator excited above resonance: Blue deturned ($\delta = \omega - \omega$ $_0 > 0$) the atom is repelled from the higher intensity $_3$
- Potential (U) U \propto I/ δ
- Force (F) F \sim ∇ (I/ δ)

Atom trapping

Trapping scheme

Trapping scheme

Optical Nanofiber Trapping

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, A. Rauschenbeutel, A. "Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber." Phys. Rev. Lett. 104, 203603 (2010).

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble "Demonstration of a State-Insensitive, Compensated Nanofiber Trap," Phys. Rev. Lett. 109, 033603 (2012).

Atoms as a birefringent medium

Time dependent signal

Time dependent signal

Time dependent signal

The frequencies agree with the simulation within a 10%

Reflection and Transmission from atoms trapped in the nanofiber. Periodic array

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. Kupriyanov, J. Laurat. "Large Bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide." Phys. Rev. Lett. 117, 133603 (2016).

H. L. Sørensen, J. B. Beguin, K. W. Kluge, I lakoupov, A. S. Sørensen, J. H. Müller, E. S. Polzik, J. Appel, 2016. "Coherent backscattering of light on one-dimensional atomic strings." Phys. Rev. Lett. **117**, 133604 (2016).

Collective effects in waveguides

PRL 115, 063601 (2015)

G

Superradiance for Atoms Trapped along a Photonic Crystal Waveguide

A. Goban,^{1,2} C.-L. Hung,^{1,2,†} J. D. Hood,^{1,2} S.-P. Yu,^{1,2} J. A. Muniz,^{1,2} O. Painter,^{2,3} and H. J. Kimble^{1,2,*} ¹Norman Bridge Laboratory of Physics 12-33, California Institute of Technology, Pasadena, California 91125, USA ²Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA ³Thomas J. Watson, Sr., Laboratory of Applied Physics 128-95, California Institute of Technology, Pasadena, California 91125, USA (Received 14 March 2015; published 5 August 2015)

We report observations of superradiance for atoms trapped in the near field of a photonic crystal waveguide (PCW). By fabricating the PCW with a band edge near the D_1 transition of atomic cesium, strong interaction is achieved between trapped atoms and guided-mode photons. Following short-pulse excitation, we record the decay of guided-mode emission and find a superradiant emission rate scaling as $\overline{\Gamma}_{SR} \propto \overline{N}\Gamma_{1D}$ for average atom number $0.19 \leq \overline{N} \leq 2.6$ atoms, where $\Gamma_{1D}/\Gamma' = 1.0 \pm 0.1$ is the peak single-atom radiative decay rate into the PCW guided mode, and Γ' is the radiative decay rate into all the other channels. These advances provide new tools for investigations of photon-mediated atom-atom interactions in the many-body regime.

DOI: 10.1103/PhysRevLett.115.063601

PACS numbers: 42.50.Ct, 37.10.Gh, 42.70.Qs

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, "Superradiance for Atoms Trapped along a Photonic Crystal Waveguide," Phys. Rev. Lett. **115**, 063601 (2015)

Some bibliography:

1. Hyatt M. Gibbs, *Optical Bistability: Controlling Light with Light* (Academic Press, Orlando, 1985).

2. L. A. Lugiato, *Optical Bistability*, in Progress in Optics, edited by E. Wolf (North-Holland, Amsterdam, 1984), Vol. XXI, pp. 69-216.

3. *Cavity Quantum Electrodynamics*, edited by Paul R. Berman, Advances in Atomic Molecular and Optical Physics Supplement 2, Academic Press, Boston 1994.

4. S. Haroche and J. M. Raimond, *Exploring the Quantum: Atoms, Cavities, and Photons* (Oxford Univ. Press, 2006).

5. S. L. Mielke, G. T. Foster, J. Gripp, and L. A. Orozco, "Time Response of a coupled atoms-cavity system," Opt. Lett. **22**, 325 (1997).

6. Gripp, S. L. Mielke, L. A. Orozco, "Evolution of the Vacuum Rabi Peaks in a detuned Atoms-Cavity System," Phys. Rev. A **56**, 3262 (1997).

7. P. Solano, J. A. Grover, J. E. Hoffman, S. Ravets, F. K. Fatemi, L. A. Orozco, and S. L. Rolston "Optical Nanofibers: A New Platform for Quantum Optics."

Advances in Atomic Molecular and Optical Physics, Vol. 46, 355-403, Edited by E. Arimondo, C. C. Lin, and S. F. Yelin, Academic Press, Burlington 2017. arXiv: 1703.10533

8. R. J. Schoelkopf and S. M. Girvin, "Wiring up quantum systems." Nature, **451**, (2008)

9. Jonathan D. Hood (2017) *Atom-light Interactions in a Photonic Crystal Waveguide.* Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/ Z9NV9G9Z. <u>http://resolver.caltech.edu/CaltechTHESIS:06082017-062231802</u>

Long Range Interactions Bonus

Super- and Sub-radiance

(a classical explanation)

"When two organ pipes of the same pitch stand side by side, complications ensue which not infrequently give trouble in practice. In extreme cases the pipes may almost reduce one another to silence. Even when the mutual influence is more moderate, it may still go so far as to cause the pipes to speak in absolute unison, in spite of inevitable small differences."

Lord Rayleigh (1877) in "The Theory of Sound".

We need the response of one oscillator due to a nearby oscillator:

$$\ddot{a}_{1} + \gamma_{0}\dot{a}_{1} + \omega_{0}^{2}a_{1} = \frac{3}{2}\omega_{0}\gamma_{0}\hat{d}_{1}\cdot\vec{\mathcal{E}}_{2}(\vec{r})a_{1},$$

$$\gamma = \gamma_0 + \frac{3}{2}\gamma_0 \operatorname{Im}\left\{\hat{d}_1 \cdot \vec{\mathcal{E}}_2(\vec{r})\right\}, \quad \text{with}\left|\hat{d}_1 \cdot \vec{\mathcal{E}}_2(0)\right| = \frac{2}{3}$$

$$\omega = \omega_0 - \frac{3}{4}\gamma_0 \operatorname{Re}\left\{\hat{d}_1 \cdot \vec{\mathcal{E}}_2(\vec{r})\right\}$$

Normal radiance

Normal radiance Super-radiance

Normal radiance Super-radiance

Sub-radiance

Normal radiance Super-radiance

Sub-radiance

Observation of infinite-range interactions

The idea behind the experiment

The idea behind the experiment

We look for modifications of the radiative lifetime of an ensemble of atoms around the ONF.

The idea behind the experiment

The sub- and super-radiant behavior depend on the phase relation of the atomic dipoles along the common mode

Measuring the Radiative Lifetime

Preparing the Atoms

De-pump Re-pump Probe

Preparing the Atoms

De-pump Re-pump Probe

Pulse and signal

Decay time vs detunning

No radiation trapping for long lifetime

N dependence

 $\gamma_{\rm sup} = \gamma_{rad} + N\gamma_{1D}$

N dependence

$$\gamma_{\rm sup} = \gamma_{rad} + N\gamma_{1D}$$

Superradiance depends on the atom number!

Sub-radiance???

Infinite-range subradiance is **limited**!

Understanding the Signal

Polarization dependent signal

Vertically polarized probe

Horizontally polarized probe

Subradiant Signal

- Interaction distance smaller than λ : all modes get cancelled.
- Interaction distance greater than λ : only one mode gets cancelled

$$\gamma_{sub} = \gamma_{rad} - \gamma_{1D} \approx 0.9\gamma_0$$

We measure

$$\gamma_{sub} = 0.13\gamma_0$$

Super-radiant Signal

- Interaction distance smaller than λ : all modes get enhanced.
- Interaction distance greater than λ : only one mode gets enhanced $\gamma_{sup} = \gamma_{rad} + N \gamma_{1D}$

 $.1\gamma_{c}$

We measure
$$\gamma_{sup} = 1$$

Fitting the Simulation (Monte Carlo)

Fitting the Simulation

Long distance modification of the atomic radiation

Long distance modification of the atomic radiation

We have atomic densities low enough to observe mostly infinite-range interactions

Splitting the MOT in two

Evidence of infinite-range interactions

