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Michelson measures the diameter of a star 





Handbury Brown and Twiss 



Can we use intensity fluctuations, noise, to 
measure the size of a star? Yes. They were 
radio astronomers and had done it around 
1952,  
 
R. Hanbury Brown and R.Q. Twiss, “A New 
Type of Interferometer for Use in Radio 
Astronomy,” Phil. Mag. 46, 663 (1954). 





Flux collectors at Narrabri
R.Hanbury Brown: The Stellar Interferometer at Narrabri Observatory
Sky and Telescope  28, No.2, 64, August 1964



Narrabri intensity interferometer
with its circular railway track
R.Hanbury Brown: BOFFIN. A Personal Story of the Early Days
of Radar, Radio Astronomy and Quantum Optics (1991)



The HBT controversy 



Source a and  b are within a Star. Can 
we measure the angular distance  
R/L~θ so that we could know the 

diameter? 
Source a:

Source b:



And the intensity I1 

And the product of the intensity of each 
of the detectors <I1><I2> is independent 

of the separation of the detectors. 

The average over the random phases φa and 
φb gives zero 

The amplitude at detector 1 from sources a and b is: 



Multiply the two intensities and then average. 

g(2)

This function changes as a function of 
the separation between the detectors. 

with 



Relation to the Michelson Interferometer 

The term in parenthesis is the associated to 
the fringe Visibility (first order coherence) if 

we now take the square of the fringe visibility 
and average it: 



The solution of E. M. Purcell, Nature 178, 1449 
(1956). 
 
Points to the work of Forrester as the frist real 
optical intensity correlation. A. T. Forrester, R. A. 
Gudmundsen and P. O. Johnson, “Photoelectric 
Mixing of Incoherent Light,” Phys. Rev. 99, 1691 
(1955). 
 
Mentions that bosons tend to appear together 
 
Does the calculation and relates it to the first order 
coherence. 











Correlation measurements 



The study of optical noisy signals uses 
correlation functions.  

Photocurrent with noise: 
<F(t) F(t+τ) > 
<F(t) G(t+τ)>   

For optical signals 
the variables 
usually are: Field 
and Intensity, but 
they can be cross 
correlations as 
well.  



G(1)(τ) = <E(t)* E(t+τ)>  field-field 

G(2)(τ) = <I(t) I(t+τ)> intensity-intensity 

H(τ) = <I(t) E(t+τ)> intensity-field 

How do we measure these functions? 



•  Correlation functions tell us something 
about fluctuations.  

•  The correlation functions have classical 
limits.  

•  They are related to conditional 
measurements. They give the probability 
of an event given that something has 
happened.  



Mach Zehnder or Michelson Interferometer 
Field –Field Correlation 
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Spectrum: 

This is the basis of Fourier Spectroscopy 



Hanbury Brown and Twiss; Intensity 
Intensity correlation 
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 Correlations of the intensity at τ=0 

It is proportional to the variance 



Intensity correlations (bounds) 

The correlation is maximal at equal times 
(τ=0) and it can not increase.  

)()()()(2 22 ττ ++≤+ tItItItI
Cauchy-Schwarz 



How do we measure them? 
 
Build a “Periodogram”. The photocurrent is 
proportional to the intensity  I(t) 
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•  Discretize the time series. 
•  Apply the algorithm on the vector. 
•  Careful with the normalization.  



Ii 

Ii+n 

Multiply with displacement : 

Discretize: 

Add and average: 



Another form to measure the correlation with 
with the waiting time distribution of the photons. 
The minimum size of the variance of the 
electromagnetic field.  
•  Store the time separation between two 

consecutive pulses (start and stop). 
•  Histogram the separations 
•  If the fluctuations are few you get after 

normalization g(2)(τ). 
•  Work at low intensities (low counting rates). 

time 

Intensity (photons) 



Use a time stamp card. Later 
process the data, then you can 
calculate all sorts of 
correlations. 
 
Digitize the full signal (important 
to identify the nature of the 
event e.g. particle physics). 



•  The photon is the smallest fluctuation of 
the intensity of the  electromagnetic field, 
its variance.  

 
•  The photon is the quantum of energy of 

the electromagnetic field. With energy 
ħω at frequency ω. 

Quantum optics 



An important point about the quantum 
calculation g(2)(τ) 



The intensity operator  I is proportional to the 
number of photons, but the operators have to be 
normal (:) and time (T) ordered. All the creation 
operators do the left and the annihilation operators 
to the right (just as a photodetector works). The 
operators act in temporal order. 

R. Glauber, “The Quantum Theory of Optical 
Coherence,” Phys. Rev. 130, 2529 (1963).  

Quantum Correlations (Glauber): 



At equal times (normal order) :

Conmutator : â+â = â â+ −1

â+â+â â = â+(â â+ −1) â = â+â â+â − â+â

â+â+â â = n̂2 − n̂ where n̂ = â+â

The correlation requires detecting two photons, 
so if we detect one, we have to take that into 

consideration in the accounting. 



In terms of the variance of the photon 
number:  

The classical result says: 



The quantum correlation function can be 
zero, as the detection changes the 
number of photons in the field. This is 
related to the variance properties: is the 
variance larger or smaller than the mean 
(Poissonian, Super-Poissonian or Sub-
Poissonian). 



At equal times the value gives: 
  g(2)(0)=1 Poissonian 

  g(2)(0)>1 Super-Poissonian  
  g(2)(0)<1 Sub-Poissonian 

 
The slope at equal times: 

 
  g(2)(0)>g(2)(0+) Bunched  

  g(2)(0)<g(2)(0+) Antibunched 
 

Classically we can not have Sub-
Poissonian nor Antibunched.  



 Quantum Correlations (Glauber): 

If we detect a photon at time t , g(2)(τ) gives 
the probability of detecting a second photon 
after a time τ .

g(2)(τ ) =
: Î (τ ) :

c

: Î :



Correlation functions as conditional 
measurements in quantum optics.  

•  The detection of the first photon gives 
the initial state that is going to evolve in 
time.  

•  Bayesian probabities. 
•  g(2)(τ) Hanbury-Brown and Twiss.  



Correlation functions in Optics (Wolf 1954) 



 
•  The optical correlations propagate using the 

wave equation for the electromagnetic field 
     (Wolf 1954, 1955). 



Quantum regression theorem 



•  The correlation functions can be calculated 
using the master equation with the 
appropriate initial and boundary conditions 
(Lax 1968).  

 



Antibunching in Resonance Fluorescence 







An example of Intensity Intensity 
Correlations in cavity QED 



  
 

Optical Cavity QED 
  

Quantum electrodynamics for pedestrians. No 
need for renormalization. One or a finite 

number of modes from the cavity. 
  

ATOMS + CAVITY MODE 
 
 



Dipolar coupling between the atom and the mode 
of the cavity:  

 

El electric field associated with one photon on 
average in the cavity with volume: Veff is: 
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κγ
C=C1N

g≈κ ≈γ

Coupling 

Spontaneous emission 

Cavity decay 
Cooperativity for 

one atom: C1 
 

Cooperativity for N 
atoms: C 



y 

x 
Excitation  

-2Cx 
1+x2 Atomic polarization: 

Transmission 
x/y= 1/(1+2C) 

Steady State 



Jaynes Cummings Dynamics 
Rabi Oscillations 

Exchange of excitation for N atoms: 

Ng≈Ω



2g Vacuum Rabi Splitting 

Two normal modes 

Entangled 

Not coupled  
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7 663 536 starts 1 838 544 stops 



Classically g(2)(0)> g(2)(τ) and  
also |g(2)(0)-1|> |g(2)(τ)-1|  

antibunched 

Non-classical 

Sub-Poissonian 



How to correlate fields 
and intensities? 



H. J. Carmichael, G. T. Foster, L. A. Orozco, 
J. E. Reiner, and P. R. Rice " Intensity-Field 
Correlations of Non-Classical Light ". 
Progress in Optics, Vol. 46, 355-403, Edited 
by E. Wolf Elsevier, Amsterdam 2004.   



Detection of the field: Homodyne. 
 

Conditional Measurement: Only measure 
when we know there is a photon.  
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The Intensity-Field correlator. 



Condition on a Click  
Measure the correlation function of the Intensity and 

the Field:
<I(t) E(t+τ)>

Normalized form: 
hθ(τ) = <E(τ)>c /<E> 

  
From Cauchy Schwartz inequalities: 

21)0(0 0 ≤−≤ h

1)0(1)( 00 −≤− hh τ





Photocurrent average with random conditioning 



Conditional photocurrent with no atoms in the cavity. 



After 1 average 



After 6,000 averages 



After 10,000 averages 



After 30,000 averages 



After 65,000 averages 



Flip the phase of the Mach-Zehnder by 146o  



Monte Carlo simulations for weak excitation:  

Atomic beam N=11 
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The fluctuations of the electromagnetic field 
are measured by the spectrum of squeezing. 

Look at the noise spectrum of the photocurrent. 

F is the photon flux into the correlator. 



Monte Carlo simulations of the wave-particle 
correlation and the spectrum of squeezing in 

the low intensity limit for an atomic beam. 

It has upper and a lower classical bounds 



Classical g(2)  Non-classical h Squeezing 

N=13; 1.2n0 



With quantum optics we can measure and then 
manipulate the fluctuations of the field 

(Squeezing) and the intensity. 
 

Improve the S/N ratio in LIGO, in 
telecomunications, etc. 



Thanks 


