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Abstract

Photon correlation measurements reveal the response of the conditional
evolution of the cavity QED system to a novel quantum feedback protocol.
A photodetection collapses the state of the system and triggers a feedback

pulse with an adjustable delay and amplitude that alters the intensity driving
the system. The conditional evolution of the system freezes into a new

steady state where it resides until, after an amount of time determined by the
experimenter, it re-equilibrates into the original steady state. We carry out a

sensitivity analysis using a theoretical model with atomic detuning and

make quantitative comparisons with measured results.
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1. Introduction

Our cavity QED research focuses on the time evolution
of quantum fluctuations both in the field [1, 2] and the
intensity [3-6]. We work in the optical regime, where
photodetectors are readily available to detect light which has
been irreversibly emitted from the system. We use correlation
functions to measure the non-classical properties of the field
(squeezing) [7] and the intensity (antibunching and sub-
Poissonian statistics) [4, 8] and focus on the time evolution
of conditional states.

Once we have observed the time evolution of the
conditional state of the system, the next step is to try to
modify the evolution through quantum feedback triggered by
the detection of a single photon.

In this paper we expand on our previous experimental
results in a resonant cavity QED system for the application
of feedback when the fluctuations are large compared with
the mean [5, 6]. This is in contrast with previous work on
quantum feedback where the fluctuations are small compared
to the mean fields (see, for example, [9-11]). We explore
the more general case of a cavity QED system where the
cavity is not resonant with the driving field nor its two-level
atoms and investigate the sensitivity of the system to atomic
detuning, while keeping the detunings a few linewidths away
from resonance. Section 2 describes the basic theoretical
model. Section 3 describes the experiment which explores
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the general case of cavity and atomic detuning. Section 4
explores the sensitivity of the system to off-resonant excitation
and section 5 presents our conclusions.

2. Theoretical model

One atom coupled to a single mode of the electromagnetic
field of a cavity is a theoretically tractable problem [12]. The
field and the atom couple through a dipole interaction with a
strength given by

2
=Wy

Zhéov

&= ey
where 1 = e(g|r|e) is the atomic transition dipole between
two states, w, is the resonant transition frequency between
states |g) and |e) and the electromagnetic field is quantized in
a volume V.

We present results where the optical frequencies in the
problem are not degenerate, w, # ®. # w¢, where w,. is the
resonant frequency of the cavity and wy is the frequency of
the coherent drive. The Tavis and Cummings Hamiltonian
with the appropriate drive and reservoirs in the rotating wave
approximation describes this system.

The atom couples to modes other than the cavity mode
and the cavity couples to modes outside the cavity. Master
equation techniques permit the treatment of these couplings
that lead to damping of the atomic inversion at a rate  which is
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the inverse of the lifetime of the excited atomic state, while the
atomic polarization has a damping rate y, for purely radiative
decay y = 2y,. The cavity decays with a rate k = ¢ T /2L,
where T is the mirror transmissivity, and L is the length of the
cavity. This light is collected in a detector and provides all of
our information about the system. The detection of a photon
collapses the state of the cavity, a process which affects the
system itself. Finally, the system is driven externally with a
field £/k, where £ is the driving field amplitude (in units of
1/s).

The problem now includes the individual atomic and
cavity energies, the coherent coupling g, the damping rates and
the driving field. Two arrangements of the various rates in the
problem were first standardized in optical bistability [13]: the
single-atom cooperativity, C; = g2/ky, scales the influence
of a single atom in the system. The saturation photon
number, ny = y2/3g>, approximates the number of photons
necessary to saturate the atoms in a Fabry—Perot cavity. In
optical bistability this is the value of the intra-cavity intensity
necessary to take the system to the upper branch. For N atoms
in the system the cooperativity simply scales, C = C;N. The
strong coupling regime of cavity QED requires nyp < 1 and
C; > 1. In our experiment g & y =~ k, touching the strong
coupling regime.

2.1. Quantum case

With weak driving, the system can be accurately modelled with
abasis that includes up to two excitations of the coupled normal
modes of the field and the atoms [14, 15]. In this regime,
photodetections are very infrequent and the state before a
detection can be taken to be the steady state, which is almost

pure:
gfw E>>
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Here |n, G) represents n photons with all (N) atoms in their
ground state, |n, E) represents n photons with one atom in
the excited state with the rest (N — 1) in their ground state,
symmetrized over all atoms. The small parameterisa = (a) =
E/[k(1 + CN)], which depends on the input driving field &,
while ¢y and &, are coefficients of the order of unity for the
two-excitation components that have nonzero photon number
and depend on g, x and y [14, 15].
After a photodetection occurs

a|‘ﬁss/
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|Yss) collapses to
« Which evolves as the conditioned state:

[Ye(D)) = IO,G>+oc<;°(r)|1,G> £(1) g\/—IO E))
+0(?). (3)

This is different from the initial state because ¢ (the
‘field” evolution) and & (the ‘atomic polarization’ evolution)
oscillate coherently at the vacuum Rabi frequency @ =
\/ g2N — (k — y/2)/2 over time as the system re-equilibrates,
exchanging energy between the atomic polarization and the
cavity field [14, 15].
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2.2. Correlation measurements

We take an operational approach to correlations functions: a
photodetection collapses the steady state system, [{)g, into
the same conditioned state, |v)., every time. This allows us
to collect measurements of many individual realizations of the
same system. Conditional quantum states can be measured
using g (1), the intensity correlation function. g® () has
been described for a general quantum optical source[16] and
specifically for our cavity QED source [4]. Here we only list
the relevant properties. The normalized correlation function of
the intensity is the time-ordered and normally ordered average:
¢?(0) = (Ussla"0a’ (r + Da(r + Da )| Ys) @
(Yslat)a@)|rss)?
_ Wi+ 0l) )
Wl lss)

where i = a'a. A ¢g» (r) measurement records the likelihood
that a photon will be emitted from the system after one photon
has already been detected, normalized by the photodetection
rate in the steady state. Photodetections a long time after one
photon has been detected, T >> tTchar, are uncorrelated with
the original photodetection, where Tepr = 2/(yL + k) is a
characteristic time dictated by the average of the decay rates
in the system. Experimentally, we take this to be our steady
state. At short times T ~ T, W can observe the conditional

dynamics of the system.

2.3. Cavity QED with quantum feedback

The cavity field evolution, ¢(r), and the atomic dipole
evolution, &(t), oscillate coherently at the vacuum Rabi
frequency 2. There are times when—due to the natural system
dynamics—these coefficients are equal. If we choose one of
these times t = T such that ¢(T) = &(T) then, to order «, we
obtain [5]

gJ_

[¥e(T)) =0, G) +0t’<|1, G) - 10, E)) (6)
At these special times the state of the system is of the form
of the steady state |1/) but with a different mean field o’ =
¢(T)a [5]. The system, however, is not actually in a steady
state at this time. The external field £ is driving the system
towards the original steady state, given by «. The system drive
is the only system parameter that, at time 7', does not meet the
steady state criteria. The conditional state can be stabilized if,
at time 7', we change to &', corresponding to the steady state
cavity field, «’. Then the system will reside in the new steady
state given by equation (6).

This way of stabilizing the conditional state is possible
because it is a pure quantum state with two real parameters
(¢ and &) and two control parameters (the size and parity
of the change in drive o’ — « and the timing of the change
T). Ordinarily, g (z) would always be symmetrical in 7 by
construction. If this detection is used to trigger a feedback
pulse on the system, however, the correlation function will
no longer be time-symmetric. Nevertheless, for 7 > 0 the
expression (5) still measures the conditioned (c) state in the
presence of feedback (fb):

(1, 0 $resmn ()

2) ~
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Figure 1. Intensity correlation function with (full curve) and
without (broken curve) quantum feedback. The grey box indicates
the application time of the square feedback pulse, 7" = 34.7 ns,

81 = +1.7%. The system resides in the new steady state for 150 ns
before the driving intensity is returned to its original value. Notice
that the new steady state is higher than the original.

Q/27 =50MHz, k/2r = 4.9 MHz and y, /2m = 3.0 MHz.

Figure 1 shows the predicted intensity correlation with
the quantum feedback. The change in the intensity needed
for stabilization is 81 = |’ — «|?/|«|> = 0.017 at a time
T = 34.7 ns. The system resides in the new steady state for
150 ns before the driving intensity is returned to its original
value. The system then re-equilibrates into the original steady
state. This feedback protocol captures the dynamic evolution
and then releases it with the exact phase and amplitude that it
had at a later time.

2.4. Detunings in cavity QED and a semi-classical model

The atomic polarization can be treated as a harmonic oscillator
in the weak-field limit, when most of the atoms are in the
ground state [17]. A single electromagnetic mode of a
Fabry—Perot cavity (A, A*) and a collective atomic dipole
(3_, 3}, 3’1) can be modelled as coupled harmonic oscillators
with loss rates « and y, that couple together with strength, g.

This description of the system is motivated from the
equations of motion for the system from master equation
techniques. Assuming the atoms and field are decorrelated
(SZ&) = (.§Z) (a), and making the rotating wave approximation
gives us the Maxwell-Bloch equations [18]:

(A) = [k +i(w — w)](A) +g(5_) +& ®)
(S) = [y, +i(w, — w)(E) +28(8:0 (A 9)

A N N e A ~ N
(8.) = —y (<Sz> + 3) — g(ANSE) — g(SA)  (10)

and the complex conjugates of equations (8) and (9).

We have assumed that the laser and the cavity are locked
to the atomic resonance, w; = @, = w,. Detunings can arise
as a result of the experimental conditions, or can be introduced
intentionally by the experimenter.

The theory of detunings and N atoms coupled to a cavity
mode is treated extensively by Brecha er al [19]. Detunings

are handled within the master equation and the Maxwell-Bloch
equations (8)—(10) by redefining the decay rates [19]:

k= k(1+i®) =F& (11)

y. =y (1+2iA) =y, (12)

where ® = (w. — w¢)/k and A = (w, — wy)/yL. The
Maxwell-Bloch equations are now

) = —(A) +g(S-) +€ (13)

(A1) = —*(AT) + g(8.) (14)

(82) = —71(8-) +2g(8)(A) (15)

(So) = —71(S0) +2g(8:) (AT (16)

~

where the input field £ drives only (A4). We assume that the
cavity mode is constant in intensity throughout the cavity. In
the weak field limit, Xiao et al [20] showed that calculations,
such as correlations, using the quantum regression theorem are
independent of the mode function of the cavity. Considering
the steady state, (.,2\) = (3_) = (S'z) = 0, we can obtain
an equation relating the cavity field to the drive—up to factors
involving (g, k, y). Wefind & o (A)[1+1/(1+](a)|?)], which
is nonlinear unless (a) < 1. In this weak field case the steady
state becomes

£
i(1+20)

A 2N
Gy = pm—a2¥NE
14

(18)
These are the same steady state values found in the fully
quantum mechanical calculation [14, 15].

If, as before, we assume that most of the atoms are in
the ground state, then the expectation value of the population

operator becomes (S‘Z) = —\/N/Z and (S‘Z) = 0. The
equations now reduce to those describing the interaction of
classical oscillators, with one oscillator to describe the atomic
dipole and the other to describe the field within the cavity:

(A =a =

A

Ay = —k(A) +VNg(S_) + € (19)
(AT = (AT + VNg(ST) (20)
(S) = —7.(8) +VNg(A) @1)
(87) = —71(8T) + VNg(AT). (22)

These are the weak field limit semi-classical Maxwell-Bloch
equations.

Missing from this model is the quantum jump in the state
of the system upon a photodetection. A photodetection in our
detector collapses the wavefunction of the system. Although
the jump is not described by the differential equations, we
can use them to find the steady state of the system, use the
measured value of g (0) = ¢¢ (see equation (7)) to find the
cavity field jump and then infer the jump in atomic dipole [14].
These values then become the initial conditions for the fields
after the wavefunction collapses. The differential equations
then model the evolution of the fields back to the steady state.
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‘We have used this procedure to obtain the theoretical prediction
of figure 1. The jump in the atomic dipole is small compared
with the field jump. It shifts the phase of the two fields with
respect to one another.

A cavity QED system subjected to a step excitation
undergoes an oscillatory exchange of energy between the
atoms and cavity before it reaches the steady state [21, 22].
This exchange is the time-domain analogue of the vacuum-
Rabi doublet which has been observed in the transmitted
spectrum [23-26]. Previous research has focused on step
excitations from the steady state which extinguish the drive,
or turn-on steps from no drive. The steps in this work are
between two non-zero steady states and are applied when
a photodetection alerts us to the timing of the oscillatory
exchange between atoms and cavity.

When the system is resonant only one field quadrature
is excited. In general, when there is detuning in the system
both quadratures of the cavity field are excited. This degrades
the ability of the current feedback protocol, since now four
feedback parameters are required to fully control the system.

2.5. Refinements of the model

A beam of thermal atoms travelling through the cavity
introduces a number of complications [27-29], many of which
have been discussed for our experiment [4]. The coupling rate
g defined in equation (1) is for an atom coupled to an anti-node
of the cavity standing wave. The atoms are moving, however,
and a spatially dependent coupling constant, g(r;), describes
the interaction of each of the atoms with the Gaussian waist
of the cavity. Also, a moving atom crossing a cavity mode
sees the cavity as a pulse of light. For this reason, the atoms
see a spectrally broadened cavity mode, an effect called transit
broadening.

There is a Doppler velocity distribution along the direction
of the beam which couples to the cavity mode because of
the angular spread defined by the collimating slits. This
inhomogeneous effect yields a spread of atomic detunings
within the cavity. There are also Poissonian atom number
fluctuations within the thermal atomic beam, which affects the
oscillation frequency 2.

The theoretical method described for dealing with
detunings is similar to that of [4]. It allows us to use values
determined from the apparatus for the three rates (g, k, 1) in
the system along with the Maxwell-Bloch equations to model
the data.

To model this inhomogeneous effect we begin by
taking the initial value of the cavity field & after a
photodetection [15, 19]:

hr=0y=1-2C5_~ _2€
N jp+11+2C

(23)

with i = 2k /7 and C = Ng?/k7. The evolution of the cavity
field and atomic dipole are given by equations (19) and (21).
We compute the field inside the cavity for a range of individual
detunings. These fields are averaged and the resulting field is
squared to find the intensity.

A similar method describes a drift of the cavity lock. The
field evolution within the cavity is calculated for a range of
cavity detunings and the fields are added. Combining both
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detunings, the evolution is computed at each value of A for
each value of ®. We reach quantitative agreement to better
than 20% with this approach [4].

3. Experiment

The apparatus consists of a high-finesse optical cavity, which
is driven by and locked to a cw excitation laser. The laser
is locked to a 3Rb resonance at 780 nm with a saturation
spectroscopy technique. A collimated thermal beam of 8Rb
atoms interacts with the cavity mode. Avalanche photodiodes
(APD) detect the light emitted from one side of the cavity
and produce signals which travel to a time-to-digital converter
(TDC) to make correlation measurements.

The procedure consists of optimizing the system to
produce a non-classical correlation, then feeding back—after
pulse shaping—the electronic pulses from the conditioning
photodetections to an EOM before the cavity entrance to alter
the intensity of the driving light. We have previously shown
that this feedback protocol can project the system into a steady
state [5]. We then explore the sensitivity of the suppression to
the atomic detuning in the system by locking the cavity at a
different frequency than the atomic resonance.

3.1. Cavity QED system and intensity correlator

The apparatus and experiment has been described in detail
in [4, 6], but we summarize here the basic components and
those relevant to the system detunings. The cavity defines
a TEMyy mode with two mirrors with different transmission
coefficients, 77 = 15 ppm and 7, = 300 ppm. The input
transmission is smaller than the output to ensure that most
of the signal escapes from the cavity on the detector side. A
typical cavity finesse for this arrangement is 7 = 21 000. Two
cylindrical piezo-electric-transducers (PZT) control the length
of the cavity.

The lock and signal beams have orthogonal linear
polarizations when combined at a beamsplitter before the
cavity entrance. They are projected into opposite circular
polarizations before entering the cavity and the reflected lock
beam produces the error signal for cavity locking. We chop
the lock beam before it is inserted into the cavity. One lock
cycle consists of a period of 600 us during which the cavity is
actively locked, followed by a period of 350 ws during which
the cavity is ‘freely evolving’. We estimate the quality of the
lock by observing whether the cavity transmission is constant,
particularly at the beginning and ending of a lock cycle. The
cavity drifts preferentially in one direction. This is because
there is always a thermal drift from the liquid-nitrogen-cooled
copper finger which surrounds the cavity to reduce background
vapour. The cavity lock is usually better than ® < 0.10,
although if the system is far from thermal equilibrium the
large amount of drift due to the cold finger causes the limit
to be closer to ® < 0.50.

The lock and signal beams are both derived from a
Coherent Verdi-5 pumped Ti:sapphire 899-01, which is locked
using an RF saturation spectroscopy measurement. A double
passed acousto-optic modulator (AOM) adjusts the signal and
lock beam frequencies around atomic resonance, which allows
us to compensate for Doppler detunings or to explore the effect
of laser—atom detuning.
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Figure 2. Simplified diagram of the experimental set-up. A
collimated thermal beam of optically pumped Rb atoms traverses an
optical cavity. Intensity correlations are measured with two
avalanche photodiodes (APD), gating electronics, a time-to-digital
converter (TDC) and a histogramming memory and computer.
Photo-detections at APD1 are used to trigger a change in the
intensity injected into the cavity. Optics shown are relevant for
control of the size of the intensity step and the polarization of the
light injected into the cavity.

Our system is in the intermediate regime of cavity QED,
where ¢ =~ (k,y). Typical rates are (g,k,y)/2n =
(6.1,4.9,6.0) MHz. C, = 1.3 is typical for our system.

An oven located 35 cm from the cavity produces a thermal
beam of Rb atoms, at a typical temperature of 460 + 0.1 K,
by chopping the current in the resistive wire at about 0.1 Hz.
Several slits collimate the atomic beam to a spread of 2.8 mrad.
A diffusion pump and a liquid-nitrogen-cooled copper sleeve
produce a typical operating pressure of about 5 x 10~ Torr.

An atom-—cavity detuning is a consequence of using a
thermal atomic beam as an atom source for the cavity. Aligning
the atomic beam perfectly perpendicular to the cavity mode is
challenging. Angles up to 20 mrad are common. With typical
atomic beam velocities, an angle of 10 mrad implies a shift of
about k - v/27 ~ 5 MHz. With this small detuning, and the
large amount of power in the optical pumping beam, the optical
pumping efficiency is unchanged. The atom—cavity detuning
is compensated for via the previously mentioned AOM.

A 5 G magnetic field which is collinear to the cavity
axis to within 40 mrad provides the quantization axis for
optical pumping and creation of a beam of two-level atoms.
(551/2, F = 3, mrp = 3 - 5P3/2, F = 4, m’F =4
transition of 3Rb at 780 nm with y /27 = 6.07 MHz).

The light escaping the cavity is detected by two avalanche
photodiodes (APD) located behind a 50/50 beamsplitter, see
figure 2. The transistor—transistor logic (TTL) signals of the
photodiodes are sent through gating electronics, and ultimately
to a computer, to produce intensity—intensity correlations. The
pulse of APD1 is split and one copy is sent to a pulse stretcher
and electro-optic modulator (EOM)/polarizer pair to alter the
intensity of the drive.

The feedback information is derived from the TTL
produced by APD1. The TTL from the start detector proceeds
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Figure 3. Resonant intensity correlation measurements with and
without quantum feedback, A = ® = 0. * indicates the peak
targeted for suppression with feedback. /27 = 49 MHz, data
binned into 1.0 ns bins. (a) Typical measured g® (7). (b) Measured
intensity correlation function with quantum feedback in a resonant
system. Al = —2.7%, Ty, = 45 ns. The grey box indicates the

500 ns application time of the square feedback pulse.

through a power splitter, a variable delay (0.5-32 ns) and
then to a pulse stretching circuit. After a short delay, the
circuit produces a longer pulse. Due to the optical and
electronic delays in the system, the minimum feedback time
is T, = 43 ns. The output of the circuit is directly applied
to a Gsidnger model LM0202P-IRSW EOM with an output
polarizer attached. Optical intensity steps are produced when
the voltage is applied to the EOM/polarizer.

3.2. Intensity-correlation measurements

The data-taking procedure begins by recording correlation
functions without feedback. We begin by aligning the optical
pumping beam to ensure that we have two-level atoms. Then
we determine the A = 0 condition for the system. The ratio of
normalized input (Y = |£|?/(k*ng)) to normalized transmitted
(X = |a|*/ng) intensities including cavity—laser detuning is
given by [13]

Y 2C . 2CA
—=l1+——+i|l O —
X 1+ A2 1+ A2

and is aminimum for A = 0 and ® = 0. Once we have located
the laser frequency which minimizes the transmitted intensity,
we determine the frequency of the laser which minimizes
g?(0). Several more measurements at various intensities
determine the drive for the weak field regime. We then
optimize the feedback routine to achieve the best suppression
of the system’s oscillation [5, 6].

Figure 3(a) depicts a typical ¢®(r) measurement. A
photon is emitted from the cavity at T = 0, disturbing the

2

(24)
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Figure 4. Measured g® () with atom—cavity detuning. Compare
with the resonant g () shown in figure 3(a), which has the same
system parameters. (a) A = (.7, the antibunching has degraded
with respect to the resonant case although the time-delayed Schwarz
inequalities are still violated. (b) A = 2.3. The signal is now
bunched and super-Poissonian, g?(z = 0) = 1.11 £ 0.04.

steady state of the system. t = 01is defined by a photodetection
in APD1: we then histogram the subsequent arrival times of
photodetections in APD2. The system then exchanges any
remaining energy between the cavity mode and atoms at the
coupling frequency, 2. At any time during this exchange,
the system can lose this excitation through either atomic
spontaneous emission or through a cavity emission. Without
a feedback step, our driven coupled system again resides in
the steady state after some characteristic time dictated by an
average of the loss rates, (k+y,)/2. This evolution can be seen
in the correlation function in figure 3(a). This correlation is
sub-Poissonian (g® (r = 0) = 0.46 % 0.03) and antibunched
(positive curvature at T = 0).

Figure 3(b) depicts an intensity correlation measurement
with feedback for the same system parameters as figure 3(a).
The feedback step size is Al = —2.7% and the system is
held in the new steady state for 500 ns before it is released.
It then exchanges energy at the vacuum-Rabi frequency as it
re-equilibrates into the original steady state.

We now explore the effects of the cavity—atom detuning,
A, defined in equation (12). In a resonant system only one
cavity field and one atomic dipole quadrature is excited, and a
¢ (1) measurement provides intensity information about that
quadrature. When both quadratures are excited the resulting
g (1) is a combination of both. Figure 4 shows two g (1)
measurements for a detuned system A # 0. For small
detunings, A < 1, the antibunching degrades, as shown
in figure 4(a). The correlation function is nearly flat when
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Figure 5. Measured intensity correlation functions with atom—cavity
detuning and quantum feedback. (a) A = —0.7, (b) A = +0.7. The
grey box corresponds to the region with the feedback pulse, while
system parameters are identical to those in figure 3.

A =1 [4] and re-appears again for A > 1 but with classical
statistics, see figure 4(b).

3.3. Correlation measurements with detuning and quantum
feedback

The feedback suppression degrades with detunings present in
the system, as shown in figures 5 and 6. Each quadrature of
the cavity field requires feedback at the correct time with the
appropriate amplitude. Hence four parameters are required
when both quadratures are excited. One EOM producing
an intensity step at a specified time (two parameters) is not
sufficient to halt the system evolution in this case. For this
measurement a cavity detuning is present and we place a limit
toitof |®] < 0.5.

Figure 5 has a small atomic detuning (£0.7) and the field is
antibunched and sub-Poissonian. The case of positive detuning
shows closer behaviour to the resonant excitation. This is
related to the compensation of atomic and cavity detuning that
exists when the two detunings are equal [19].

Figure 6 shows the conditional intensity in the presence
of a large atomic detuning for the two signs of the detuning.
The system displays bunching and is super-Poissonian, so it
looks as if it is classical; however, in this regime it still shows
squeezing [30]. The asymmetry in the response for the two
values of A comes from the presence of cavity detunings
®] < 0.5.

4. Sensitivity analysis

We have followed the response of the system to different step
amplitudes when the optimal suppression occurs at a stronger
drive than the original steady state. Figure 7 illustrates the
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Figure 6. Measured intensity correlation functions with
atom—cavity detuning. Compare with the resonant g (z) shown in
figure 3(a). The grey box corresponds to the region with the
feedback pulse, while system parameters are identical to those in
figure 3. (a) A = —2.0, (b) A = +2.0.

sensitivity of the system to the feedback amplitude when a
positive step freezes the oscillation. The model includes the
7 ns rise time of the intensity step. The grey area represents the
model prediction region for a range of detunings. The model
includes a cavity—atom detuning from A = 0 (resonance) up
to A = 0.3 to reflect the previously mentioned uncertainty in
determining A = 0. A cavity—laser detuning from resonance
up to ® = 0.5 models the unstable cavity lock during that
particular data set. Although the data are consistent with a
completely suppressed oscillation (at Al = 0.2%) the trend
of the data points does converge at zero. The best linear fit to
the two individual arms of the V-shaped data has a minimum
at an amplitude of 0.02. The detunings make perfect feedback
impossible and slightly lift the minimal amplitude of the model
above zero.

To quantify the amount of feedback suppression we make
correlation measurements at several values of cavity—atom
detuning, take a fast Fourier transform and compare the
power in the correlation function during the time the feedback
pulse is applied, with and without the feedback. The power
enhancement in the g (t) is computed with a MATLAB FFT
routine and is given by
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where w = e=>"/¥) We compute the power in the correlation
measurement when the feedback pulse is applied and normal-
ize it by the power in the same region of the correlation mea-
surement for negative times. With no feedback, the power in
the positive and negative times is equal. The data are acquired
over a 1 us interval and are divided into 2000 500 ps bins.

0.25

0.20- }

Amplitude

0.05[-

0.00 | | |

Figure 7. Response of the system to feedback intensity steps of
various sizes. For this parameter set, the optimal suppression occurs
at Al = +0.2%. The grey area is a model prediction which includes
the rise time of the intensity step and a range of detunings of the
system.

48 bins are added to make a power of 2 in the bins. Normal-
izing the power by the negative times allows one to see the
suppression or enhancement of the power during the feedback
as compared to the power in the absence of feedback.

Notice that the power ratio peaks at some value of the
detuning and then lowers again. This is because, as the
detuning is increased, the power in the intensity correlation
function is also changing, as shown in figures 3(a) and 4.
When A = 1, the power in g (7) is smallest, so the feedback
produces an oscillation with much more power than would have
been there originally. As the detuning is increased, the power
inthe g (1) oscillation increases again, with a different phase.

The model used in this case is the semi-classical
description discussed in section 2.4. Two lossy oscillators are
coupled at the vacuum-Rabi frequency. After the numerical
solution comes to a steady state, energy is removed from the
cavity oscillator. The amount of energy to remove is dictated by
the g® (r = 0) value of the data for a given set of experimental
parameters. The system is then allowed to re-evolve to the
steady state. The energy exchange in the model system can
be halted by changing the drive of the system at a given time.
Detunings are added as described in equations (11) and (12).
The barred region of figure 8 corresponds to a spread in values
of the cavity—laser detuning of ® = [—0.2 0.2]. The model
prediction diverges around A = 1, which corresponds to the
region where the power in g () is minimal and the feedback
produces much more power.

The asymmetry in the data is due to the non-zero value of
®, which then results in a larger system response for one sign
of A.

5. Conclusion

We have explored a novel quantum feedback technique.
Our experiment is the first to use the knowledge gained
from a quantum measurement to actively alter the dynamical
evolution of the system [5].
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Figure 8. Power in the suppressed region of g®(t), normalized by
the power in the same region at g (—1). The grey area is theory and
the range is given by the range of cavity detunings, ® = [—-0.2 0.2].
The broken line corresponds to the value where the power in the
suppressed region is equal to the power with no feedback.

The detection of single quanta triggers the quantum
feedback which alters the intensity driving the system. The
feedback can stop the evolution of the system into a new steady
state. During the time that the driving intensity is altered, the
likelihood that the system will emit a photon is constant. The
system resides in a new steady state during this time. When we
return the drive of the system to its original value, the system
evolves with the same amplitude and parity that it would have
without the feedback step. By timing our feedback to occur
after a single quanta has been emitted from the system, we are
able to stop the dynamic evolution which was initiated by the
photodetection.

The feedback degrades in the presence of detuning, and
with a range of detunings present in the cavity the observed
suppression is a collective effect. Although the applied step
is too large for atoms with a large detuning, it is too small for
atoms with no detuning and the sum of these effects results in
the suppression observed in the resonant case.

We explored the sensitivity of the system to the atom—
cavity detuning and found that, by including the spread in
Doppler detunings in the model, it agrees quantitatively with
the data. The presence of detuning prevents perfect feedback
as the system has four variables and the control protocol only
two: amplitude and delay time. Future work will require extra
parameters that can come from an optical lattice beam that
captures the atoms in the cavity [31].

Acknowledgments

We would like to thank P R Rice and H M Wiseman for useful
discussions. We would like to acknowledge the interest and

134

help on this work from S Metz, C Pancake and J Reiner. The
work supported by NSF and NIST.

References

[1] Foster G T, Orozco LL A, Castro-Beltran H M and
Carmichael H J 2000 Phys. Rev. Lett. 85 3149
[2] Foster G T, Smith W P, Reiner J E and Orozco L A 2002 Phys.
Rev. A 66 033807
[3] Mielke S L, Foster G T and Orozco L A 1998 Phys. Rev. Lett.
80 3948
[4] Foster G T, Mielke S L and Orozco L A 2000 Phys. Rev. A 61
053821
[5] Smith W P, Reiner J E, Orozco L A, Kuhr S and Wiseman H M
2002 Phys. Rev. Lett. 89 133601
[6] ReinerJ E, Smith W P and Orozco L A 2003 Phys. Rev.
A, submitted
[7] Carmichael H J, Castro-Beltran H M, Foster G T and
Orozco L A 2002 Phys. Rev. Lett. 85 1855
[8] Rempe G, Thompson R J, BrechaR J, Lee W D and
Kimble H J 1991 Phys. Rev. Lett. 67 1727
[9] Yamamoto Y, Imoto N and Machida S 1986 Phys. Rev. A 33
3243
Haus H A and Yamamoto Y 1986 Phys. Rev. A 34 270
Shapiro J H, Saplakoglu G, Ho S T, Kumar P, Saleh B E A and
Teich M C 1987 J. Opt. Soc. Am. B 4 1604
Sénchez Mondragén J J, Narozhny N B and Eberly J H 1983
Phys. Rev. Lett. 51 550
Lugiato L A 1984 Progress in Optics vol 21, ed E Wolf
(Amsterdam: North-Holland) p 69
Carmichael H J, Brecha R J and Rice P R 1991 Opt. Commun.
8273
Reiner J E, Smith W P, Orozco L A, Carmichael H J and
Rice PR 2001 J. Opt. Soc. Am. B 18 1911
Mandel L and Wolf E 1995 Optical Coherence and Quantum
Optics (New York: Cambridge University Press)
Carmichael H J 1986 Phys. Rev. A 33 3262
Drummond P D 1991 [EEE J. Quantum. Electron. 17 301
Brecha R J, Rice P R and Xiao M 1999 Phys. Rev. A 59 2392
Xiao M, Kimble H J and Carmichael H J 1987 Phys. Rev. A 35
3832
BrechaR J, Orozco L A, Raizen M G, Xiao M and Kimble H J
1995 J. Opt. Soc. Am. B 122329
Mielke S L, Foster G T, Gripp J and Orozco L. A 1997 Opt.
Lett. 22 325
Raizen M G, Thompson R J, Brecha R J, Kimble H J and
Carmichael H J 1989 Phys. Rev. Lett. 63 240
Zhu Y, Gauthier D J, Morin S E, Wu Q, Carmichael H J and
Mossberg T W 1990 Phys. Rev. Lett. 64 2499
Gripp J, Mielke S L, Orozco L A and Carmichael H J 1996
Phys. Rev. A 54 R3746
Gripp J, Mielke S L and Orozco L A 1997 Phys. Rev. A 56
3262
Rosenberger A T, Orozco L A, Kimble H J and
Drummond P D 1991 Phys. Rev. A 43 6284
Carmichael H J and Sanders B C 1999 Phys. Rev. A 60 2497
Clemens J P and Rice P R 2000 Phys. Rev. A 61 063810
Raizen M G, Orozco L A, Xiao M, Boyd T L and Kimble H J
1987 Phys. Rev. Lett. 59 198
Terraciano M L, Smith W P and Orozco L A 2003
CLEO-QELS 2003 Conf. Program QTuG6 (Washington,
DC: Optical Society of America)

[10]
[11]

[12]
[13]
[14]
[15]
[16]
(17]
(18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
(28]
[29]
[30]

[31]



