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Abstract
We compare the field-field g(1)(τ), intensity-field g(3/2)(τ), and intensity-intensity g(2)(τ)
correlation functions for models that are of relevance in astrophysics. We obtain expressions for
the general case of a chaotic radiation, where the amplitude is Rician based on a model with an
ensemble of harmonic oscillators in Brownian motion. We obtain the signal to noise ratios for
two methods of measurement. The intensity-field correlation function signal to noise ratio scales
with the first power of tg 1∣ ( )∣( ) . This is in contrast with the well-established result of g(2)(τ)
which goes as the square of tg 1∣ ( )∣( ) .

Keywords: intensity correlation, field correlation, intensity-field correlation, astrophysics,
statistical physics
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1. Introduction

Correlation functions appear in the study of Physics from the
microscopic scale to the galactic scale, and have played
fundamental roles in statistical physics at equilibrium, and out
of equilibrium. The intimate relation between correlations and
spectra is now one of the most solid foundations in many
areas of science. To name only one example, the 2019 Nobel
prize of J. Pebbles, for his understanding of the large-scale
anisotropy of the Microwave Black Body spectrum, and for
the mass fluctuations at large scale [1].

Correlation functions of the electromagnetic field have
been applied to classical and quantum fields, their relation to
fluctuations can not be over stressed, and their study illumi-
nates the boundary between classical and quantum fields [2].
Intensity-intensity correlation functions started in optics and
astrophysics with the pioneer work of Hanbury Brown and
Twiss [3–5]. Measurements give information about the
radiative source, such as its size and its spectra, but also about

the radiation processes themselves [6, 7]. The work of
Handbury Brown and Twiss triggered the birth of quantum
optics [8], consolidated by the foundational work of R. J.
Glauber with the quantum theory of coherence [9]. During the
last decade there has been strong interest to revive the tech-
nique of Hanbury Brown and Twiss in astronomy [10–22].

The intensity-field correlation developed from ideas that
started to appear some thirty years ago e.g. [23–25]. Its formal
introduction as conditional homodyning by Carmichael et al
[26], including its relationship with the spectrum of squeez-
ing, triggered experimental studies in cavity QED [27] and in
single atom resonance fluorescence [28]. Among the theor-
etical advances followed by Carmichael’s work has been the
discovery of its link to weak value measurements [29, 30]. It
would seem that a correlation of three fields would not give
any further information, but strictly speaking, there are three
fields from the source and one from a local oscillator that
cancels out in the normalized definition, giving access to such
intensity-field correlation that probes the field quadrature
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fluctuations. Recent investigations now include the study of
Raman scattering of molecules on surfaces [31]. The paper by
Xu et al [32] summarizes the motivation for the development
of the intensity-field correlation function as a tool to study
conditional dynamics in quantum optics. It presents an
overview of the connection of the correlation functions,
conditional measurements, and photoelectric detection.

This theoretical work compares the field-field g(1)(τ),
intensity-field g(3/2)(τ), and intensity-intensity g(2)(τ) corre-
lation functions, for a simple system that could meet radiative
properties of the stellar emission lines: an ensemble of har-
monic oscillators in Brownian motion with a coherent back-
ground. The resulting field is chaotic as defined by Glauber
[33]. We add a coherent background for two reasons. First, in
astrophysics if coherent radiation exists, it could appear with
the blackbody radiation (zero-mean chaotic field) [16, 34].
Then, in order to appropriately measure the intensity-field
correlation on a blackbody radiation, it is necessary to add a
coherent offset to it. The result is chaotic radiation, where the
amplitude has a Rician distribution (and not the Rayleigh
distribution of the blackbody radiation). We support our
results with a simulation based on an elementary model from
kinetic theory: the so-called one-dimensional gas at thermal
equilibrium, that permits exact calculations and Monte-Carlo
simulations.

Then, we derive the signal to noise ratios and compare
them for two different methods of measurement, each relevant
in one particular intensity regime. Based on the recent
experimental results of our group [15] we take into account
only statistical ‘shot noise’. The study shows the advantages
of considering one correlation function or another, either in
terms of data collection time, or in terms of physical infor-
mation that one obtains. At first sight, one could argue that
only the first order correlation function tg 1 ( )( ) really matters.
Indeed, the correlation functions of the Gaussian processes
are simply linked among them, it is Isserlis’ theorem [35]
(classical version of Wick’s theorem). The knowledge of the
first order correlation function is enough in principle. How-
ever, we shall see that the physical information appears with
slightly different form in each of the correlation functions and
that the technical challenges for measuring them differ.

The paper is organized as follows. We first present our
theoretical framework in section 2, then in section 3 we derive
these correlation functions, in section 4 we present the kinetic
model and our simulation, confirming the analytical results. In
section 5, we derive the signal to noise ratios, taking into
account only the statistical ‘shot-noise’, compare them, and
compare the common measurement of g(2)(τ) for a Rayleigh
field, and the g(2)(τ) measurement on the same field but with
coherent offsets added.

2. Theoretical framework

2.1. Our classical picture

We consider an ensemble of massive particles (harmonic
oscillators hereafter) in (non-relativistic) Brownian motion,

that each emit the same electric field with a fixed polarisation,
and some vector modes function satisfying the wave equation
with a given gauge choice, with the usual boundary and
transversality conditions. We assume that the harmonic
oscillators are too few in front of the surrounding thermalized
particles to interact among them, they are independent from
each other. We assume that the field is disconnected from the
particles, such that the Fourier coefficients in the analytic
representation of the field fully describe the field [33]. In all
this paper, we consider a single vector component and only
one mode. We set an inertial observer at a fixed point in
space, we adopt an Eulerian description of the field.

In its stable state, the Brownian motion induces, for any
harmonic oscillator ℓ, independent fluctuations in frequency
dwt

ℓ{ } around a mean value wá ñ, and fluctuations in phases
jt

ℓ{ } via, respectively, the Doppler-Fizeau mechanism and the
elastic collisions mechanism. Then, the field emitted by an
harmonic oscillator ℓis described as a continuous time stable
Markovian process

w= - á ñ t A t i texp , 1ℓ ℓ( ) ( ) ( ) ( )

where the complex Amplitude is:

j dw= -A t E i i texp exp . 2ℓ t
ℓ

t
ℓ

0( ) ( ) ( ) ( )

The fluctuations dwt
ℓ{ } are normally distributed because of the

Doppler-Fizeau mechanism, and the phases jt
ℓ{ } are uni-

formly distributed because of the elastic collisions mech-
anism. The field resulting from the superposition of N?1
fields (1),

å w= = - á ñ
=

 t t A t i texp 3
ℓ

N

ℓRa
1

1

Ra( ) ( ) ( ) ( ) ( )


has a Gaussian complex amplitude ARa(t), and so is a chaotic
field as defined by Glauber [36]. The modulus of ARa(t) fol-
lows a Rayleigh probability law at each time.

The analytic representation (1) allows the classical cor-
respondence [2] of the quantum field-correlation functions
defined by Glauber [9]. For a field  t( ), the classical corre-
spondence of the intensity operator is  I t t t*( ) ≔ ( ) ( ). It is
proportional to the energy resident in the radiation.

2.2. Correlation functions definitions

The three first non-normalized correlation functions are
defined (when they exist) in the stable state of a field  t( ).
Within our Eulerian description they are:

t tá + ñ G t t 41 *( ) ≔ ( ) ( ) ( )( )

t t tá + + ñ +   G t t t t c c. . 5lo
3 2 * *( ) ≔ ( ) ( ) ( ) ( ) ( )( )

t t tá + + ñ   G t t t t . 62 * *( ) ≔ ( ) ( ) ( ) ( ) ( )( )

Where w= - t A i texplo lo lo( ) ( ), with q=A E iexplo lo ( ), is a
coherent local oscillator with the same deterministic mode
w w= á ñlo than the field. If it has to be considered as a random
process, then it should be considered as independent of the
field. The normalized forms are:
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The joint moment (5) depends only on the time difference τ

because ‘ dw-i texp t( )’ and ‘ j dw t- +t t+ +i i texp expt t( ) ( ( ))’
are independent, and because jt is uniformly distributed over
[0; 2π].

The field-field correlation function g(1)(τ) has already
been studied in detail in reference [2]. References [33] and
[37] address precisely the question of what physical infor-
mation lies in the intensity-intensity correlation function
g(2)(τ), respectively in quantum optics, and in astronomy.

2.3. Classical intensity-field correlation function

Let fbE iexp( ) be the non-zero average steady part in the
complex amplitude of a field  t( ). Let δ A (t) be the fluctuations
of the complex amplitude, we assume that the moments of third
order for the fluctuations dA t{ ( )} are negligible compared to
the lower orders. The intensity-field correlation function
g(3/2)(τ) is classically defined by (8). Because of the steady part

fbE iexp( ) in the complex amplitude of the field, both the
numerator and denominator in (8) are non zero. We will show
that this correlation function captures the evolution of a
quadrature of the field, depending on the relative phase (f−θ)
between the local oscillator and the field.

A μ-quadrature of the field, also called a ‘quadrature-
phase amplitude’ [38] of the field, is:

m m- +mA t A t i A t i
1

2
exp exp . 10*( ) ≔ [ ( ) ( ) ( ) ( )] ( )

The capture of a quadrature evolution is conditioned on an
intensity fluctuation because of the term  t t*( ) ( ) in the
numerator of (8). In the quantum limit, it is reduced to the
detection of a photon. One can already notice that (8) is
independent of the amplitude of the local oscillator.

Let us express (8) in terms of the fluctuations of the field
quadratures. For a given phase μ we define δ Aμ(t) as the
fluctuations of the μ-quadrature of the field. After a bit of
algebra,

t f q
d d t

d
» - +

á + ñ

+ á ñ
f q

b
g

A t A t

E A t
cos . 113 2

2 2
( ) ( )

( ) ( )
∣ ( )∣

( )( )

When the phases are equal (f=θ) it becomes:

t
d d t

d
» +

á + ñ
+ á ñ

q q

b
g

A t A t

E A t
1 . 123 2

2 2
( ) ( ) ( )

∣ ( )∣
( )( )

First, this demonstrates that g(3/2)(τ) depends on the para-
meters θ and f. Then, when θ=f, this shows that the
intensity-field correlation function captures the fluctuations of
a θ-quadrature of the field. It gives access to the conditional

dynamics of the quadrature of the field, similar to the manner
in which the intensity-intensity correlation function gives the
conditional dynamics of the intensity [32]. The results of
equation (11) are consistent with the quantum mechanical
expressions in [39] under the appropriate classical limit.

3. Derivation of the correlation functions

References [26, 27] study the intensity-field correlation
function theoretically and experimentally in cavity QED from
a quantum optics perspective. However, it has not been
considered yet, to our knowledge, for studies of astrophysical
sources such as the emission lines of ‘chaotic’ nature. The
study of the correlation functions (7), (8), and (9), in the
general chaotic case, where the mean of the complex ampl-
itude in not zero, has a physical motivation. If coherent
radiation exists in astrophysics, it could be observed as Rician
radiation. Indeed, the radiation emerging from stellar systems
is a complex combination of emission from plasma, gas, and
dust. Stellar emission lines, coherent or not, could appear
along with black-body radiation (the well-known zero-mean
chaotic field) [16, 40].

3.1. Rician chaotic field

With a steady part fbE iexp( ) in its complex amplitude the
field becomes:

w= - á ñ t A t i texp , 13Ri Ri( ) ( ) ( ) ( )

where

f= +bA t E i A texp . 14Ri Ra( ) ( ) ( ) ( )

One can show that the modulus of ARi(t) follows a Rician
probability law at each time, of parameters Eβ and E 20

2 , with
E0

2 the covariance of ARi(t) in its stable state. It is different
from the common Rayleigh field (3), whose modulus A tRa∣ ( )∣
follows a Rayleigh probability law.

A possible physical Rician field is the superposition of a
Rayleigh field emitted by our ensemble of harmonic oscilla-
tors in Brownian motion, and of coherent radiation at the
same mean frequency wá ñ. A situation that has been studied
experimentally in an astrophysical context in [16].

3.2. Methods of calculation

The calculations are done following two methods. The first
one uses a common physical approach, see [41, 42]. The
global phase j dw- tt

ℓ
t
ℓ( ) of each harmonic oscillators, is in a

very good approximation uniformly distributed over [0; 2π]
in the stable state of the motion. Thus ARi(t) can be seen as the
limit of a Pearson random walk with fixed length step [43] in
the complex plane. The calculation is done using a con-
sequence of the elastic collision mechanism of Brownian
motion [41, 44]

j j t tá - ñ = -t+iexp exp , 15t
ℓ

t
ℓ

c( ( )) ( ) ( )/

where τc is the mean waiting time between two collisions.
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The second method is the use of Isserlis’ theorem [35]
(that can be applied only to standardized normal random
variables). Both methods give the same results.

3.3. Results and beyond

We introduce the aspect ratio s between the width (within
some constants) of the amplitude distribution and its mean

bs E E , 160
2 2≔ ( )

and we will use the name ‘Rayleigh limit’ for the limit

=   +¥bE s0 , 17( )

in which the modulus of the complex amplitude distribution is
the Rayleigh distribution.

Table 1 presents the results obtained with the field (13)
and the Rayleigh limit (3). In this limit one can show that
G(3/2)(τ) is zero [39]. One can also understand it with the
circularity property of the analytic representation of a sta-
tionary zero-mean process. By definition, moments involving
a different number of conjugate terms and non-conjugate
terms are zero [45]. The denominator of g(3/2)(τ) is also zero
in the Rayleigh limit. The transition between the general case
(Rician field) and the Rayleigh limit is in agreement with one
of the experiments conducted in [16] where laser radiation
(coherent) is superimposed to a black-body radiation (chaotic
field, Rayleigh limit). We also get the expressions of g(3/2)(τ)
and g(2)(τ) in terms of g(1)(τ), and particularly the so-called
Siegert’s relation [46] for g(2)(τ). When s 0 and when
s=1, the inequalities shown in [39] between g(3/2)(0) and

g 02 ( )( ) are also verified here. The results are confirmed by
our simulation detailed in section 4.

The correlation functions contain two common factors:
the mean waiting time between two collisions tc (15) and the
coherence time of the Doppler mechanism t s=w w2 .
They form the coherence time of the radiation through the
Wiener-Khintchine theorem. The function g(3/2)(τ) depends
on the local oscillator phase θ and the mean field phase f, and
if f=θ the function tends to one when τ goes to infinity.
One can already notice the dependence of g(3/2)(τ) in tg 1∣ ( )∣( ) ,
whereas g(2)(τ) depends on the square of it.

We also consider the situation where we cannot assume
the local oscillator spectrum infinitely narrow compared to the
spectrum of the field. We describe the local oscillator with a
probabilistic wlo. We also assume a stable Gaussian dis-
tribution of mean w wá ñ ¹ á ñlo and variance sw

2
lo
, for ωlo.

A priori, the field and the local oscillator are independent. We
get:

t q f w w t

t
s

t

= - + á ñ - á ñ

´
+

+ - w

g

s

s
g

cos

1
exp

2
. 18

lo
3 2

1
2

2lo
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( ) ( ( ) )

∣ ( )∣ ( )

( )

( )

The beating term in w w tá ñ - á ñlo( ) suggests that one should
tune the local oscillator to get the same central frequency than
the field (homodyning). The term s t- wexp 22 2

lo
( ) highlights

the importance of having a local oscillator with a narrow
spectrum.

4. Monte-Carlo simulation

We perform a first principles Monte-Carlo simulation in order
to test our calculations of table 1. The challenge is to simulate
the Brownian motion and the induced fluctuations of the field.
The timescales of these two processes may be very different
depending on the mean frequency of the field and the mean
collision frequency. The modelling of the Brownian motion
via continuous Markov processes is not precise enough to
induce the proper frequency fluctuations of the field. It is
necessary to model the velocity of the harmonic oscillators in
the frame of the observer by a jump Markov process. For this
purpose we chose an elementary model from kinetic theory
that allows analytic calculation, and that reaches the Brow-
nian motion on the macro-timescale.

4.1. Kinetic model to reach the Brownian motion

We use the so-called ‘one dimensional gas’ at thermal equi-
librium from Chapter 4 in [47]. In this model each velocity
component of our harmonic oscillator is a temporally
homogeneous independent jump Markov process. The col-
lision mechanism is 3D but simplified, particles can be seen
as cubes whose faces are all parallel, and collisions can occur
only on the faces of the cubes. They can take place off-center,
but cannot engender rotations. A collision on a given face
influences the velocity in the direction perpendicular to this
face only. The velocity components a av( ) along the axes of the
cubes are independent. The collision interaction between the
harmonic oscillator and the surrounding thermalised particles,
is one-dimensional and independent of the velocity value.

Table 1. Expressions of the three first correlation functions for a Rician and a Rayleigh field. The aspect ratio s is given by (16).

Rician field Rayleigh field

g(1)(τ) t t s t
w t

+ - -
+

- á ñws

s
i

1 exp 2

1
expc

2 2( ) ( ) t t s t w t- - - á ñw iexp 2 expc
2 2( ) ( )

g(3/2) q f t-
+

+
s

s
gcos

1
1

⎛
⎝⎜

⎞
⎠⎟( ) ∣ ( )∣( ) undefined

tg 2 ( )( ) t + -
+

g
s

1
1

1
1 2

2
∣ ( )∣

( )
( ) t +g 11 2∣ ( )∣( )
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4.2. Waiting times and jump-reached velocity states
distributions

The results of the calculations are similar to those following
[47]. We start from canonical thermal equilibrium and energy
and momentum conservation, we deduce the expression of the
joint probability density of waiting times and velocity values
reached by jumps, conditioned to a velocity value at a given
time. This quantity governs where and when the velocity will
jump next, which makes the simulation algorithm rather
simple.

The result for the joint probability density of waiting
times and velocity values reached by jumps, conditioned to a
velocity value, takes the form of a product of the waiting time
distribution, and the density of velocity states conditioned to a
velocity value. Those two functions are analytic and depend
on several micro-physical parameters. First, on the reduced
mass between the mass of the harmonic oscillator m and the
mass m0 of the surrounding thermalised particles at temper-
ature T with velocity dispersion s = k T mv B 0 , where kB
is the Boltzmann constant. Then, on the parameter
h = + N 0

2( ) , homogeneous to the inverse of a length, is
formed with the particle density N and the radii ñ, of the
harmonic oscillator, and ñ0, of the particles.

4.3. Results

The Monte-Carlo simulation is seeded with the uniform ran-
dom generator from the numpy package of the python library.
The other random generators are built either by a Box-Muller
transform (for normal random variables), or with rejection or
inversion methods.

In the limit m?m0 (for us ~m m103
0) and ñ?ñ0 (for

us ~ 102
0) one can show [47] that the characterizing

functions of the process associated to a velocity component α
tend to the ones of an Ornstein-Uhlenbeck process, of
coherence time t p= m N m k T4 2v B

2
0( ). Thus, the

velocity on the timescale where it can be seen as a continuous
process, tends to the Brownian motion. The continuous
behavior is considered on a scale of several thousands of τc,
the mean waiting time between two collisions for the average
velocity modulus pá ñ =v k T m2 2 B .

The steady state of the velocity is reached after a few τv.
The stable state of the field is reached after a few
t t t= w max ,c( ), where t s=w w2 is the time constant
associated to the Doppler broadening σω. In our physical
situation the field always reaches its stable state well before
the velocity. The simulation is 3D and arbitrarily led in the
atmospheric conditions of pressure at room temperature. The
numerical precision has been set to the minimum computed
waiting time, 105 to 106 smaller than τc (for us τc∼10 ns).
The histograms of the three velocity components and of the
Doppler frequency are consistent with theory. On the kinetic
timescale the jump behavior is well represented in the velo-
city, and the phase jumps, and frequency changes appear
clearly in the field. On the macro-timescale the Ornstein-
Uhlenbeck process is reached for each velocity component.
The frequency field can be tuned to increase or decrease the
Doppler-Fizeau effect in front of the collision broadening.
The same applies to the particles density and pressure. In
order to have intensity fluctuations we simulated the 3D
motion of three hundred independent harmonic oscillators and
built the resulting field. The Rician case has been simulated
by adding a coherent background to the resulting field,
oscillating at the same mean frequency.

The obtained correlation functions are in agreement with
the calculations of table 1 independent of the value of s
(defined (16)), and when the Doppler broadening is negli-
gible, equal, or dominating in front of the collision broad-
ening. We present an example of the results in figure 1. In this
example, the field is Rician, its coherent part and its Rayleigh
part have the same weight (s= 1). It explains why g(1)(τ) does
not tend to zero when τ?0. The influence of g(1)(τ) in

Figure 1. Comparison of Monte Carlo simulations and analytic results. The thick dashed blue curves are the simulation results for the
correlation functions, the continuous orange curves are the theoretical results of table 1. In this example, the field is Rician with s=1 (i.e. the
complex amplitude of the field dispersion is equal to its mean). The Doppler effect has slightly smaller weight than the collision broadening
(τc∼2.5τω). The number of Monte-Carlo realisations is around 5×106. (a) is the field-field correlation function, (b) is the intensity-
intensity correlation function, (c) is the intensity-field correlation function with f=θ.
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g(3/2)(τ) and g(2)(τ) follows the theoretical results of table 1.
Finally the classical bound derived in [39], between g(3/2)(0)
and g2 02 ( )( ) is verified here for the case s=1.

5. Derivation of the signal to noise ratios

We compare next calculations of the signal to noise ratios
(SNR) of g(1)(τ), g(3/2)(τ), and g(2)(τ), measured by our
inertial observer, in a given duration T0, with a linear photo-
detection system limited only by shot-noise. The statistical
properties of the field are linearly coded into the statistical
properties of the photocurrent i(t) [36]. We consider only
shot-noise because it has been the main limitation in the on-
stars measurements done by our group [15]. We define shot-
noise as the standard deviation of a shot-noise process. We
derive the SNRs for two methods of measurements, each
relevant in a different intensity regimes.

5.1. Definitions

The impulse response function of the linear photo-detection
system is h(t). We consider a decaying exponential impulse
response function g g= -h t texp( ) ( ) with parameter γ. i(t)
is the photo-current, and e the charge of the photo-electrons.
The shot-noise is the autocovariance of i(t), taken at zero
delay, when i(t) is a shot-noise process. An observing dura-
tion T0 creates ns independent identically distributed values i
(t), for a mean value ná ñ =i t e( ) the shot-noise is:

d
gn

=i e
n

0
2

. 19m
s

( ) ( )

The number of samples ns is proportional to the observing
time T0. For n=1, 3/2, 2, the signal is the difference

between the observable g( n)(τ) itself minus its value at
infinite τ.

t t t-
t+¥

g g gsignal lim . 20n n n{ ( )} ≔ ( ) ( ) ( )( ) ( ) ( )

5.2. Signal to noise ratio of g(1)(τ)

The measurement of g(1)(τ) through photo-detection is done
by measuring a photo-current in the output of a Michelson
interferometer, with a tunable path difference [48]. With (20),
for both types of chaotic fields the signal is directly given by

tá ñi t g h1 *( ) { } [ ]( )Re , where the average photo-current pro-
duced by the chaotic radiation is ná ñ =i t e( ) . The noise
corresponds to the standard deviation (19) of the shot-noise
process of average density n = á ñi e. The corresponding
SNR is given in table 3. It is valid whatever the density ν. For
astrophysical applications as direct interferometry, where the
scan of τ is done manually, there is no need to take the
convolution with h(t) into account. Using (19) and g=n Ts 0 ,
we get similar dependence in ν and T0 to the ones in [49] and
[50], obtained in the SNR calculation for the spatiotemporal
correlation function r tg ,1 ( )( ) where ρ is the spatial variable.
The result for a Rician field is given in table 2.

5.3. Signal to noise ratios of gð2Þ ðτÞ and g(3/2)(τ) in the
continuous regime

For g(2)(τ) and g(3/2)(τ), unlike for g(1)(τ), the correlation is
computed by the observer and it is not directly measured from
an interference phenomenon. A first method, appropriate for
large densities ν called the continuous method, is the esti-
mation of the cross-correlation via the direct-space unbiased
cross-correlation estimator (the apodization function is a

Table 2. Signal to noise ratios for a Rician field. The parameter ν+νβ is the homogeneous density of the field. The function
= *h t h h t2 ( ) [ ]( ) is the auto-convolution of h(t). For g(3/2)(τ) and g(2)(τ), the results are expressed in term of the field-field correlation of a

Rician field given by table 1. In the upper part of the table, the results are given with precision o T1 0( ), and are valid regardless of the
density ν of the incoming radiation. In the g(1)(τ) measurement, for n g , the size ns of the sample is estimated from the observing time T0
by ns=γ T0. In the lower section of the table,the results are valid if ν = γ, and the size ns of the sample is ns=νT0. No noise is considered
on the trigger detector. The noise is the shot-noise process of the other detector.

Continuous correlation estimator
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rectangular window). This estimator converges in mean
square to tá + ñi t i t( ) ( ) when T0 goes to infinity, so it con-
verges in distribution to tá + ñi t i t( ) ( ) .

In order to evaluate the signal we use the ergodicity and
the wide-sense stationarity hypothesis to express the cross-
correlation as a convolution product, and deduce the signals
both for g(2)(τ) and g(3/2)(τ). With the form of the auto-
correlation of  tRi( ) (namely g(1)(τ)) Slutsky’s theorem [51] is
verified and the autocovariance-ergodicity hypothesis is valid
for I(t) and so for i(t).

In order to evaluate the noise, we consider the variance of
the cross-correlation estimator with i(t) being the shot noise
process. Then, because the estimator converges in distribution
to tá + ñi t i t( ) ( ) for  +¥T0 , one just has to pass to the
limit T1 00 in its variance to get the statistical noise on the
correlation function of i(t). Notice that in the case of g(3/2)(τ)
the expression of the estimator involves two different currents
it(t) and ih(t), see figure 2. Those two noise-currents are
induced by the coherent radiation of densities ν+νβ and νlo
(strong local oscillator limit). We assume that the two shot-
noise processes are independent and we assume that the
impulse response function is the same for the two currents.

The evaluation of the noise is independent of ν, and it is
done by a spectral analysis in the limit of large density
n  +¥, similarly to [4]. The Fourier decomposition that
we used is justified by the analysis of [52].

Tables 2 and 3 present the results. For g(2)(τ), we get the
same dependencies in ν and T0 than the ones obtained in [4].

In the case of g(3/2)(τ), if the measurement is done with a
Rayleigh amplitude field, and the offset is a bias coherent
field added by the observer, then the true natural field-field
correlation function g(1)(τ) given in table 1 for a Rayleigh

field, is linked to the measured g(3/2)(τ) by

t f q t= - +
+

g
s

s
gcos 1

1
, 213 2 1

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ∣ ( )∣ ( )( ) ( )

This is not the expression of table 1, for a Rician field. Here,
the expression of g(1)(τ) is for a Rayleigh field, the natural
field under study.

5.4. Signal to noise ratios of g(2)(τ) and g(3/2)(τ) in the low
intensity regime

The second method is a conditional measurement, familiar in
quantum optics, it is valid only in the regime of low densities
compared to the width γ of the impulse response function h(t).
In this case the photo-events are rare and the continuous
measurement of the previous subsection is inappropriate, the
cross-correlation is estimated with the use of conditional
probabilities.

There are two detectors, one serves as a logical trigger,
and we do not consider noise on it, the other (the balanced
‘homodyne detector’, see figure 2) serves to record a value i(t)
(continuous). We do not consider any ‘conditioning thresh-
old’. The conditional measurement is the recording of a
photo-event at time τ, knowing that there was one at time
τ=0, a so-called ‘click’. In this limit, a ‘click’ is a non-zero
value of i(t). In an ideal case, on the second detector a value i
(t) is recorded if and only if there is ¹i t 0( ) on the first one.
This method is legitimate only if the conditioning is not
deterministic, but indeed based on the intensity fluctuations of
the incoming radiation. It requires the condition ν = γ.
Indeed, in the case where ν ? γ, the ‘clicks’ are going to
happen a.s., after every duration required to acquire a value
i(t). The conditioning becomes then deterministic (because it

Figure 2. Schematic of an optical correlator to measure the intensity-field correlation function in the example of a chaotic field with a
Rayleigh amplitude. The fluctuations of the amplitude are such that G(3/2)(τ) is zero. A bias coherent field is added on a first beam splitter
(BS1) to get a Rician amplitude. BS2 sends q of the intensity to a balanced homodyne detector where a local oscillator a mixes with the field.
The resulting photocurrent ih(t) is proportional to the fluctuations of a quadrature of the field. Part of the radiation intensity (with probability

- q1( )) is directly measured on a third detector, it gives a photocurrent it(t) that triggers the correlator. The homodyne current ih(t) averages
only when the correlator is triggered.
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is periodic) and can introduce bias on the nature of the
fluctuations.

We use again the ergodicity and the wide-sense statio-
narity hypothesis to interpret the cross-correlation as a con-
volution product. We deduce the signals both for g(2)(τ) and
g(3/2)(τ). The noise is directly given by (19) with νlo in the
g(3/2)(τ) case. In the g(2)(τ) case, the noise is given by (19)
with ν for a Rayleigh amplitude, and with ν+νβ for a Rician
amplitude with a coherent part of density νβ. The results are
presented in tables 2 and 3.

5.5. Comparisons

Tables 2 and 3 synthesize the previous results for the two
methods of measurement, and for the two types of field. The
results for g(3/2)(τ) are valid in the strong local oscillator
limit, where only the local oscillator contributes to the noise
of the homodyne current ih(t). The results for the SNRs of
g(2)(τ) and g(3/2)(τ), in table 2, show a competition between
positive and negative contributions, both enhanced by the
presence of the coherent part.

6. Conclusions

We studied, for a fixed observer, the correlation functions
tg 1 ( )( ) , g(3/2)(τ), and g(2)(τ), of the field resulting from an

ensemble of harmonic oscillators in Brownian motion,
superimposed to a coherent background. We named this field
the Rician chaotic field due to the probability distribution of
its amplitude. The new results are the expressions of those
correlation functions, and they are confirmed by a Monte-
Carlo simulation based on the so-called ‘one-dimensional
gas’ model from kinetic theory. In the limit where the
coherent background vanishes, our analytic and numerical

results agree with the well-established expressions for g(1)(τ)
and g(2)(τ).

Then, we derived the signal to noise ratio for an observer
measuring the correlation functions with a linear photo-
detection system limited by shot-noise. We did it for methods
of measurement, adapted to two different intensity regimes.

The first method, named the continuous method, gives
the known dependencies for the SNRs of g(1)(τ) and g(2)(τ).
The first new results is the SNR of g(3/2)(τ). It shows the
remarkable dependence in tg 1∣ ( )∣( ) . The powers in tg 1∣ ( )∣( )

differ by one to the ones in the SNR of g(2)(τ). This opens a
possibility to get an on-star measurement of a coherence time
twice smaller.

For the second method, named the conditional method,
the new results are the SNRs of g(3/2)(τ) and g(2)(τ). The
powers in tg 1∣ ( )∣( ) differ also by one.

The implementation of a g(3/2)(τ) measurement with star
light is challenging because of the potentially ill-defined mean
frequency of the incoming radiation, and because the local
oscillator would be in reality a laser with a given spectrum.
Equation (18) shows that these limitations can considerably
reduce the signal. However, this is a first step to open a new
technique for characterizing astrophysical emission lines of
chaotic nature. The possible benefit is measuring coherence
times twice smaller than with g(2)(τ), with a different set of
technical challenges than the astronomical measurement of
g(1)(τ), and with the added benefit that it may characterize the
non-classical fluctuations of the field (squeezing).
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