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Abstract
Preparations for the anapole measurement in Fr indicate the possibility of performing a similar
measurement in a chain of Rb. The sensitivity analysis based on a single-nucleon model shows
the potential for placing strong limits on the nucleon weak interaction parameters. There are
values of the magnetic fields at much lower values than previously found that are insensitive to
first-order changes in the field. The anapole moment effect in Rb corresponds to an equivalent
electric field that is 80 times smaller than in Fr, but the stability of the isotopes and the current
performance of the dipole trap in the apparatus presented here are encouraging for pursuing
the measurement.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The constraints obtained from atomic parity non-conservation
(PNC) on the weak interaction and its manifestation both at
low energy and in hadronic environments are unique [1]. The
information it provides is complementary to that obtained with
high-energy experiments. The last 20 years have seen steady
progress in the experimental advances [2–5] together with
atomic theoretical calculations [6–10] having a precision better
than 1% [11–13].

As we prepare for a new generation of PNC experiments
with radioactive isotopes [14, 15], we continue to study
the measurement strategy and find advances both in
the understanding of the parameters and on the specific
experimental approaches that we are taking to achieve the
ultimate goal. This paper presents progress on both fronts.
We explore the possibility of measurements in Rb and Fr
in our current apparatus and show the calculated anapole
moments using current single-particle nuclear models. We
find the possible constraints in the nuclear weak interaction
parameters that such measurements can bring and present the
current performance of our atomic trap.

The general approach for the PNC experiments under
consideration is the interference between an allowed transition
and the weak interacting PNC transition [16, 17]. These
experiments are going to take place in atomic traps and will

require access to accelerators that can deliver the different
isotopes.

2. The anapole moment in atoms

We start by reviewing the basics of the anapole moment
following very closely the work we have done in planning
the experiment in Fr [15]. Parity non-conservation in atoms
appears through two types of weak interaction: nuclear spin
independent and nuclear spin dependent [18]. Nuclear spin-
dependent PNC occurs in three ways [13, 19, 20]: an electron
interacts weakly with a single-valence nucleon (nucleon
axial-vector current AnVe), the nuclear chiral current created
by weak interactions between nucleons (anapole moment)
and the combined action of the hyperfine interaction and the
spin-independent Z 0 exchange interaction from nucleon vector
currents (VnAe) [21–23].

Assuming an infinitely heavy nucleon without radiative
corrections, the Hamiltonian is [24]

H = G√
2
(κ1iγ5 − κnsd,iσn · α)δ(r), (1)

where G = 10−5 m−2
p is the Fermi constant, mp is the proton

mass, γ5 and α are Dirac matrices, σn are Pauli matrices and
κ1i and κnsd,i (nuclear spin dependent) with i = p, n for a
proton or a neutron are constants of the interaction. At tree
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level κnsd,i = κ2i , and in the standard model these constants
are given by

κ1p = 1
2 (1 − 4 sin2 θW ), κ1n = − 1

2 ,

κ2p = −κ2n = κ2 = − 1
2 (1 − 4 sin2 θW )η, (2)

with sin2 θW ∼ 0.23 the Weinberg angle and η = 1.25. κ1i

(κ2i) represents the coupling between nucleon and electron
currents when an electron (nucleon) is the axial vector.

The first term of equation (1) gives a contribution that is
independent of the nuclear spin and proportional to the weak
charge (QW ) in the approximation of the shell model with
a single-valence nucleon of unpaired spin. For the standard
model values, the weak charge is almost equal to minus the
number of neutrons N that we take to be proportional to
the number of protons Z. The second term is nuclear spin
dependent and due to the pairing of nucleons its contribution
has a weaker dependence on Z [25]:

H nsd
PNC = G√

2

KI · α

I (I + 1)
κnsdδ(r), (3)

where

K = (I + 1/2)(−1)I+1/2−l , (4)

with l being the nucleon orbital angular momentum, and
I being the nuclear spin. The terms proportional to the
anomalous magnetic moment of the nucleons and the electrons
are neglected.

The interaction constant is then

κnsd = κa − K − 1/2

K
κ2 +

I + 1

K
κQW

, (5)

where κ2 ∼ −0.05 from equation (2) is the tree level
approximation, and we have two corrections, the effective
constant of the anapole moment κa , and κQW

that is generated
by the nuclear spin-independent part of the electron nucleon
interaction together with the hyperfine interaction.

The contributions to the interaction constant can be
estimated by [20, 25, 26]

κa = 9

10
g

αμ

mpr̃0
A2/3,

κQW
= −1

3
QW

αμN

mpr̃0A
A2/3, (6)

where α is the fine-structure constant, μ and μN are the
magnetic moments of the external nucleon and of the nucleus
respectively in nuclear magnetons, r̃0 = 1.2 fm is the nucleon
radius, A = Z + N , and g gives the strength of the weak
nucleon–nucleon potential with gp ∼ 4 for protons and
0.2 < gn < 1 for neutrons [24]. For a heavy nucleus like
francium, the anapole moment contribution is the dominant
one (κa,p/κQW

= 14 and κa,p/κ2,n = 9). Rubidium is heavy
enough that the anapole moment contribution still dominates
(κa,p/κQW

= 20 and κa,p/κ2,n = 5).
Vetter et al [2] set an upper limit on the anapole moment of

thallium and Wood et al [3, 27] measured with an uncertainty
of 15% the anapole moment of 133Cs by extracting the
dependence of atomic PNC on the hyperfine levels involved.
The results form atomic PNC and other measurements in
nuclear physics have similar uncertainty, but do not completely

agree with each other [21]. It is desirable to have other atomic
PNC measurements to resolve the discrepancy. In particular,
in the method proposed the anapole moment dominates over
the spin-independent PNC contribution. The projected signal
to noise is 60 times higher than that of the Cs measurement
[15]. Measurements in ions have also been proposed [28, 29].
Following Khriplovich [24] the anapole moment is

a = −π

∫
d3rr2J(r), (7)

with J being the electromagnetic current density.
Flambaum, Khriplovich and Sushkov [20] by including

weak interactions between nucleons in their calculation of the
nuclear current density estimate the anapole moment from
equation (7) of a single-valence nucleon to be

a = 1

e

G√
2

Kj

j (j + 1)
κa = Canj, (8)

where j is the nucleon angular momentum. The calculation
is based on the shell model for the nucleus, under the
assumption of homogeneous nuclear density and a core with
zero angular momentum leaving the valence nucleon carrying
all the angular momentum. Dimitrev and Telitsin [30, 31] have
looked into many-body effects in anapole moments and find
strong compensations among many-body contributions; still
there is about a factor of 2 difference with the single-particle
result (equation (8)) [23].

We estimate with equations (6) and (8) the anapole
moments of five francium isotopes on the neutron deficient side
with approximately 1 min lifetimes and five rubidium isotopes
that lie on both sides of the stability region. Equation (8) is
still a good choice to give qualitative and quantative guideline
of the anapole moment measurement. We have studied the
Fr isotopes extensively in [32]. In even-neutron isotopes,
the unpaired valence proton generates the anapole moment,
whereas in the odd-neutron isotopes both the unpaired valence
proton and neutron participate. In the latter case, one must
add vectorially the contributions from both the proton and the
neutron to obtain the anapole moment as follows:

a = Can
p jp · I + Can

n jn · I
I2 I, (9)

with Can
i ji being the anapole moment for a single-

valence nucleon i in a shell model description as given by
equation (8), with the appropriate values of jp and jn depending
on the isotope and using gp = 4 and gn = 1. Then we can use
as an operational definition for the anapole moment constant
the following equation:

a = 1

e

G√
2

(I + 1/2)

I (I + 1)
κaI, (10)

This way of defining the anapole moment absorbs the angular
momentum constant K from equation (4) in κa .

Figure 1(a) shows the effective constant for the anapole
moment for five different isotopes of francium (triangles) and
rubidium (open squares). Fr has an unpaired πh9/2 proton
for all the isotopes considered; the odd neutron in 208,210Fr is
a νf5/2 orbit, while in 212Fr the extra neutron is on a νp1/2

orbital. There is a clear even–odd neutron number alternation
in Fr due to the pairing of neutrons. For Rb, the alternation is
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Figure 1. Anapole moment effective constant for different isotopes.
(a) Francium (triangles) and rubidium (open squares) with
gp = 4, gn = 1. (b) Sensitivity analysis for the anapole moment
effective constant for different Rb isotopes. The limits come from
varying gp and gn by 50% from the values in (a). The lines are only
to guide the eye.

no longer evident due to changes in the orbitals for the valence
nucleons. In particular the value of κa has a different sign
for the two stable isotopes of rubidium (85Rb and 87Rb). The
nucleon orbitals used for rubidium are πf5/2 for isotopes 84
and 85, πp3/2 for 86–88, νg9/2 for 84 and 86 and νf5/2 for 88
[33]. The two neutron holes in 85Rb deform the nucleus very
slightly and change the order of the proton orbitals from πp3/2

in 87Rb to πf5/2 in 85Rb. The result is that the spin and orbital
contributions to the angular momentum are anti-aligned in
85Rb and they are aligned in 87Rb. The alignment is responsible
for the sign change in κa . The authors of [34] use equation (2)
to calculate the anapole moment constant and find no sign
change between 87Rb and 85Rb. We consider even and odd
isotopes with the vector sum of equation (9). The sign change
that we get comes from the contribution of K (equation (4))
in our operational definition of the anapole moment
(equation (10)). The quantity measured experimentally, the
amplitude of the E1 PNC transition, also contains the sign
change.

Figure 1(b) presents a sensitivity analysis of the effective
anapole constant for the Rb isotopes to the change in gp =
4 and gn = 1 by 50% up and down around the values used
in figure 1(a). The range of values still preserves the basic

structure of the plot, and should allow a study of the gn/gp

ratio. There still remains the question of the sensitivity to the
configuration used for the particular nucleus. The calculation
of the anapole constant uses the orbital expected to be the
dominant one. The actual orbital may be a different one or
even a superposition of different orbitals. Using a proton
orbital πp3/2 for 86Rb changes κa from 0.45 to −0.13, while
using a proton orbital πd5/2 for 88Rb gives a smaller change
from −0.06 to 0.01. Rb is a tractable nucleus as it is around
the neutron magic number of 50. This is not the case for Cs
where the nuclear structure calculations are more complicated.

3. Constraints to weak meson–nucleon interaction
constants from anapole measurements

The anapole moment constant (κa) depends on the strength of
the weak nucleon–nucleus potential, characterized by gp for
a proton and gn for a neutron. Equation (18) of [25] gives
a relation between the weak nucleon–nucleus constants (gp

and gn) that appear in the expression for the anapole moment
(equation (6)) and the meson–nucleon parity non-conserving
interaction constants formulated by Desplanques, Donoghue
and Holstein (DDH) [35]. Evaluating the relations with the
DDH ‘best’ values for the weak meson–nucleon constants we
arrive at the following expressions:

Y = 3.61(−X + 1.77gp + 0.26), (11)

Y = 2.5(X + 2.65gn − 0.29), (12)

with X = (
fπ − 0.12h1

ρ − 0.18h1
ω

) × 107 and Y = −(
h0

ρ +
0.7h0

ω

)×107 combinations of weak meson–nucleon constants.
Figure 2 shows the expected constraints on the weak meson–
nucleon constants from an anapole moment measurement
using equations (11) and (12). The figure is analogous to
figure 8 in [21] that shows the constraints obtained from
different experiments. This figure complements the one that
appears in the review of Behr and Gwinner [1] as it adds the
rubidium numbers to the constraints obtained from the anapole
moment measurement in Cs considering only the experimental
uncertainty [3, 27] and the calculations for Fr.

The main contribution to the anapole moment in neutron-
even alkali atoms comes from the valence proton, and the
experiment provides a measurement of gp. Using equation
(11) we obtain constraints in the direction of the Cs result
of figure 2(a). The fractional experimental uncertainty in
gp is the same as the measurement one. The actual final
uncertainty for gp is considerably higher and depends on the
accuracy of the theoretical calculations [25]. A measurement
in any other neutron-even alkali atom generates constraints in
the same direction as the Cs result, with a confidence band
size proportional to the measurement uncertainty. Figure 2(a)
shows the expected constraint from a 3% measurement in a
neutron-even atom (rubidium or francium). The neutron-odd
alkali atoms have contributions from the valence neutron. The
constraints obtained (equation (12)) are not collinear to those
of Cs and generate a crossing region in figure 2. The size of the
error band depends on the relative contributions of the valence
proton and neutron to the anapole moment which depends on
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Figure 2. (a) Constraints to DDH weak meson–nucleon interaction
constants from an anapole moment measurement in Rb and Fr. The
isotopes with even number of neutrons give constraints aligned with
the 14% Cs result [3], while those with odd number of neutrons give
constraints in an different direction. Cs result (small dashed line), Fr
3% measurement (solid line) and Rb 3% measurement (long dashed
line). (b) Sensitivity analysis to the changes in the values of gn, gp

by 50%. The error bars mark the 3% limits given a set of values.
The colour lines follow iso-gn and iso-gp .

the atom. All the calculations assume gp = 4 and gn = 1.
Figure 2(b) shows constraints obtained from measurements in
rubidium if the values of gn and gp vary. The precise crossing
region changes, as well as the constrained area (set in the
figure by the error bars). This result shows in a different way
the robustness of the proposed measurement. It may be able to
give us more than just the DDH coupling constant constraints,
but some information of the ratio of gn/gp.

4. Experimental requirements

This section presents the experimental requirements to
measure the anapole moment in chains of Rb and Fr isotopes.
Most of the details are in [15], but here we focus on the
differences for Rb and new ways in which we have to
perform the measurement. The measurement relies on driving
an anapole-allowed electric dipole (E1) transition between
hyperfine levels of the ground state. The transition probability

is very small and is enhanced by interfering it with an allowed
Raman (or magnetic dipole (M1)) transition. The excitation is
coherent and allows for long interaction times. The signal-to-
noise ratio is linear with time (up to the coherence time). We
report on the progress towards an anapole measurement and
the possibility of making the measurement in rubidium.

4.1. Source of atoms

The work with radioactive atoms requires on-line trapping
with an accelerator to have access to reasonably short-lifetime
isotopes. We take the numbers for the production of unstable
isotopes from what is available at TRIUMF in the isotope
separator and accelerator (ISAC), where we are an approved
experiment. A 500 MeV proton beam collides with an uranium
carbide target to produce francium as fission fragments. A
voltage up to 60 kV extracts the atoms as ions from the
target. The beam goes through a mass separator and into the
trapping area. The yield is up to 2 × 1011 s−1 for Rb, and 2 ×
106 s−1 for Fr, but it is expected to reach 108–109 for Fr once
the accelerator runs at full capacity.

Our current apparatus to go on-line with the accelerator
has a vacuum chamber to capture atoms in a high-efficiency
magneto-optical trap (MOT) operating in batch mode with a
neutralizer, as described in [36]. A second science chamber,
with controlled electric and magnetic environments for the
PNC experiments, connects with the first through differential
pumping. Tests for the transfer of atoms (Rb) between the
two show efficiencies above 50% that allows accumulation of
atoms for a longer time.

4.2. Measurement

The anapole moment constant scales with the atomic mass
number as A2/3 (equation (6)). The anapole-induced electric
dipole (E1) transition amplitude scales faster due to additional
enhancement factors [15]. It is about 83 times larger in Fr
than in Rb. The magnetic dipole (M1) transition amplitude
between hyperfine levels, on the other hand, has about the
same value for both species. The M1 transition gives the main
systematic error contribution, and the figure of merit is the ratio
of the two transition amplitudes |AE1/AM1| ∼ 1 × 10−9 for
francium and |AE1/AM1| ∼ 1 × 10−11 for rubidium. In order
to do a measurement in rubidium it becomes more important
to understand and suppress the M1 contribution.

The experiment starts by optical pumping all the atoms
to a particular level |F1,m1〉. The atoms interact with two
transitions for a fixed time. One corresponds to a Raman
transition (parity conserving) and the other to the anapole-
induced electric dipole (E1) transition (parity violating).
Both are resonant with the ground-state hyperfine transition
|F1,m1〉 → |F2,m2〉 in the presence of a static magnetic
field. This triad of vectors defines the coordinate axis. The
interference of both transitions gives a signal linear in the
anapole moment [15]. The field driving the E1 transition is
inside a microwave Fabry–Perot cavity. The signal to measure
is the population in |F2,m2〉 at the end of the interaction with
a given handedness of the system.

4
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Table 1. Operating point for the magnetic field (B0), resonant
frequency (νm) and Zeeman sublevels (m1, m2) for the transition.

Atom Isotope Spin m1 m2 B0 (G) νm (Mhz)

Rb 84 2 −0.5 0.5 0.2 3 084
85 5/2 0 −1 186.1 2 992
86 2 0.5 −0.5 0.3 3 947
87 3/2 0 −1 654.2 6 602
88 2 0.5 −0.5 0.03 1 191

Fr 208 7 0.5 −0.5 3.3 49 880
210 6 0.5 −0.5 3.4 46 768
212 5 0.5 −0.5 4.5 49 853

The specific magnetic field and transition levels reduce
the sensitivity to fluctuations. There is an operating point
where the transition frequency varies quadratically with the
magnetic field for a |m| = 1 transition. The operating field
grows with the hyperfine separation and it is larger in Fr than
in Rb. Table 1 shows the magnetic field for different isotopes
of Fr and Rb. The transition m1 = 0.5 → m2 = −0.5
in odd neutron isotopes has a small magnetic field. The
electronic contribution to the linear Zeeman effect cancels
for the two levels at low magnetic fields, but the nuclear
magnetic contribution remains since the two states belong to
different hyperfine levels. The magnetic field for odd neutron
Fr isotopes is smaller than previously reported (∼2000 G)
[15].

The dimensions of the microwave cavity scale with the
wavelength of the transition (λm ∼ 6 mm for Fr and λm ∼ 6 cm
for Rb). The mirror separation of the Fabry–Perot cavity
should be at least 20 cm for Rb. The anapole signal remains
unchanged between Fr and Rb by putting more power in the
microwave cavity to compensate for the loss in the nuclear
size.

We hold the atoms in place for the measurement using
a far-off resonance trap (FORT) [37]. Changes in the FORT
wavelength allow its use for both rubidium and francium. The
dipole trap causes an ac Stark shift that is different for the two
hyperfine levels. The differential shift causes a change of the
resonant frequency and eventually leads to decoherence. The
Stark shift in a FORT is in the same direction for both hyperfine
levels but of different size due to the different detuning.
The differential shift is proportional to the hyperfine splitting,
and it is reduced by an order of magnitude in rubidium.

The measurement in both species depends on the
effectiveness of the suppression mechanisms [15]. The first
suppression mechanism works by having the atoms in the
magnetic field node (electric field antinode). The reduction
depends on the magnitude of the field at the edges of the
atomic cloud. Since the wavelength increases by an order
of magnitude in rubidium, the suppression improves by the
same amount. The second suppression mechanism works by
forcing the M1 transition to have the wrong polarization for
the levels considered. It remains unchanged in rubidium.
The atoms oscillate around the magnetic field node for the
third suppression mechanism. The suppression is proportional
to the M1 field, and since it gets reduced because of the
better positioning in the node, we can gain an order of

magnitude (assuming no increase in the driving field power).
The suppression mechanisms work better in rubidium than
in francium by two orders of magnitude because of better
positioning of the magnetic field node. The improvement
compensates the two orders of magnitude loss in the figure of
merit (|AE1/AM1|).

We compare the requirements in rubidium to those
established in table 3 of [15] for francium. We assume
an increase in the microwave power to keep the same E1
transition amplitude. The magnetic field stability is still about
10−5 but since now the magnetic field is smaller this means that
the field has to be controlled to about 10 μG. The requirements
on all the systematic effects that depend on the M1 transition
produced by the microwave cavity increase by two orders of
magnitude. This is because by increasing the microwave field
we increase the E1 and M1 transition amplitude by the same
amount. The systematic effects introduced by the dipole trap
or Raman beams remain the same.

5. Optical dipole trap

We report on the experimental implementation of the optical
dipole trap in the science chamber. The dipole trap design aims
to decrease the photon scattering and differential ac Stark shift
introduced by the laser forming the trap [38, 39]. We use a
FORT to reduce the photon scattering rate. The ac Stark shift
depends on the position in the trap and the atomic state. The
shift changes with time as the atoms move in the trap. We
choose a blue-detuned trap where the atoms are confined on
the dark region of the trap.

We use a rotating dipole trap because we can control
the shape and size dynamically. A laser rotating faster than
the motion of the atoms creates a time-averaged potential
equivalent to a hollow beam potential [40]. The laser beam
propagating in the z direction goes through two acousto-
optical modulators (AOMs) placed back-to-back in the x and
y directions respectively. We use the beam that corresponds
to the first diffraction order in both directions, the (1,1) mode.
We scan the modulation frequency of both AOMs with two
phase-locked function generators (Stanford Research SR345)
to generate different hollow beam shapes.

The general expression of the time-averaged potential
U(ρ, z) in the radial direction for linearly polarized light and
a detuning larger than the hyperfine structure splitting, but
smaller than the fine structure splitting is [41]

U(ρ, z) = h̄γ

24IS

[
1

δ1/2
+

2

δ3/2

] ∮
ρ ′∈lI (ρ − ρ ′, z) dl∮

dl
(13)

where γ is the natural linewidth, IS is the saturation intensity
defined as IS = 2π2h̄cγ /(3λ3) and I (ρ, z) is the Gaussian
beam intensity at position (ρ, z). The integral over the contour
of the rotating laser beam l gives the time-averaged potential.
The detunings δ1/2 and δ3/2 are in units of γ .

Tightly focusing the laser at the position of the atoms
confines them along the beam axis. Figure 3 shows the shape
of the potential both along the radial and axial directions for a
circular trap.
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We study the lifetime and spin relaxation rate of such
a circular trap with a beam of 400 mW and blue detuned
2.5 nm from the 87Rb D2 line. The spin relaxation is critical
for the anapole measurement. The beam rotating frequency is

(g)

(b)(a)

Figure 5. Fluorescence image of the atoms 35 ms after turning off
the magnetic field and MOT beams. (a) Rotating dipole trap. (b)
Rotating dipole trap and 1D blue-detuned standing wave. Gravity
(g) goes into the plane of the page in the figure.
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Figure 6. Intensity profile of the diffracted light showing a few
oscillation periods that generate the trap with (solid line) and
without (dashed line) feedforward on the RF power to the AOMs.

50 kHz, which is much faster than the oscillation frequency
of the trap (� 1 kHz). The trap has a transverse diameter of
250 μm, an axial diameter of 24 mm and a potential depth
of 40 μK (normalized potential value of 0.4 in figure 3). We
measure the atom number in the dipole trap after a pre-set hold
time by shinning a 100 μs long resonant pulse and imaging
the fluorescence into a photomultiplier tube (figure 4(a)). We
image the fluorescence from a region of radius of 2 mm. We
see a rapid decay during the first 100 ms from fast atoms that
cannot be confined in the radial direction. The rapid decay is
followed by a slower decay (2.5 s lifetime). The slow decay
is shorter than the MOT lifetime (30 s) and corresponds to the
continuous diffusion of the atoms out of the imaging region.
This is supported by the calculation shown in figure 4(a) that
gives the remaining number of atoms in the imaging area
using the expected temperature of the atoms. We follow the
method of [42] to measure the spin relaxation rate. We load
the atoms from a magneto-optical trap (MOT) to the dipole
trap, turn off the magnetic field and MOT beams and pump the
atoms to the F = 1 ground state. We get the relaxation rate
due to the interaction of the atoms with the dipole trap laser
by comparing the populations of the atoms in both hyperfine
levels as a function of time. Figure 4(b) shows the fraction
of atoms in the F = 2 ground state as a function of time.
An exponential fit to the data gives a spin relaxation time of
840 ms, similar to previous measurements [42]. This is a first
step towards the 20 ms coherent interaction of the proposed
data taking cycle in [15].

We reduce the diffusion of the atoms in the axial direction
by adding a one-dimensional (1D) blue detuned standing wave
with a frequency different from the one used for the rotating
trap. The combination of tight radial confinement from the
rotating trap and confinement in the axial direction from the
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standing wave gives a higher density dipole trap (figure 5). It
also opens the possibility of studying the motion of atoms in
2D billiards with arbitrary transverse shape [43].

The symmetry of the trap is an important point for the
anapole moment measurement. As we scan the beam, there
will be diffraction power changes on the AOMs. This has been
pointed out in the study with Bose–Einstein condensates where
the uniformity is required to avoid parametric excitation [44].
We feedforward on the RF power to reduce the diffraction
variations [45]. Figure 6 shows the increased stability in the
diffraction power as we rotate the beams using this method.

6. Conclusions

The measurement of the anapole moment in a chain of isotopes
can constraint the values of the DDH weak meson–nucleon
interaction constants. The measurement of the anapole
moment is possible in any of the heavy alkali atoms (rubidium,
cesium or francium) but it becomes increasingly difficult with
decreasing atomic number. The anapole moment for the two
Rb naturally available isotopes has the opposite sign which
can be useful for the study of systematic effects. Neutron-
odd isotopes have transitions insensitive to magnetic field
fluctuations at small static values of the magnetic field. We
have a working rotating blue-detuned dipole trap necessary
to hold the atoms for the duration of the anapole moment
measurement. The trap shows a spin relaxation time of 840
ms. The dipole trap will be used in future measurements in
both francium and rubidium.
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