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Abstract: We investigate steady state entanglement in an open quantum
system, specifically a single atom in a driven optical cavitywith cavity
loss and spontaneous emission. The system reaches a steady pure state
when driven very weakly. Under these conditions, there is anoptimal
value for atom-field coupling to maximize entanglement, as larger coupling
favors a loss port due to the cavity enhanced spontaneous emission. We
address ways to implement measurements of entanglement witnesses
and find that normalized cross-correlation functions are indicators of the
entanglement in the system. The magnitude of the equal time intensity-field
cross correlation between the transmitted field of the cavity and the fluo-
rescence intensity is proportional to the concurrence for weak driving fields.
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1. Introduction

The study of entanglement has emerged as a central theme of quantum physics in recent years.
It is driven both by fundamental questions and by the increasing interest in applications that
go beyond the limit of classical physics. Entanglement as a measurable quantity is a compli-
cated subject, in particular when the systems have multiplecomponents. Here we choose to
study entanglement and its possible avenues of quantification in an open quantum system. This
system, the canonical model of cavity QED [1], has a single atom coupled to the mode of an
optical cavity with two reservoirs or avenues for extracting information: spontaneous emission
and losses from the cavity.

Two particles (or systems),A andB are said to be in an entangled state if the wave function of
the complete system does not factorize, that is|AB〉 6= |A〉|B〉. One consequence of this form of
the wavefunction is that a measurement on systemA yields information about systemB without
any direct interaction with systemB. For systems with the same dimension, in particular, a
(pure) state is said to be maximally entangled if tracing over one of the two systems, sayA,
leaves the other one in a totally mixed state; this means thatone can gain complete knowledge of
systemB by performing measurements onA only. An example that is of relevance to this work
is the maximally entangled state of an atom and a field mode,|Ψ〉 = (1/

√
2)(|1,g〉+ |0,e〉)

with the first index denoting the number of photons in the fieldmode and the second (e =
excited,g = ground) denoting the state of the atom. A measurement of the state ofthe atom
immediately tells us the number of photons in the field mode; or a measurement of the photon
number immediately tells us the state of the atom.

The von Neumann entropyE = −trA(ρAlog2ρA) of the reduced density matrix of systemA,
ρA = trB(ρAB) [2] quantifies the amount of entanglement in a given bipartite quantum system
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Fig. 1. Single atom in a weakly driven optical cavity. Here g is the reversiblecoupling rate
between the mode of the cavity and the atom,κ is the decay rate of the field mode of the
cavity, γ is the spontaneous emission rate.ε is the external drive (taken to be a classical
field).

in a pure state. For mixed states, on the other hand, althoughit is easy enough to define what
is meant by a totally unentangled state—namely, one in which it is possible to represent the
density operator as an incoherent superposition of factorizable states—quantifying the amount
of entanglement in a partially entangled state is not, in general, simple. The natural general-
ization of the pure-state measure indicated above, known asthe entanglement of formation,
utilizes a decomposition of the quantum stateρ = ∑ j Pj|ψ j〉〈ψ j| = ∑ j Pjρ j, and then defines
E = min(∑ j PjE j) whereE j is the von Neumann entropy for the density matrixρ j = |ψ j〉〈ψ j|,
and the minimum is taken over all the possible decompositions, which is in general a very chal-
lenging task [2, 3]. As a result of this, alternative measures have been proposed, such as the
logarithmic negativity [4]. It is also possible that some particular measurement scheme may re-
sult in a most natural unraveling of the density operator, inthe sense of the quantum trajectories
approach [5] (especially for systems that are continually monitored), and in that case it may
be physically meaningful to focus only on the entanglement of the (conditionally pure) states
obtained via that particular unraveling.

One of the main purposes of this paper is to determine how muchinformation about the
atom-field entanglement in our canonical cavity QED system can be gleaned from the kinds
of measurements represented by the traditional correlation functions of quantum optics. As we
shall show below, we are actually able to avoid the difficulties for mixed-state entanglement
because, in the limit we are interested in, our system is, to agood approximation, in a pure
state, in spite of its being an open system interacting with two reservoirs.

2. Cavity QED system

Fig. 1 shows a two level atom in a driven optical cavity. We consider a single-ended cavity,
with the intracavity field decaying via the output mirror at rateκ. The two-level atom has a
spontaneous emission rate to modes out the sides of the cavity denoted byγ, which is generally
less than the free space EinsteinA coefficient. The resonant coupling between the atom and
the field mode is given byg = µeg

√

ω/2h̄ε0V with µeg the electric dipole matrix element,ω
the transition frequency andV the volume of the cavity mode. The driving field is taken to be
a large classical fieldε incident on the input mirror, with small transmissionTin, so that the
incident flux (in photon units) inside the cavity is proportional toTinε2

The quantum trajectory wave function that characterizes the system under a non-Hermitian
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Hamiltonian is:

|ψc(t)〉 =
∞

∑
n

(

Cg,n(t)e
−iEg,nt |g,n〉 +Ce,n(t)e

−iEe,nt |e,n〉
)

(1)

H = h̄g (a†σ− +aσ+)− iκa†a− i
γ
2

σ+σ− + ih̄ε(a†−a) (2)

with collapse operators

A =
√

κa (3)

S =

√

γ
2

σ−. (4)

associated with photons exiting the output mirror and spontaneous emission out the side of the
cavity. The indicese(g) indicate the atom in the excited (ground) state, whilen is the number of
photons in the mode. The energies areEe,n = Eg,n+1 = h̄ω(n+1/2). We have the usual creation
(a†) and annihilation (a) operators for the field, and Pauli raising and lowering operatorsσ± for
the atom.

In the weak driving limit, the system reaches a steady-statewave function:

|Ψ〉 = |0g〉+A1,g|1g〉+A0,e|0e〉+A2,g|2g〉+A1,e|1e〉 (5)

where theAi j are known [6, 7]. They are

A1,g = α (6)

A0,e = β (7)

A1,e = αβq (8)

A2,g = α2pq/
√

2. (9)

The quantitiesp andq would be 1 for coupled harmonic oscillators. In cavity QED they differ
from unity due to the non-harmonic, or saturable, nature of the atom. The squares of coefficients
of single excitationA1,g, A0,e give the rates of detection of single photons through the output
mirror or in fluorescence (steady state), while the squares of the double excitation coefficients
A1,e, A2,g give the rates of detection of two photons either in coincidence (one through the
mirror, and one in fluorescence) or both out of the mirror. Thevariables are

α =
ε

κ(1+2C1)
(10)

β =
−2g

γ
α (11)

p = 1−2C′
1 (12)

q =
(1+2C1)

(1+2C1−2C
′
1)

(13)

C1 =
g2

κγ
(14)

C
′
1 = C1

2κ
(2κ + γ)

(15)

The one-excitation amplitudesA1,g andA0,e are proportional to the driving fieldε; the two-
excitation amplitudesA2,g, andA1,e are proportional to the square of the driving field,ε2. [6].
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The norm of this wave function is||Ψ〉| =
√

1+O(ε2); hence to lowest order inε, the coef-
ficient of the vacuum should be(1− (1/2)O(ε2)). The termO(ε2) makes no contribution to
lowest nonzero order inε for the correlation functions or entanglement measures considered
here.

The entanglement of formation for this system is calculatedfrom the density matrix after
tracing over the field variables:

ρatom = Tr f ield |Ψ〉〈Ψ| (16)

=

(

1+A2
1,g +A2

2,g A1,eA1,g +A0,e

A1,eA1,g +A0,e A2
1,e +A2

0,e

)

(17)

The eigenvalues of this matrix are, to lowest nonvanishing order,

λ1 = (A1,gA0,e −A1,e)
2

= |A1,g|2|A0,e|2(q−1)2

=
( ε

κ

)4
ξ 2 (18)

λ2 = 1− (A1,gA0,e −A1,e)
2

= 1−
( ε

κ

)4
ξ 2 (19)

(20)

whereq is defined in Eq. (13), and we have defined

ξ =
2g

γ(1+2C1)2 (q−1) (21)

The entropyE = −λ1 log2 λ1−λ2 log2 λ2 is then (again to lowest leading order)

E = −
( ε

κ

)4
ξ 2 log2

[

( ε
κ

)4
ξ 2

]

−
(

1−
( ε

κ

)4
ξ 2

)

log2

[

1−
( ε

κ

)4
ξ 2

]

≈ −
( ε

κ

)4
ξ 2

(

log2

[

( ε
κ

)4
]

+ log2

[

ξ 2]−1

)

≈ −
( ε

κ

)4
log2

[

( ε
κ

)4
]

ξ 2. (22)

where we have taken the weak field limit,ε being the smallest rate in the problem, soε/κ ≪ 1.
The approximation (22) will hold provided(ε/κ)2 ≪ |ξ |.

This entropy is the same as that obtained by using the densitymatrix for the field alone,
traced over the atomic degrees of freedon.

The concurrence, first introduced by Wooters for two qubits[3], can also be used to charac-
terize entanglement between two quantum systems of arbitrary dimension [8, 9, 10, 11]. The
concurrence for our system is

C =
√

2(1−Trρ2
atom)

=

√

4(A1,gA0,e −A1,e)
2

= 2
( ε

κ

)2
|ξ | (23)
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To see why|ξ | ∝ |A1,e −A0,eA1,g| may be a good indication of entanglement, consider what
happens if the wavefunction is a product state. We could write

|Ψ〉P = |ψF〉⊗ |φA〉
= (D0|0〉+D1|1〉+D2|2〉)⊗ (Cg|g〉+Ce|e〉)
= D0Cg|0g〉+D1Cg|1g〉+D0Ce|0e〉+D2Cg|2g〉+D1Ce|1e〉 (24)

For weak excitations, the coefficient of the ground state of the system isD0Cg = 1, or Cg =
D0 = 1. Then the product state is

|Ψ〉P = |0g〉+D1|1g〉+Ce|0e〉+D2|2g〉+D1Ce|1e〉 (25)

Just knowing the one excitation amplitudes does not yield any information about entanglement,
as it is possible to haveA1,g = D1 andA0,e = Ce. A2,g gives no information about entanglement,
just nonclassical effects in the field, as it only involves field excitation. For weak fieldsD2 is
exactly A2,g. The entanglement shows up in the value ofA1,e; if this value does not satisfy
A1,e = D1Ce = A0,eA1,g, then it is not possible to write the state as a product state.

In the presence of a non-zero vacuum contribution (as any real quantum state will have), one
can learn nothing about entanglement simply by measurementof one-excitation amplitudes
or probabilities. For example, the state|0,g〉+ α(|1,g〉+ |0,e〉) is entangled, but only if one
is certain that the probability amplitudes for higher excitation are truly zero. A state of the
form |0,g〉+ α(|1,g〉+ |0,e〉)+ O(ε2) cannot be said to be entangled without information on
the relative size of the probability amplitudeA1,e. Measurement of one-excitation amplitudes
conditioned by a previous measurementcan yield information about entanglement. This can be
accomplished by utilizing cross-correlation functions. Afirst important conclusion out of this
study is that a measure of the zero time cross correlation between the atom and the field, as
well as the mean transmitted and fluorescent intensities yields a measure of entanglement in the
weak field limit.

3. Entanglement for weak excitation

Equation (22) of the previous section gives the amount of entanglement in the system as a
function of the one and two excitation amplitudes. In terms of specific system parameters the
concurrence is:

C = |2αβ (q−1)| = 16g3 ε2 κ
(2g2 + γ κ)2 (2g2 +κ (γ +2κ))

. (26)

This section analyzes the sensitivity of the concurrence tothe different parameters that ap-
pear in Eq. (26), while trying to give physical reasons for their influence on the entanglement.
Despite the fact that the rates of decay could be the same through the two reservoirs, sponta-
neous emission (γ) reduces entanglement more than cavity loss (κ). This is due to the fact that
a γ event (spontaneous emission)must come from the atom, while aκ event (cavity transmis-
sion) could come from either the drive or a photon emitted by the atoms into the cavity mode. A
spontaneous emission event unambiguously leaves the atom in the ground state, and the system
wavefunction factorizes.

Fig. 2 shows a remarkable result in the entanglement of the system as a function of the three
rates in the problem. There is an optimal value for the coupling constantg given a set of dissipa-
tion ratesκ,γ. For many interesting cavity QED effects, stronger coupling is generally better,
such as the enhancement of the spontaneous emission by a factor of 1+ 2C1 = 1+ 2g2/κγ
(this formula strictly holds only in the bad cavity limitκ >> g, γ). However, here increasing
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Fig. 2. A plot ofC scaled by(ε/γ)2 as a function ofκ/γ andg/γ for weak excitation.

the coupling of the atom and field mode eventually decreases the amount of entanglement. To
explain this it is instructive to recall that the concurrence C = |2αβ (q− 1)|, whereα is the
mean cavity field, andβ = −gα/γ is the mean atomic dipole. As the couplingg increases, for
a fixed weak driving fieldε, the intracavity fieldα = ε/(κ + 2g2/γ) decreases. The intracav-
ity field is the sum of the driving field in the cavityε/κ , and the field radiated by the atom,
(−2C1/(1+2C1))ε/κ, the minus sign resulting from the fact that the radiated field is π out of
phase with the driving field on resonance. We see that asg andC1 increase, the intracavity field
decreases. This means that the steady-state wavefunction has a larger vacuum component, and
consequently less entanglement. Another way to view this isthat the cavity enhancement of
the spontaneous emission rate means a larger loss rate for the system as the coupling increases,
which is bad for entanglement.

More formally, consider what happens if the two-excitationamplitudes in Eq. (5) are arbi-
trarily set to zero, which amounts to settingq = 0 in Eq. (26), in which case the entanglement
is only determined by the prefactor|αβ |. The steady-state wave function becomes

|ψ〉ss = |0g〉+α(|1g〉− g
γ
|0e〉). (27)

There are two interesting limits on this Eq. (27) for the parameter f = g/γ. If f ≫ 1, the
steady state wavefunction is approximately|ψ〉ss = |0〉(|g〉− f α|e〉) which is a product state.
Also, if f ≪ 1, the steady state wavefunction is approximately|ψ〉ss = |g〉(|0〉+ α|1〉) which
again is a product state. To have entanglement between the atom and cavity mode, we must
have the parameterf ≃ 1, so as to prepare a steady state wavefunction of the form|ψ〉ss =
|0g〉+ α(|1g〉 − |0e〉) = |0g〉+ α|−〉, a mixture of the vacuum with a small entangled state
component.

The decrease of the prefactor|αβ | is the dominant reason why the concurrence decreases
with increasingg for large coupling. Close inspection of Fig. 2 also shows that there is an
optimal cavity loss rateκ for entanglement for a fixedg andγ. This is a result of reaching a
maximum in the population of the states different from the vacuum (Eq. (5)). Our results here
are consistent with the numerical results of Nha and Carmichael [5].

When the system is driven off resonance, its response is typically characterized by transmis-
sion and fluorescent spectra [12, 13]. Although these are important probes of the system, they
do not, in this limit, carry information about the entanglement, since they are derived from only
the one-excitation amplitudes.
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Fig. 3. Contour plot ofC as a function ofg/γ and∆/γ for κ/γ = 0.5

The concurrence as a function of the detuning of the driving laser shows that the steady state
entanglement decreases typically by a factor of 1/∆3 for large detuning, where∆ = (ω −ωl)
with ω the resonant frequency of the atom and cavity, andωl the frequency of the driving probe
laser. But in the case whereg is larger thanκ andγ, the response is maximized at the vacuum-
Rabi peaks [14]. Figure 3 shows a contour plot ofC for parameters in the regime of cavity QED
where the two decay rates are similar: 2κ/γ = 1.0. The concurrence increases with increasing
g on resonance up to a saddle point, and then decreases. However the entanglement persists for
detunings on the order ofg, the approximate location of the vacuum-Rabi peaks in the spectra
of the system.

Detuning to a vacuum-Rabi peak (∆ = ±g), generates a steady state wave function of the
form

|ψ〉ss = |0,g〉+αΓ1(g/γ)|1,±〉+α2Γ2(g/γ)|2,±〉, (28)

where|n,±〉 = (1/
√

2)(|n,g〉± |n−1,e〉) is then photon dressed atom-field state one is tuned
near andΓ1(g/γ) andΓ2(g/γ) are functions that are maximal wheng ≃ γ. This is a state of
mainly vacuum, plus a part that has entanglement between theatom and the cavity. It would
seem that by continuing to tune to a vacuum-Rabi peak asg increases, it would be possible
to maintain the entanglement, but Fig. 3 shows that this is not the case. Rather, as argued
(for the on-resonance case) above, the crucial parameter for maximizing entanglement isf =
g/γ ∝ 1/

√
nsat , wherensat = γ2/8g2 is the saturation photon number. This is the dependence on

the nonlinearity of the atomic system. Recall that, if thesewere two driven coupled harmonic
oscillators,q = 1 and there would be no entanglement. A nonlinear interaction between the
two harmonic oscillators would be needed to entangle them, as in the signal and idler modes in
optical parametric oscillation. This nonlinear interaction would generate two-mode squeezing,
which could be measured by homodyne detection of mode A(B) conditioned on detection of a
photon in mode B(A), just as squeezing in one mode can be detected via conditioned homodyne
detection of a mode based on a photodetection from that mode[15, 16]. The nonlinearity of the
two-level atom is needed to generate two-mode squeezing andentanglement between the atom
and the cavity field. Even though the driving field is weak and the atom never nears saturation,
there can only be entanglement with a linear atom-field coupling if the atom has a nonlinear
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Fig. 4. Contour plot ofC as a function ofg/γ and∆/γ for κ/γ = 10

response, as two-level atoms do.
The concurrence shows its sensitivity to different parameters. Fig. 4 shows a contour plot

of C versusg/γ and∆/γ for a case where the cavity decay rate is larger than the spontaneous
emission rate (κ/γ = 10.0). The entanglement is largest nearg/γ = 4.0, before the vacuum-
Rabi splitting of the spectrum, which does not occur in this case untilg/γ ∼ 10.0, at which point
the entanglement is already diminishing. The size of the maximum concurrence decreases by
increasingκ/γ from 0.5 to 10.0 by a factor of about 30.

4. Measurements of entanglement with correlation functions

The calculation of entanglement leads now to the question ofhow to implement measurements
that give the full information in the case of this cavity QED system under weak excitation. The
previous section shows that the concurrence is related to the rate of single photon counts out
of the cavity or in fluorescence and to the rate of coincident counts from the cavity and fluo-
rescence. These are the quantities associated in quantum optics with correlation functions, first
introduced by Glauber [17, 18, 19, 20]. Generally these correlation functions involve compar-
ing a field (intensity) of one mode with the field (intensity) of the same mode at a later time
(or different spatial location), with some exceptions [21,22, 23, 24, 25, 26]. However, entan-
glement in cavity QED has two components: atom and cavity mode. It is natural to look at
cross correlations between the cavity mode and the fluorescent light that falls in the mode of
the detector.

Consider a general cross-correlation function for two-modes of the electromagnetic field:

G = 〈 f1(b
†,b) f2(a

†,a)〉/〈 f1(b
†,b)〉〈 f2(a

†,a)〉. (29)

with f1 and f2 well behaved functions, in the sense of a convergent Taylor series on the Hilbert
space of interest. If|ψ〉 is a product state, the correlation functionG(a,b) factorizes and then
is unity. If it is not a product state, then this will manifest itself in a non-unitvalue for the
normalized cross-correlation functions.

The simplest cross correlation function to consider isg(1)
T F(0). This could be obtained by
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measuring the visibility of the fringe pattern formed by interfering the transmitted and fluores-
cent light. For the weakly driven cavity-QED system, this is

g(1)
T F(0) =

〈σ+a〉
〈σ+〉〈a〉

=
αβ
αβ

= 1 (30)

so to lowest order, there is no information in this correlation function about entanglement.
To obtain information about entanglement the correlation function has to probe the two-

excitation part of the state. A possibility to do this is the intensity cross correlation:

g(2)
T F(0) =

〈σ+a†aσ−〉
〈a†a〉〈σ+σ−〉

=
|A1e|2

|A1gA0e|2

= q2 (31)

This normalized correlation function is directly related to the coefficient of double excitations

(See Eqs. (5), (8), (13)). Ifq = 1 theng(2)
T F(0) = 1 and there is no entanglement; so a non-unit

value ofq indicates entanglement. Using second-order intensity correlations has been proposed
in the context of entangled coherent states by Stobińska and Ẃodkiewicz [27].

The cross correlation functiong(2)
T F(0) contains information about the average photon number

in coincidence with a measurement of the fluorescence relative to the average photon number

in the absence of any interrogation of the fluorescence.g(2)
T F(0)−1 = q2−1 is an indicator of

entanglement.
A way to measureq directly utilizes a field-intensity correlation functionhθ (τ) [28], that

can be implemented as a homodyne measurement conditioned onthe detection of a fluorescent
photon,

hT F
θ=0(0) =

〈IF ET 〉
〈IF〉〈ET 〉

=
〈(a† +a)σ+σ−〉
〈a† +a〉〈σ+σ−〉

=
A1,e

A0,eA1,g

= q (32)

SohT F
θ=0(0)−1 = q−1 is also an indicator of entanglement in this system. What makes this

measurement possible experimentally is the conditioning that selects only times when there is
a fluctuation and the rest of the time (when the vacuum is present) no data is collected [16].
For one mode, the homodyned transmitted field conditioned bydetection of a photon from
that mode, is a measure of squeezing in that mode [28]. A homodyne measurement of the
transmitted field conditioned by detection of a fluorescent photon is a measure of the two-
mode squeezing, with the cavity field and atomic dipole as thetwo components. Generally,
two-mode squeezing is an indicator of entanglement betweenthe two modes. Gea Banacloche
et al. explored this correlation function in a different regime ofcavity QED and found it to be
a witness of the dynamics of entanglement [29].
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Non-classicality and entanglement are not necessarily simultaneously present. For example
for two oscillators one could have|ψ〉 = (1/

√
2)(|A,B〉+ |B,A〉), whereA andB are coherent

state amplitudes. In this state, there is entanglement, buteach individual mode shows no non-
classical behavior. Conversely, one can have non-classical behavior with no entanglement, say
for example the atom in the ground state and the field in a squeezed coherent state.

There is a particular form of the Schwartz inequality that must be satisfied for a classical
field for the specific case of the system we are considering here:

(g(2)
T F(0)−1)2 ≤ |(g(2)

T T (0)−1)(g(2)
FF(0)−1)|, (33)

HereT T andFF denote zero delay intensity correlations for the transmitted and fluorescent

fields respectively. In the one-atom limit,g(2)
FF(0) = 0, andg(2)

T T (0) = q2p2, so this inequality be-
comes|q2−1|2 ≤ |q2p2−1| which depends onq, but also on the parameterp (Eq. (12)), which
can be varied independently. There is no one-to-one relationship between Schwarz inequality
violations and entanglement (by this measure) in this particular system.

5. Conclusion

We find that entanglement in weakly driven cavity QED is characterized by comparison of two-
excitation probability amplitudes to single excitation amplitudes, in particular the amplitude
involving one excitation in each subsystem. It is necessaryto have a small saturation photon
number to enhance the nonlinear response which generates a larger entanglement. But this is
true only to a point. We find the maximal entanglement for small κ and wheng/γ is on the
order of unity. This stems from the dual role of the couplingg. It couples energy into the atom,
but due to cavity enhanced spontaneous emission, it can alsochannel energy out.

Increasingγ decreases the entanglement, and this can be explained in terms of the effect of
the two decay processes on the system. If we detect a fluorescent photon we know it has come
from the atom, and the atom is in the ground state. If we obtaina transmitted photon, it could
have been emitted from the atom into the cavity mode, or just be a driving field photon that has
passed through the cavity without interaction with the atom. It is the interference of these two
indistinguishable processes that leads to nonclassical effects in the transmitted field.

We have found a variety of cross-correlation functions thatare indicators, or witnesses, of
entanglement in this system. One can learn nothing about theentanglement by examining only
one- or two- excitation amplitudes separately. In particular we find that a measurement of two-
mode squeezing, or a homodyne measurement of the transmitted field conditioned on the de-
tection of a fluorescence photon is directly proportional tothe entanglement calculated via the
reduced von Neumann entropy. Further work remains to generalize this approach to situations
with higher drives, but the general approach of looking at entanglement together with the spe-
cific correlation function to measure gives physical insight into this problem.
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