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Abstract: We investigate steady state entanglement in an open quantum
system, specifically a single atom in a driven optical cawiyh cavity
loss and spontaneous emission. The system reaches a ste@dgtate
when driven very weakly. Under these conditions, there isoptimal
value for atom-field coupling to maximize entanglementaagdr coupling
favors a loss port due to the cavity enhanced spontaneoussiemi We
address ways to implement measurements of entanglemenessés
and find that normalized cross-correlation functions adicetors of the
entanglement in the system. The magnitude of the equal titeasity-field
cross correlation between the transmitted field of the gaaiid the fluo-
rescence intensity is proportional to the concurrence akndriving fields.
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1. Introduction

The study of entanglement has emerged as a central themeartug physics in recent years.
It is driven both by fundamental questions and by the indngaimterest in applications that
go beyond the limit of classical physics. Entanglement asasurable quantity is a compli-
cated subject, in particular when the systems have multipteponents. Here we choose to
study entanglement and its possible avenues of quantificatian open quantum system. This
system, the canonical model of cavity QED [1], has a singbeatoupled to the mode of an
optical cavity with two reservoirs or avenues for extragtinformation: spontaneous emission
and losses from the cavity.

Two particles (or systemsyandB are said to be in an entangled state if the wave function of
the complete system does not factorize, th&éB) # |A)|B). One consequence of this form of
the wavefunction is that a measurement on sydiegiields information about systeBiwwithout
any direct interaction with system. For systems with the same dimension, in particular, a
(pure) state is said to be maximally entangled if tracingraree of the two systems, say
leaves the other one in a totally mixed state; this meansti@tan gain complete knowledge of
systemB by performing measurements dronly. An example that is of relevance to this work
is the maximally entangled state of an atom and a field mpte= (1/v/2) (|1,g) +|0,€))
with the first index denoting the number of photons in the figldde and the secon@ &
excited, g = ground) denoting the state of the atom. A measurement of the statteecditom
immediately tells us the number of photons in the field modey measurement of the photon
number immediately tells us the state of the atom.

The von Neumann entrofy = —tra(palogzpa) of the reduced density matrix of systein
pa = tre(pas) [2] quantifies the amount of entanglement in a given bipaditantum system
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Fig. 1. Single atom in a weakly driven optical cavity. Here g is the reversilpling rate
between the mode of the cavity and the atenis the decay rate of the field mode of the
cavity, y is the spontaneous emission rates the external drive (taken to be a classical
field).

in a pure state. For mixed states, on the other hand, althibigkeasy enough to define what
is meant by a totally unentangled state—namely, one in whighpossible to represent the
density operator as an incoherent superposition of faable states—quantifying the amount
of entanglement in a partially entangled state is not, inegain simple. The natural general-
ization of the pure-state measure indicated above, knowtheagntanglement of formation,
utilizes a decomposition of the quantum state- 5 ; Pj|¢;) (Y| = 5 ; Pjpj, and then defines
E = min(y; PJEj) wherekE; is the von Neumann entropy for the density mapijx= ;) (¢,
and the minimum is taken over all the possible decompogstiahich is in general a very chal-
lenging task [2, 3]. As a result of this, alternative measurave been proposed, such as the
logarithmic negativity [4]. It is also possible that sometalar measurement scheme may re-
sult in a most natural unraveling of the density operatath@sense of the quantum trajectories
approach [5] (especially for systems that are continualynitored), and in that case it may
be physically meaningful to focus only on the entanglemérnhe (conditionally pure) states
obtained via that particular unraveling.

One of the main purposes of this paper is to determine how rmfohmation about the
atom-field entanglement in our canonical cavity QED systam lee gleaned from the kinds
of measurements represented by the traditional corral&tioctions of quantum optics. As we
shall show below, we are actually able to avoid the diffi@gtfor mixed-state entanglement
because, in the limit we are interested in, our system is,doa approximation, in a pure
state, in spite of its being an open system interacting withreservoirs.

2. Cavity QED system

Fig. 1 shows a two level atom in a driven optical cavity. We sidar a single-ended cavity,
with the intracavity field decaying via the output mirror atek. The two-level atom has a
spontaneous emission rate to modes out the sides of thg davioted byy, which is generally
less than the free space Einstdircoefficient. The resonant coupling between the atom and
the field mode is given by = e/ w/2hegV with Lig the electric dipole matrix element)
the transition frequency and the volume of the cavity mode. The driving field is taken to be
a large classical field incident on the input mirror, with small transmissidi, so that the
incident flux (in photon units) inside the cavity is proportal toTi,&2

The quantum trajectory wave function that characterizessyfstem under a non-Hermitian
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Hamiltonian is:

() = i(cg,n(we“Eg-"Wg, n) +Cen(t)e”%""e,n)) (1)
H — ﬁg(a*a_+a0+)—iKaTa—iga+a_+iﬁs(aT—) @)
with collapse operators
o = vKa @3)
7 = \/Za_. @)

associated with photons exiting the output mirror and spegus emission out the side of the
cavity. The indice®(g) indicate the atom in the excited (ground) state, whilethe number of
photons in the mode. The energies Bsg = Eg 1 = hw(n+1/2). We have the usual creation
(a") and annihilationd) operators for the field, and Pauli raising and lowering apmso.. for
the atom.

In the weak driving limit, the system reaches a steady-states function:

|W) = |0g) + A1 g|19) + Aoe|0€) + Az g|29) + Aq ¢|1€) (5)

where theA;; are known [6, 7]. They are

Alg = « (6)
Ave = B (7)
Ae = aBq (8)
Aoy = a’pg/V2 9)

The quantitiegp andq would be 1 for coupled harmonic oscillators. In cavity QERtidiffer
from unity due to the non-harmonic, or saturable, nature@atom. The squares of coefficients
of single excitationA; g, Age give the rates of detection of single photons through theuwiut
mirror or in fluorescence (steady state), while the squairéseodouble excitation coefficients
Are, A g give the rates of detection of two photons either in coincade(one through the
mirror, and one in fluorescence) or both out of the mirror. Véueables are

a = m (10)
p - ~la (11)
p = 1-2¢ (12)
q - ufzgfc_lz)cﬁ 13)
c - Ki (14)
c, = cl(sziy) (15)

The one-excitation amplitude%; g and Age are proportional to the driving field; the two-
excitation amplitude#y g, andA, ¢ are proportional to the square of the driving fiedd, [6].
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The norm of this wave function ig¥)| = /14 O(&?); hence to lowest order ig, the coef-
ficient of the vacuum should b — (1/2)O(&?)). The termO(&?) makes no contribution to
lowest nonzero order ig for the correlation functions or entanglement measuresidered
here.

The entanglement of formation for this system is calculdteth the density matrix after
tracing over the field variables:

Patom = Treigd| W) (W (16)
_ <1+A§79+A§79 Al,ef\l,g'Fon,e) (17)
Al,eAl,g + AO,e A17e + A079
The eigenvalues of this matrix are, to lowest nonvanishiigo
/\1 = (Al,gAO,e—Al.e)2
= |ArgllAoel’(@—1)
A
= ()¢ (18)
N2 = 1-(ALghoe—Are)’
AN
- 1-(1) ¢ (19)
(20)
whereq is defined in Eqg. (13), and we have defined
29
=————(q-1 21
¢ y(1+zcl)2(q ) (21)

The entropyE = —A1l0g, A1 — A2100, A2 is then (again to lowest leading order)
AR A A AR
- () s [(K) d } - (1‘ () € )rose|1- (1) ¢
AR e\4 2
- (E) ¢ ('092 {(K) } +log, [£7] - 1)
e\4 AN
~(5) ooz | () ] & (22)
where we have taken the weak field lindtbeing the smallest rate in the problemssa& < 1.
The approximation (22) will hold provide@/k)? < |€].
This entropy is the same as that obtained by using the demsityix for the field alone,
traced over the atomic degrees of freedon.
The concurrence, first introduced by Wooters for two quBJisfan also be used to charac-

terize entanglement between two quantum systems of aspiiemension [8, 9, 10, 11]. The
concurrence for our system is

E

Q

Q

c = 2(1_Trp52110m)
— \/4(ArgAoe—Ave)’
£\2
- 2 (f) 23
£)e 23)
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To see why|&| O |Aye — AoeA1g| Mmay be a good indication of entanglement, consider what
happens if the wavefunction is a product state. We couldewrit

We = [Ur)@[gn)
(Do|0) +D1]1) +D2[2)) @ (Cg|g) +Cel€))
= DoCqy|0g) + D1Cqy|1g) + DoCe|O€) + D2Cq|2g) + D1Ce|1e) (24)

For weak excitations, the coefficient of the ground statehefdystem iDoCy = 1, orCy =
Do = 1. Then the product state is

|W)p = |0) + D1|1g) +Cel08) + D2|20) + D1Cel 1€} (25)

Just knowing the one excitation amplitudes does not yigjdriormation about entanglement,
as itis possible to hawk; g = D1 andAg e = Ce. A2 g gives no information about entanglement,
just nonclassical effects in the field, as it only involveddfiexcitation. For weak fieldD, is
exactly A, 4. The entanglement shows up in the valueAgg,; if this value does not satisfy
Ay e = D1Ce = Ag ey g, then it is not possible to write the state as a product state.

In the presence of a non-zero vacuum contribution (as ahyguaatum state will have), one
can learn nothing about entanglement simply by measurenfembe-excitation amplitudes
or probabilities. For example, the std@eg) + a(|1,9) + |0,e)) is entangled, but only if one
is certain that the probability amplitudes for higher eatign are truly zero. A state of the
form |0,g) +a(|1,9) + |0,€)) +O(&?) cannot be said to be entangled without information on
the relative size of the probability amplitudg .. Measurement of one-excitation amplitudes
conditioned by a previous measuremeart yield information about entanglement. This can be
accomplished by utilizing cross-correlation functionsfist important conclusion out of this
study is that a measure of the zero time cross correlationdasgt the atom and the field, as
well as the mean transmitted and fluorescent intensitiéds/@emeasure of entanglement in the
weak field limit.

3. Entanglement for weak excitation

Equation (22) of the previous section gives the amount chreglement in the system as a
function of the one and two excitation amplitudes. In terrhspecific system parameters the
concurrence is:

1693 €2k
(202 +yK)? (2@% + K (y+2K))

¢ =|2aB(q-1)| = (26)

This section analyzes the sensitivity of the concurrendbdeadifferent parameters that ap-
pear in Eq. (26), while trying to give physical reasons faitlinfluence on the entanglement.
Despite the fact that the rates of decay could be the sameghrine two reservoirs, sponta-
neous emissionyj reduces entanglement more than cavity lags This is due to the fact that
ay event (spontaneous emission)ist come from the atom, while & event (cavity transmis-
sion) could come from either the drive or a photon emittechisydtoms into the cavity mode. A
spontaneous emission event unambiguously leaves the atih@ ground state, and the system
wavefunction factorizes.

Fig. 2 shows a remarkable result in the entanglement of thtesyas a function of the three
rates in the problem. There is an optimal value for the cogptonstang) given a set of dissipa-
tion ratesk, y. For many interesting cavity QED effects, stronger couplsgenerally better,
such as the enhancement of the spontaneous emission byoadadt+ 2C; = 1+ 2g%/ky
(this formula strictly holds only in the bad cavity limit >> g, y). However, here increasing
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Fig. 2. A plot of ¢ scaled by(g/y)? as a function ok /y andg/y for weak excitation.

the coupling of the atom and field mode eventually decredsearnount of entanglement. To
explain this it is instructive to recall that the concurrer€ = |2a3(q— 1)|, wherea is the
mean cavity field, an@8 = —ga/y is the mean atomic dipole. As the coupligincreases, for
a fixed weak driving fielct, the intracavity fieldr = £/(k +2g?/y) decreases. The intracav-
ity field is the sum of the driving field in the cavity/k, and the field radiated by the atom,
(—2C1/(1+42Cq))€e/ K, the minus sign resulting from the fact that the radiatedi filr out of
phase with the driving field on resonance. We see thgteamIC; increase, the intracavity field
decreases. This means that the steady-state wavefunessamlarger vacuum component, and
consequently less entanglement. Another way to view thikdsthe cavity enhancement of
the spontaneous emission rate means a larger loss ratefeystem as the coupling increases,
which is bad for entanglement.

More formally, consider what happens if the two-excitateonplitudes in Eq. (5) are arbi-
trarily set to zero, which amounts to settigg= 0 in Eq. (26), in which case the entanglement
is only determined by the prefact@3|. The steady-state wave function becomes

s = |0g>+a<|1g>—%\0e>>. (27)

There are two interesting limits on this Eq. (27) for the paeter f = g/y. If f > 1, the
steady state wavefunction is approximatglyss = |0)(|g) — fale)) which is a product state.
Also, if f < 1, the steady state wavefunction is approximatelyss = |g)(|0) + a|1)) which
again is a product state. To have entanglement betweendheatd cavity mode, we must
have the parametef ~ 1, so as to prepare a steady state wavefunction of the fgng =

|0g) + a(|1g) — |0e)) = |0g) + a|—), a mixture of the vacuum with a small entangled state
component.

The decrease of the prefacter| is the dominant reason why the concurrence decreases
with increasingg for large coupling. Close inspection of Fig. 2 also shows thare is an
optimal cavity loss rat& for entanglement for a fixed andy. This is a result of reaching a
maximum in the population of the states different from thewan (Eq. (5)). Our results here
are consistent with the numerical results of Nha and Caraeic}d].

When the system is driven off resonance, its response isaiypicharacterized by transmis-
sion and fluorescent spectra [12, 13]. Although these areritapt probes of the system, they
do not, in this limit, carry information about the entangk since they are derived from only
the one-excitation amplitudes.
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Fig. 3. Contour plot of¢” as a function ofj/y andA/y for k /y = 0.5

The concurrence as a function of the detuning of the driviisgtt shows that the steady state
entanglement decreases typically by a factor @&1for large detuning, whera = (w0 — w)
with w the resonant frequency of the atom and cavity, @anthe frequency of the driving probe
laser. But in the case whegds larger thark andy, the response is maximized at the vacuum-
Rabi peaks [14]. Figure 3 shows a contour plo¥ofor parameters in the regime of cavity QED
where the two decay rates are similak;/& = 1.0. The concurrence increases with increasing
g on resonance up to a saddle point, and then decreases. Haheemtanglement persists for
detunings on the order gf the approximate location of the vacuum-Rabi peaks in tieetsp
of the system.

Detuning to a vacuum-Rabi peak & +(g), generates a steady state wave function of the
form

‘w>SS = |0» g> + arl(g/y)|17:t> + a2r2(g/y)|27:t>7 (28)

where|n, £) = (1/v/2)(|n,g) & |n— 1,€)) is then photon dressed atom-field state one is tuned
near and 1(g/y) andl"2(g/y) are functions that are maximal whegn~ y. This is a state of
mainly vacuum, plus a part that has entanglement betweeattime and the cavity. It would
seem that by continuing to tune to a vacuum-Rabi peayj iasreases, it would be possible
to maintain the entanglement, but Fig. 3 shows that this tstm® case. Rather, as argued
(for the on-resonance case) above, the crucial parameterdgimizing entanglement is =
9/y01/ /N, wherengg = y2/8g° is the saturation photon number. This is the dependence on
the nonlinearity of the atomic system. Recall that, if thesee two driven coupled harmonic
oscillators,g = 1 and there would be no entanglement. A nonlinear intenadietween the
two harmonic oscillators would be needed to entangle therim the signal and idler modes in
optical parametric oscillation. This nonlinear interaativould generate two-mode squeezing,
which could be measured by homodyne detection of mode A(Bjlitioned on detection of a
photon in mode B(A), just as squeezing in one mode can betdéteia conditioned homodyne
detection of a mode based on a photodetection from that rh6d&g]. The nonlinearity of the
two-level atom is needed to generate two-mode squeezingratadglement between the atom
and the cavity field. Even though the driving field is weak dmelatom never nears saturation,
there can only be entanglement with a linear atom-field édogpf the atom has a nonlinear
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Fig. 4. Contour plot of¢” as a function ofj/y andA/y for k /y = 10

response, as two-level atoms do.

The concurrence shows its sensitivity to different paramsetFig. 4 shows a contour plot
of ¢ versusg/y andA/y for a case where the cavity decay rate is larger than the apeatis
emission rateK/y = 10.0). The entanglement is largest neglly = 4.0, before the vacuum-
Rabi splitting of the spectrum, which does not occur in thisecuntilg/y ~ 10.0, at which point
the entanglement is already diminishing. The size of theimam concurrence decreases by
increasingk/y from 0.5 to 1Q0 by a factor of about 30.

4. Measurements of entanglement with correlation functions

The calculation of entanglement leads now to the questidrowafto implement measurements
that give the full information in the case of this cavity QEB&m under weak excitation. The
previous section shows that the concurrence is relatedetoatie of single photon counts out
of the cavity or in fluorescence and to the rate of coincidenints from the cavity and fluo-
rescence. These are the quantities associated in quantio® wiih correlation functions, first
introduced by Glauber [17, 18, 19, 20]. Generally theseatation functions involve compar-
ing a field (intensity) of one mode with the field (intensityf)tbe same mode at a later time
(or different spatial location), with some exceptions [22, 23, 24, 25, 26]. However, entan-
glement in cavity QED has two components: atom and cavityenéidis natural to look at
cross correlations between the cavity mode and the fluanesigat that falls in the mode of
the detector.
Consider a general cross-correlation function for two-g®of the electromagnetic field:

G = (fa(b",b)f2(a’,a))/(fu(b',b))(f2(a",a)). (29)

with f1 and f, well behaved functions, in the sense of a convergent Taglees on the Hilbert
space of interest. Ifiy) is a product state, the correlation functi@a, b) factorizes and then
is unity. If it is not a product state, then this will manifest itself in a non-urdtue for the
normalized cross-correlation functions.

The simplest cross correlation function to consideg%i]é(O). This could be obtained by
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measuring the visibility of the fringe pattern formed byeirfering the transmitted and fluores-
cent light. For the weakly driven cavity-QED system, this is

) _ ({oya
9rr(0) ()@
_ aB
~ aB
-1 (30)

so to lowest order, there is no information in this correlatiunction about entanglement.
To obtain information about entanglement the correlationction has to probe the two-
excitation part of the state. A possibility to do this is théensity cross correlation:

(o,a%ao )
(aa)(or0-)
|Age|?
|A1gAce|?
= (31)

(o)

This normalized correlation function is directly relatedhe coefficient of double excitations
(See Egs. (5), (8), (13)). =1 theng<TZF) (0) =1 and there is no entanglement; so a non-unit
value ofq indicates entanglement. Using second-order intensityetaions has been proposed
in the context of entangled coherent states by $ha and Vdkiewicz [27].

The cross correlation functicng) (0) contains information about the average photon number
in coincidence with a measurement of the fluorescence relative to the averagerphomber
in the absence of any interrogation of the fluoresceggéz(O) —1=¢?— 1is an indicator of
entanglement.

A way to measure directly utilizes a field-intensity correlation functidiy (1) [28], that
can be implemented as a homodyne measurement conditioribd detection of a fluorescent
photon,

TF (IeEr)
hG:O(O) = m
(@ +a)o.0)
(at+a)(o.0.)

Al,e
AO,eAl,g
= q (32)

So hgio(O) —1=q-—1is also an indicator of entanglement in this system. Whatas#kis
measurement possible experimentally is the conditiortiag $elects only times when there is
a fluctuation and the rest of the time (when the vacuum is ptgs® data is collected [16].
For one mode, the homodyned transmitted field conditioneddigction of a photon from
that mode, is a measure of squeezing in that mode [28]. A hgrmeodheasurement of the
transmitted field conditioned by detection of a fluoresceamitpn is a measure of the two-
mode squeezing, with the cavity field and atomic dipole astw@ecomponents. Generally,
two-mode squeezing is an indicator of entanglement betweztwo modes. Gea Banacloche
et al. explored this correlation function in a different regimecaf/ity QED and found it to be
a witness of the dynamics of entanglement [29].
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Non-classicality and entanglement are not necessarilylsimeously present. For example
for two oscillators one could have)) = (1/v/2)(|A,B) + |B,A)), whereA andB are coherent
state amplitudes. In this state, there is entanglemengdxht individual mode shows no non-
classical behavior. Conversely, one can have non-cldsmtavior with no entanglement, say
for example the atom in the ground state and the field in a ggdeeoherent state.

There is a particular form of the Schwartz inequality thatstrioe satisfied for a classical
field for the specific case of the system we are considering her

(972(0) —1)2 < |(¢13(0) — 1)(gF2 (0) — 1)), (33)

HereTT andFF denote zero delay intensity correlations for the trangaitind fluorescent
fields respectively. In the one-atom Iingiﬁ% (0) =0, andg(TzT) (0) = g?p?, so this inequality be-
comesg? — 1|2 < |g?p? — 1| which depends og, but also on the parametpri(Eq. (12)), which
can be varied independently. There is no one-to-one rekstiip between Schwarz inequality
violations and entanglement (by this measure) in this palgr system.

5. Conclusion

We find that entanglement in weakly driven cavity QED is chdzed by comparison of two-
excitation probability amplitudes to single excitation @itudes, in particular the amplitude
involving one excitation in each subsystem. It is necesgatyave a small saturation photon
number to enhance the nonlinear response which generategea Entanglement. But this is
true only to a point. We find the maximal entanglement for $rmand wheng/y is on the
order of unity. This stems from the dual role of the couplindt couples energy into the atom,
but due to cavity enhanced spontaneous emission, it carcladsmel energy out.

Increasingy decreases the entanglement, and this can be explainedris téithe effect of
the two decay processes on the system. If we detect a fluotgstoeton we know it has come
from the atom, and the atom is in the ground state. If we ol#d@mansmitted photon, it could
have been emitted from the atom into the cavity mode, or jest 8riving field photon that has
passed through the cavity without interaction with the attiris the interference of these two
indistinguishable processes that leads to nonclassieitefin the transmitted field.

We have found a variety of cross-correlation functions #ratindicators, or witnesses, of
entanglement in this system. One can learn nothing abowrtaaglement by examining only
one- or two- excitation amplitudes separately. In particwe find that a measurement of two-
mode squeezing, or a homodyne measurement of the trandidie conditioned on the de-
tection of a fluorescence photon is directly proportiongh®entanglement calculated via the
reduced von Neumann entropy. Further work remains to geretais approach to situations
with higher drives, but the general approach of looking aaeglement together with the spe-
cific correlation function to measure gives physical insigto this problem.
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