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Quantum jumps between dressed states: A proposed cavity-QED test using feedback
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A strongly driven cavity containing a single resonant strongly coupled atom exhibits a phase bistability. The
phase of the field is strongly correlated with the phase of the atomic dipole. It has been shown previously that
phase-sensitive monitoring of the field emitted by the cavity would induce conditional quantum jumps between
orthogonal atomic dipole staté&dressed” states Here we show that such monitoring can be used to fix the
atom into a single dressed state. As soon as a state-changing quantum jump is inferred from the measurement
of the field, the atomic state is flipped usingmapulse. We study this feedback scheme analytically and
numerically. We show that the occupation probability of the desired fixed state can be as high as 1
—1/857C,, whereC,>1 is the single-atom cooperativity angthe detection efficiencywhich does not have
to be close to unity The control of the atomic dynamics is manifest in the fluorescence spectrum. The widths
of all three peaks are modified from the usual Mollow spectrum, and almost all of the area under one of the
sidebands is transferred to the other sideband. This is as expected, as one of the dressed states is essentially
unoccupied, and transitions out of it do not occur. In addition, the width of the central peak goes to zero. This
indicates coherent scattering due to the nonzero mean atomic dipole created by the feedback.
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[. INTRODUCTION tions traditionally were, and always can be, calculated within
a deterministic formalisni18,19. Is there more direct evi-
Bohr’s quantum jumps between atomic stdtElswere the  dence for the existence of interesting quantum states condi-
first form of quantumdynamicsto be postulated. Of course tioned upon continuous monitoring? In RE20] one of us
Bohr’s old theory did not survive the quantum revolution of suggested that “conditioning is realized by feedback.” That
the 1920s. In its aftermath, quantum jumps were revidd is, the way to see a conditioned state is by using the mea-
with a new interpretation as state reduction caused by meaurement results on which it is conditioned in a feedback
surement. However, simple quantum jump models for atom$op to change the system dynam[@i]. This has recently
were never entirely forgotten. For example, the dressed stateeen realized by two of us and co-worké22] in a weakly
model[3] was used successfully to give an intuitive expla-driven cavity QED system. In that experiment, changing the
nation of the Mollow triplef4] in resonance fluorescence. driving field a precise time after the detection of a photon
It was the electron shelving experiments of Itano and cofrom the cavity freezes the conditioned state until the driving
workers[5] which focused attention on theonditionaldy-  is returned to its initial value, when it resumes its evolution.
namics of individual atoms. Subsequent work on waiting This paper proposes another way of realizing conditioning
time distributiong 6,7] led to a renewal of interest in quan- by feedback, this time in atronglydriven cavity QED sys-
tum jump description§8]. It was shown by Carmichag¢d] tem. We assume a single, strongly couple@,;€g?%/ xy
that quantum jumps are implicit in standard photodetectior®>1) atom resonant with the cavity. This system was shown
theory. Around the same time, stochastic quantum jump23,24 to exhibit optical phase bistability, with the phase of
equations were introduced as a tool for simulating the dythe field strongly correlated with the phase of the atomic
namics of a dissipative system with a large Hilbert spacalipole. The case of many atoms was shown to exhibit optical
[10,11], and their links with quantum measurement theoryphase multistability{25]. Previously, two of ug26] have
were also notedl12,13. This measurement interpretation is shown quantitatively how phase-sensitive monitoring of the
generally known as quantum trajectory thed®;14]. By  field emitted by the cavity would enable one to infer the
adding filter cavities as part of the apparatus, even the quamtomic state. This was also notéd a different contextin
tum jumps in the dressed state model can be interpreted d&ef. [27]. Such a measurement would cause “retroactive”
approximations to measurement-induced jurfifs. [26] quantum jumps between orthogonal atomic dipole states
The measurement interpretation of quantum trajectorie$‘dressed” statey as predicted by the dressed atom model
has proven invaluable for understanding and predicting3]. As noted above, these jumps could be induced directly
guantum optical correlation functions, especially in certain(not retroactively by measuring the atomic fluorescence us-
cavity QED experimentgl6,17. However, correlation func- ing filters. But in practice, the efficiency of such a measure-
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ment would be so low that the cavity QED scheme is much SPONTANEOUS
more likely to be realized experimentally. EMISSION
In this paper we show that with feedback, one of these
conditioned dressed states can be stabilized. The idea is sin
ply to flip the atomic state using @& pulse as soon as a
state-changing quantum jump is inferred from the measure: o)
ment of the field. We consider the simplest measurement an ~€
feedback scheme, and obtain quantitative predictions for pryve
how well the atomic state can be fixed in one dressed state
This turns out to be only weakly dependent upgnunlike
other feedback-stabilization schenfsse Ref[28] and ref- . . . .
erences therejnWe also calculate the complete spectrum of FIG. 1. An illustration of the single-atom cavity QED system.
the feedback-modified atomic fluorescence, which shows the )
enhancement of one sideband at the expense of the oth&MPplitude at the rate ot. The second channel is spontane-
This is also as would be predicted from the dressed atorRUS emission from the two-level atom into modes other than
model[3]. This experiment would thus be a test for the con-the cavity mode. This causes decay of the atomic dipole at
ditional states predicted by this model, and, more imporihe rate ofy/2, where we assume the atomic radiative decay
tantly, a test of the conditional states predicted by the fullS essentially gr]mod|f|ezd by the cavity. We use the single
quantum trajectory theory. atom cooperativitlC; =g / Ky to de_scrlbe the strength of the
This paper is structured as follows. In Sec. Il we introducecoherent atom-field coupling relative to the rate of decay of
the cavity QED system, and various ways to describe it. Thighe system through these two channels. We consider the
includes a semiclassical picture of the field and atomic diStrong coupling regimé&,>1 throughout this paper.
poles, an approximate quantum description which reflects Figure 1 presents a simplified picture of the single atom
this, and a quantum description of the atom alone in th&avity QED setup. We define the driving field &smeaning
regime where the field can be slaved to the atom. In Sec. li{hat in a frame rotating at the driving laser frequency it pro-
we investigate the stochastic conditional dynamics in the latduces a Hamiltonian
ter two descriptions. Based on this understanding of the sys- Hy=—i%&(b—bh) 2.3
tem, in Sec. IV we propose our feedback scheme. We show d ' ’

that for this scheme we do wish to work in the slaved-field\ye assume that the driving laser frequency is on resonance

regime, so that Fhe system can be m_qdeled by the statg of th&th both the cavity and atomic transitions = w,= w,).
atom alone. Using a feedback-modified master equation for

the atom we obtain quantitative predictions for the atomic
state and the resonance fluorescence spectrum in Sec. V. We _ _ _
compare this with the results of a numerical simulation of the The closed cavity QED system is well described by the

Y
A 4

SIGNAL

A. Master equation

full system. We conclude with a discussion in Sec. VI. Jaynes-Cummings Hamiltonian in Ed2.1). Performing
measurements on any system requires opening the system to
Il. THE SYSTEM environmentally induced fluctuations. This leads to dissipa-

tion which modifies the Jaynes-Cummings dynamics. If the
The cavity QED system we consider is defined by asystem interacts weakly and homogeneously with many
single, two-level atom(TLA) strongly coupled to a single modes of the environment such that the Born-Markov ap-
mode of a Fabry-Perot cavity. This system is well describegproximation is valid then these environmental degrees of
by the Jaynes-Cummings Hamiltonigt8,19 freedom may be traced out to leave a modified system evo-
_ e T + lution [19,29. This evolution is described by a quantum
Hic=fhwao,+hiwocb'b—ifiglo’b—blo), (2.1 magter equation of the Lindbld@0] type,

whereo', o, ando,=[o,0'] are the Pauli spin operators M
for raising, lowering, and inversion of the atom, amtiand p=—i[H,p]+ 2 Dlc,]p=Lp, (2.4
b are the standard raising and lowering operators for the n=1

internal cavity field m with fr n . Th rength
ternal cavity field mode with frequenay, e strengt whereM is the number of environmental channels available

of the atom-field coupling is characterized by the dipole cou- . .
pling constantg, andpis given by Y P for the system to decay through. Given arbitrary operafors

andB, the superoperatd® is given by
2
g=/ 22 2.2 D[A]B=ABA’— (ATAB+BA'A)/2. (2.5
2hegV’

_ N _ _ _ We incorporatey and « into the master equation with the
where u is the transition dipole momenty, is the atomic  following substitutions:

transition frequency, an¥l is the cavity-mode volume.

The cavity QED system radiates energy through two Ci1= \/;a', (2.6
channels. The first channel is along the cavity afis.,
through the cavity mirropsand causes decay of the field Cyr= J2kb. 2.7
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Combining Eqgs(2.1), (2.3) and substituting Eq92.6) and
(2.7) into Eqg.(2.4) leads to the following expression for the
guantum master equation for an open cavity QED system:

p=[g(b’o—0o'b)—igy,p]+2xD[blp+yDlo]p,
(2.9
wherey=—ib+ib' is the phase quadrature of the cavity
field and thereforac=b+b" is the amplitude quadrature.

B. Semiclassical fixed points

We begin our analysis of E¢2.8) by reviewing the semi-

classical results in the large field regime obtained by Alsinc

and Carmicha€]23].

Constructing the equations of motion for the semiclassical

variables,a=(b),s= (o), andw=(o,), we find

d=—Ka+5+gS, (2.9
s=gwa—3vs, (2.10
w=—2g(a*s+s*a)— y(w+1). (2.1

We assume thay is so small as to be negligible. Then the
atomic steady state will be purgr) +(o5) +(o7)=1. This
condition can be recast in terms of the variableands as

(2.12

where we used the fact that,=—i(¢'— o) and o= (o'
+0).

There exist two sets of fixed points for Eq2.9—(2.11)
in the y=0 case. One corresponds &g,=0 (for 2£<g)
and the other tov;, =0 (for 26>g). Since we are interested
in the limit of high driving, we consider the latter case which
leads to the following set of fixed points:

w2+4|s|?=1,

. Etgs;
afp= — Ly (2.13
. g_. /1 [g
Six=" 45" Z_(Ig) : (2.14
Wi = 0. (2.15

In the strong driving limit£>g, these expressions simplify

(2.16

(2.17
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FIG. 2. The Qg-a) distribution calculated numerically from

Eqg. (2.19 in steady state. The bimodal structure of this distribution
illustrates the two fixed points for the cavity field. These fixed
points are separated along the phase quadratugé ayParameters
used for this calculation areg(x,)/y=(60,20,1200). These pa-
rameters were chosen so as to show the clear separation of the fixed
points.

where| ag,) is a coherent statel8].
We simplify further analysis by separating the mean co-
herent component of the cavity field from its fluctuations.

Rewriting Eq.(2.8) explicitly in terms ofa=b— «,

p=lg(a'o—c'a)=i(Q/2)0y,p]+ yDlolp+2xDla]p,
(2.19

where()=2g¢&/ k is the Rabi frequency.

Figure 2 shows th@ distribution[18] for the cavity field
in steady state. Notice the bimodal structure which corre-
sponds to the two fixed points in E(.13.

C. Secular approximation for Rabi frequency

In this section we show that the semiclassical fixed points
of the preceding section are central to the full quantum dy-
namics in the limit wher&) is much greater than all other
relevant rates. Apart from its last part, where we derive an
explicit expression for the steady statethis section is taken
from Ref.[26].

Consider the dynamics in the interaction picture with re-
spect to the Rabi Hamiltoniad,= (o ,/2. This changes Eq.
(2.19 into

p=[g(a’o—a'a),p]+2«D[alp+yDlolp, (2.20

where the bar indicates the operator is in the interaction pic-
ture. The transformed atomic lowering operator is

_ i ) )
o)== 5(ue "M+ p,— u'e'), (2.2)

whereu=|+)(—|, u,=[u',u]=0,. Notice that the cavity

These semiclassical fixed points correspond to the followingield is invariant under this transformation.

set of quantum states:

i =lag)2 Ylg) File)l=|agl +), (218

Substituting Eq(2.21) into the first term of Eq(2.20 and
assuming thaf)>g allows the use of the rotating-wave ap-
proximation(RWA). This lets us ignore the rapidly oscillat-
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FIG. 3. Energy-level diagram for the dressed state of the atom.
Transitionsa andd correspond to thé[ ] and D[ '] switching
terms, respectively. Transitiorts and ¢ correspond to théD[ u,]
term and are on resonance with the driving field.

1 N
ing terms in the Jaynes-Cummings Hamiltonian. This leads gg |+> I >
to the following simplification of Eq(2.20): y

p=—i9/2[xu; pl+2xDlalp+yDlalp. (222 01

This simplified master equation will be used in Sec. IID in
our discussion of the adiabatic elimination. 0 T T T

Continuing on, we now substitute E@.21) into the third -0.4 0.2 0 0.2 0.4
term of EQ.(2.22. We apply the RWA to arrive at y

= _ — — FIG. 4. Steady-state distributions of the cavity field for two

P 19/2Lxpz,p1+ 2xDlalp+ (Y/4)(PLu]+ Dlp,] different values ofy. The top graph corresponds to the semiclassi-

+Dl . 29 cal fixed point limit with y/2x=0.067. The lower graph shows the
[ Dp (223 lixing of the field states whery/24—2.5. g/x—0.33 for both

. . . . lots.
Figure 3 illustrates the transitions described by the last termg

in Eq. (2.23. The D[ 1] and D[ '] correspond to the atom 5

flipping from the|—) to | +) states, and the reverse, respec- p - (gt p () —P ip.
tively. These transitions correspond to the upper and lower =(¥) &y(_g YIP=(y)+ (YL =P(y) +P=(y)].
sidebands of the atom'’s fluorescence spectrum, respectively. (2.25
TheD[ u,] term corresponds to transitions between the same

atomic dressed states. If the atom is in one dressed state thgfe probability for the atom to occupy the stés is given

the rate of state-changing jumps and non—state—changingy ps=fdyPy(y)=Ti p|s)(s|]. In steady state, we find that
jumps are bothy/4. This gives a total rate of spontaneous

emission of y/2, as expected for a strongly driven atom

(which is half-excited P.5(y)=C(g—«ry)"*(g+ky)"> 1, (2.26
Now consider the following ansaf26] for the density
operatorp, P_SS(y)ZC(g_ Ky)y/2;<fl(g+ Ky)’y/ZK,
(2.27

_ / k
=3 I9sle [° ayrayliviaivid, (224

s=*

whereC is a normalization constant. It is worth noting that in
the y—0 limit we recover the semiclassical fixed points as
whereliy/2) is a coherent state for the operatorThis an-  PS(y)— 8(y+g/«).

satz assumes the cavity field can be described with a Figures 4a) and 4b) show plots of Eqs(2.26) and(2.27)
Glauber-Sudarshan coherent field distribut{d®,19 on a  for two regimes. These illustrate the distribution of the field
line connecting the two semiclassical fixed points of differentstates for this system. Notice that the field is only defined in
phases. It also assumes that the atomic state is diagonal the region—g/k<y=<g/x. We see that in the limit withy

the dressed-state basis, and that its state may be correlate® « that the field distributions are centered around the fixed
with the phase of the field. Substituting E@.24) into Eq.  points. In the other limit withy>2x we see that the atomic
(2.23 shows that these assumptions are correct, and leads $tates are not as well centered on the fixed points of the field.
the following dynamic equations fd?. , the fieldP func-  We will study stochastic dynamics in Sec. Ill to further illus-
tions associated with thiec ) atomic states, trate the dynamics that lead to these distributions.
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D. Adiabatic approximation can be viewed as the lossy cavity introducing a noisy driving
As we will show in Sec. IV, it turns out that for the feed- (€M in combination with the strong driving given by the

back protocol we propose it is necessary to havenuch third term. This is shown in more detail in Appendix A.
larger thang and y. In this limit the cavity field dynamics

will be slaved to the atomic dipole. This allows for the adia- 1. STOCHASTIC DYNAMICS

batic elimination of the cavity field as in R¢39]. We begin

by expanding the density operator in the field state basis to ) _ ) o
include the zero- and one-photon excitations, A brief review of the theory of quantum trajectories is

provided in Appendix B, to which we refer readers unfamil-
p=p°[0N0|+ (pYON(1|+H.c)+p?1)(1|. (2.2  iarwith this field. We begin unraveling E¢.20 with direct
cavity detections by introducing the following cavity “jump”
Substituting Eq(2.28) into Eq.(2.22) leads to the following operator:
set of equations:

A. Quantum trajectories

B - - Jp=2kapal. (3.2
p°=—ig(pzp*" = ptu )2+ yDlo]p®+2xp?, : , . - ,
(2.29  Tracing over the cavity we arrive at an expression which
describes the effect that E(.1) has on the atom,
pl=—ig(ump?—pu,) 2+ yDlolpt—kpt, (2.3 —
p 9(pzp”—p pmo)2+ yDlolp—kp, (2.30 Try(Jp) = 2Kp2. 3.2
pP=—19/2(pu,p*— p ) + yDlolp?— 2kp. In the bad cavity limit one can slave the populated on-
(23D diagonal cavity field element with the vacuum element by

. _'2_ . . .
The atomic density operator is the full density operatorsettmgp =0. Then, to leading order, one finds the following

al the Tull de e T,
traced over the cavity fieldy,=Tr.(p) = p°+ p2. From Eq.  SXPression fop™
(2.29 and Eq.(2.31) we find thatp, is given by -, @ -
L I _ PR= B HaPattz: 33
pa=—19/2 p,, p*+p* 1+ yDlolps. (232 K

Equation(2.30 is dominated by the linear term in. This  Substituting Eq(3.3) into Eq. (3.2 we find

term quickly damps the cavity mode and we ignore initial 2

transients so thagi'=0. To leading order this leads to Tro(Jp) = S_KMZEMZ: TaPas (3.4
;9% e e , . :
pr=inp . (2.33  which is equivalent to the “jumps” associated with the noisy

QND measurement term from E(R.34).
In effect, we have slaved the cavity field state, determined to We continue by constructing theC( 7) p operator from
leading order by the off-diagonal®, to the atomic state, EQ-: (2.22,

determined to leading order kpp. — . — fo
Substituting Eq(2.33 into Eq.(2.32 gives the following (L= Dp=—i9/2Axpu,,p]-x(@'ap—pa‘a). (3.9
expressionto leading orderfor the master equation of the Substituting Eq.(2.28 into Eq. (3.5 we find that the non-

atom alone: jump evolution is described by
2
- — — 2
=-—D +yD . 2.3 — g"— —
Pa 2k [Mz]Pa Y [O’]pa 239 Trc[(ﬁ—j)p]= - 2KPa=(£a_ja)Pa- (3.6)

Transforming Eq(2.34) out of the interaction picture recov-

ers the original driving term, Equation (3.6) together with Eg.(3.4 demonstrate the

equivalence of unraveling the full density operator with cav-
. g2 ity detections and unraveling the atomic density operator
pa=7YDlo]pats Dloylpa=iQloy.pal=Lapa- with the u,pu, detections. Therefore, under the adiabatic
(2.35 approximation, monitoring the state of the cavity is equiva-
lent to monitoring the state of the atom.
We thus see that the bad cavity limit allows for the adiabatic The above measurements are insensitive to the phase of
elimination of the cavity field, yielding a simplified master the cavity field. For feedback we wish to distinguish different
equation for the two-level atom alone. The first term de-phases of the cavity field, and hence different atomic states.
scribes spontaneous-emission events that occur at the slowdstis requires interfering the light emitted from the cavity
rate y. The field contributes the second and third terms. Thewith a suitable local oscillator. An obvious possibility, con-
second term corresponds to a quantum nondemolioD) sidered in Ref[26], is to use a large local oscillator to do
measurement on the state of the atom. This “measurementiomodyne detection. Atomic jumps could be detected by
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Dlpzlpa=Dlpz—1]pa. (3.10

Thus the rewritten master equati@mansformed back out of
the interaction pictureis simply
: g? iQ
pa=7yDlolpats Dloy=1lpa=—[oy.pal-

Signal Single Photons

The new jump operator, which corresponds to detecting a

photon as shown in Fig. 5, isy—1. Note that this takes

|+) to|—) as desired. When this happens, the detected pho-
Local Oscillator ton can be used to triggerma pulse to take the atom back to

FIG. 5. The proposed direct detection scheme with a local osState|+). This will be described in detail in Sec. IV.
cillator to offset the large coherent field. The photodetector effi-
ciency is given byz. B. Field dynamics under the secular approximation

The above analysis assumedarge enough to adiabati-

looking for positive or negative transitions in the filtered R DS ;
photocurrent, although the optimal signal extraction algo-ca"y eliminate the cavity field. We stated in Sec. 11D that

rithm is much more complicatg@6] and would require pro- th;S e\:l\r/a'?oreﬂ:tlirfsdtr:?sr itthii ﬁzg'ecsuslg: f?gdﬁsgkupr?;gfgs'gutrg's_
cessing the current using digital electronics, as in R&f]. paper. 10 J ytog P p

Analysis of the resulting non-Markovian feedback would befll?]?s’ ?Sn ?rzé(;rg;geiftfﬁesﬁgtzstlﬁedgggm;s: f ??meZ?i%:ecl)?.
quite difficult. In this paper we consider a much simpler sortSec e i

of feedback, which is Markovian and which is based upon Imagine that we are constantly monitoring the cavity out-
detecting the cavity light after aeaklocal oscillator has 9 . y gt Y
put along with all of the spontaneous emissions from the

been added. atom, and resolving the three peaks of the Mollow triplet.

Figure 5 illustrates how one could use a local oscillator t )
offset the large output cavity field. The intuitive idea is to se('?Then the total state will be a pure state, and from @4

the phase and amplitude of the local oscillator so as to cancgl]e field will be in a coherent stafey/2) and the atom in one
the output of the cavity when the field is in the semiclassicaf)f EH? dfr_esTeid Sta.tesé 293 sh the at il
fixed state|a™) corresponding to thé+) dressed state of b twe nlrt]r?¢+ermn:;]|—q-(t.t3 StOV\r'St e/Aa, ?Am W:n Jlirr??[
the atom. Detecting a single photon from the cavity plus he een the _)_a" : )hsaesda a e:jeqf : ?jsuh ef_ Ig'
local oscillator field indicates that the field has left that fixed '@ atom is initially in the +) dressed state and the field is
state, thus implying that the atom has undergone a jump frorﬁ_ ~ g/« _From_Eq.(2_.23) we find the state of _the_ cavity
the desired dressed stdte) to the other|— ). ield following a jump into thd —) dressed state is given by
We have already added the real part of the local oscillator y=(g—«y), (3.12
when we changed from the full field operatoto the fluc-
tuation field operatoa. All that remains is to further offset \which |mp||e5 tha[y decays exponentia”y at rate towards
the cavity field by an appropriate amount. If we wish to the other fixed pointg/«. Each atomic state flip is followed
stabilize the atom in the+ ) state, the extra field is equal to py the cavity field reversing its direction of motion. Figure
B=ig/2x. The conditional dynamics in this case can be un-6(a) demonstrates such a trajectory with<2«. The field
derstood with the help of the identity spends most of the time near one or the other fixed point. If
- _lrp*a_ pat the rate of atomic flips is increased such that2«, then we
Dlalp=Dla+f]-zlp"a~fpa’p). 39 find a trajectory like the one shown in Fig(. The field
With the local oscillator in place, cavity jumps will now spends most of its time in between the two fixed points.

correspond to the following operatf®,39]: These two figures provide the dynamic evolution which,
ig ig upon ensemble averaging, leads to the steady-state distribu-
T 2 t_ 2 tions shown in Fig. 4.
Jp=2k| a+ P ;(a 2K>. (3.8
IV. FEEDBACK

By tracing Eq.(3.8) over the cavity field and following a
procedure similar to the one used to arrive at E334) we A. Field dynamics with feedback
find that unraveling the master equation with Eg.8) is

equivalent to unraveling with the following “jump” opera- We begin our feedback analysis in the secular approxima-

tion to examine the cavity field dynamics. There are several

tor: ) . ; N .
time scales involved in our problem and in this section we
_ g — establish what the relative sizes for these should be in order
Tr(Jp) = 5 (B2 Dpa(pz—1). (3.9 {0 give us the most effective feedback results.
Let the atom be in thé+) dressed state and the field in
For the atomic density operator, it turns out that the corresponding fixed point coherent sthte0, wheref
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FIG. 7. Dynamics of the cavity field. A spontaneous emission
0.6 1 flips the atomic state @t=0. This is detected from the good detec-
f tion at timety, and a feedback pulse applied. If a bad detection
/i | subsequently occurs at timg then an unwanted second feedback
g 0.4 pulse is applied, which puts the atom in the wrong state and drives
the cavity field in the wrong direction. The dashed line shows where
0.2 1 the field should go without the bad detectiontgt As before the
field is measured with the displaced operater(y+a/«)/2.
0 T T T T T
0 5 10 15 20 o5 30 We consider two possible events that will disrupt the ef-
fectiveness of the feedback protocol. The first is a “bad”
it detection, following the “good” detection at timéy, as

FIG. 6. Stochastic evolution of the cavity field following S_hown in Fig. 7. 1t is a bad_ detection because, with our
spontaneous-emission events. The top figure correspongekd  Simple feedback protocdto switch the atomic phase when-
=2.5 while the bottom figure corresponds #62«x=0.067, which ~ €Ver a cavity photon is detectedhis detection will switch
are the same values used to calculate the distributions in Fig. 4. TH&€ atom back into the wrong dressed statg. We wish to
parameterf =y/2+g/2« is the field displacement from ther)  Minimize the probability for this event.

fixed point. The probability for a bad detection can be written as
=y/2+g/2k. With the weak local oscillator as described p =fwdt fwdt bt ¢ 43
above, this means the detector sees a vacuum output for the "o 9y oPo({olg)Po(to)- “3

cavity field. The feedback protocol involves switching the
state of the atom only when we detect a photon from thedere py(ty|t,) is the conditional probability density for de-
cavity. tecting a bad photon at timig, following a “good” cavity

The following field dynamics illustrate a typical feedback detection at time,,. With a detection efficiency, it is given
event. Say the atomic state flips frgm) to |—) att=0 by  py
a spontaneous emission. Then the fieMill subsequently
grow as Po(tolty) =2k [ f(tp) 1%, (4.9

_ —kt
f(O=(gla(1=e*) for O<t<ty. (4.1 since the coherent field amplitud¢t) depends upoty al-

ready in Eq.(4.2). Similarly, py«(ty), the probability density
for detecting the first photon at tintg, is given by

Py(ty) =2k 7 f(ty)]?P(no g beforety). (4.5

Herety is the time at which we first detect a cavity photon
emission. Since(in this picture where the atomic state
change is treated as a known eyvettte field is always in a
coherent state, this detection has no effect on the conditional
system state. However, with feedback, the detection trigger
a 7 pulse which switches the state of the atom. This “flip”
will cause the field to reverse and head back towards th
“vacuum” as

f()=(g/k)(1—e “9e <" for t>t,. (4.2

Plere P(no g beforety), the probability for there to be no
getections prior tdg, is equal to the solution of

P=—2ky[f(1)]?P, (4.6
with P=1 att=0.
For long times, the system is restored to the desired state of Using all of the above expressions we arrive at the fol-

|+) andf=0. lowing for the probability of a bad detection:
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have other, less obvious, adverse consequences for our abil-

[+ ity to control the atomic state through feedback.
|—> - > To suppress these events we first find, in a similar proce-
o dure as above, the full expression for the probability of the
f spin flip “sideband" system undergoing a state flip before the cavity has emitted a
photon photon at timety. This is
Y o
[+ 'l‘:; PV:l_fo dtP(no y beforety)py(ty). (4.9
Since the rate of state-changing spontaneous emissions is
vl4, the probability that there is no such event before time
|_> 'I‘”; is simply given by
— oA
f cavity photon apply P(no y beforet)=e "~ (4.10
feedback ThusP,, evaluates to
—_—I® » u
[+ B P,= 1—zf due "2k(uye k) (4,12
0

This function is monotonicallyecreasingwith the vari-
FIG. 8. Two possible events will keep the system in ke able z. However, since we know from consideration of the
dressed state. The top event goes undetected by the feedback lodisst disrupting process that we requizeg1, we find an ap-
but leads to an unwanted sideband fluorescence photon. The bottapioximate analytic expression fét, in the limit of smallz,
event is detected and suppresses the sideband photon. 27| -1
2
Y

P~ (4.12

2 o u
Pb:%JOdu[k(u)]zex;{—zfodvk(v)} (4.7)

For this to be small we evidently requirg/k<<z, or y
<7g°/ k. This condition can be understood from the adia-
where we have defined the parameter27g?/«® and the batic equatior{2.39 for the atomic state. This shows that the
function k(u) =(1—e Y)2. As stated, we wish to minimize rate of the state-changing atomic jumps scaleg,ashereas
this probability, which depends only upanit is not difficult ~ QND measurement terrtwhich is all that allows us to fol-
to show that it is monotonically increasing with and is  low the state of the atojrhas a strength scaling a8/«. To
therefore minimized for smalt. In this regime Eq.(4.7)  follow the state of the atom well, we require the former to be

reduces to small compared with the latter.
We finally combine all the inequalities that we have es-
z 79 tablished so far for obtaining good feedback control of our
Py~-=—. (4.8 two-level system
2 2
O>k>g>g2 k> y. (4.13

Thus we requirgg<<k. . .
The second disrupting event occurs if the atomic stateIt is worth noting that Eq/(4.13 corresponds to the same

flips back to staté+) due to a spontaneous emission beforemegual.itie.S that were as_sumed in order to justify t.he adia-
its excursion into staté—) has been noticed through the batlc_ e_Iln_unatlon method in Sec. Il D. Also note that in order
detection of a cavity photon at tintg. At first glance this to minimize bothP, andP, , the optimalg would scale as
event seems to be helpful because it is forcing the atom back g~ (3yl P V4, (4.19
into the desired+) dressed state. However, this ignores the
fact that we wish to judge the success of the feedback by the It should be noted that photodetector dark counts will also
elimination of the lower sideband in the Mollow triplet. be a source of error for the feedback scheme. We ignore
Figure 8 illustrates why this occurs if a feedback pulsethem because their typical ratess than 10s™1) is much
forces the atom back into the proper state. If the atom flipdess than the rate of photodetectiogg/(«~ 10" s~ 1). How-
back of its own accord, this corresponds to Pex] term in  ever, in practice there will be excess “dark” counts due to
Eqg. (2.23 which means a photon is emitted into the low- imperfect mode matching between the cavity output beam
energy sideband of the spectrum. and weak local oscillator. In addition, imperfect cavity lock-
More generally, the occurrence of a second dipoleding (length stabilizatiopwill lead to excess effective noise in
changing spontaneous emission before the first one has betre relative phase of the cavity output and local oscillator.
noticed indicates that the measurement is failing to keep\lthough this would have little deleterious effect on a homo-
track of the state of the atom. We would thus expect this talyne scheme, it will contribute more dark counts to the adap-
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tive photon counting scheme. This scheme would require C. Adiabatic feedback master equation
interferometric stabilization of the entire optical setup,

as in . . . .
We begin our analysis of E@4.19 with the assumptions
Ref.[32]. g Y .19 P

in Eq. (4.13. This permits the use of the adiabatic elimina-
tion that was discussed for the nonfeedback master equation
B. Feedback master equation in Sec. 11 D. Following the same method used there, we first

The general method for deriving a direct detection feed—tranSform into the interaction picture defined by,

back master equation has been developed by one [&1}s (:zggylz and make the RWA as was done to arrive at Eq.
In the limit of Markovian feedback Ed2.8) is modified in e - - o
the following way: p=—ig/2x(u,+1),p]+ 2k 7D oy (a+ig/2x)]p
M-1 — -
bz—i[H,p]+D[UCf]p+ E D[CM]P- (4.15 +2k(1—7n)D[(a+igl2k)]p+ vDlo]p. (4.20
pu=1

Adiabatically eliminating the field and then transforming out
of the interaction picture leads to the following feedback

HereU is the unitary feedback operator which acts following ; )
master equation for the atom alone:

a detection from channe; .
In this proposal the desired feedback operaidtips the ) ) 9°

state of the atom. This could be accomplished with the ap- Pa= ~1Q/20y.pal+ yDlolpat (1= 7) 5 Dloylpa

plication of a= pulse along a mode which differs from the

cavity mode. This can be represented by the following op- 79°
erator: + 5 Plox(oy=1)]pa. (4.21
U=i(|+ == =X+ =0x. (4.1 We study both the fluorescence spectrum of the atom and

the steady-state population of the) state. Both of these are

This approach is valid providing the feedback is applied in-obtained from the dynamic equations for the quantifie
stantaneously, as we will assume for the remainder of th@nd(o). These are found to be

paper. This approximation will be valid in the limit where the _ y ¢? 7g? ?  7g?

duration of the feedback pulse is shorter thaft,1As(} is (o)y=~— >to T —)(a}— (2—— —)(cr*}

the fastest relevant atomic frequency. If this were not pos- KooK KooK

sible, then a more complicated pulse would have to be ap- i g2

plied in order to have the desired effect in the interaction + Qo )2~ P (4.22

frame rotating at frequenc§).
The feedback is conditioned upon detections of the cavity ) g2
field in interference with the local oscillator. We fully restate (0,)=—Q(a ")+ (o)) — ( vt o (o=
the master equation ER.19 using the identity(3.7) which 4.23
displays the decay channel with the local oscillator added: '
_ From these we find the steady-state values(igy), (o),
p=[g(a'oc—oc'a)-iQo,/2—igx/2p]+yDlolp and{a,) to be

+2xD[a+ig/2«]p. (4.17) (o) 20 k%y
0- — L
e Y2 k% +202k%+ 3ykg?+ 2g*

(4.29

We condition our feedback upon detections of the field,

=\2k(a+ig/2«). Following Eq. (4.19 we include the yi \ 7

feedback from Eq(4.16) by modifying Eq.(4.17) to arrive (oy)ss=| 1+ pysy (4.2
at an expression for the feedback master equation: 9

Ky(Kky+2g°)
k>y?+20%k%+3kyg®+29* .

p=[g(a'o—o'a)—iQa,/2—igx/2,] (02)s= (4.26

+2xD[oy(a+igl2k)]p+yDlo]p. (4.18
Note that onlyo, is changed from its no-feedback value

One further improvement of our analysis is the inclusion of(zer(j which is obtained by lettingy—0.

the detector efficiency;. This requires the following modi-
fication [21]: V. RESULTS

. . . ) _ We present both analytical and numerical results for our
p=[g9(a'c—oc'a)—iQa,/2—igx/2,p]+2knD[o\(a feedback protocol. Numerical studies were carried out by

. _ . solving Eq.(4.19 with the quantum optics toolbox software
+ig/2k)]p+2k(1— n)D[(a+ig/2k)]p+ yDlo]p. for MATLAB [33]. Analytical calculations of Eq(4.22 and

(4.19 Eq. (4.23 were performed with algebraic manipulation soft-
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FIG. 9. Stea(_jy_-state occupa_tlon of tE) state as a function of FIG. 10. Numerical calculation of the steady state occupation as
the detector efficiency. Numerical values are represented by dots

and the approximate analytical expression is shown as a solid Iin%szj(;]?::olzr; Ofglb'fj't \-mfms_yitem parameters are the same as those
throughout the rest of the paper. This plot was calculated with the 9 o
following parameters: @, «,9)/ y=(50,15,5). . . . . . .
The spectrum, in the adiabatic regime, is described rather
ware (MAPLE). We find that in the proper limits defined by Well by the sum of three Lorentzians and &function.

Eq. (4.13 the two methods are in agreement. The results Wél'herefore it is the location, width, and area under these three
present are for more typical cavity QED vali@s]. peaks that is of most interest. Rewriting Ed4.22) and

We begin by solving for the steady-state population of the(4-23 in matrix form,
| +) state. This is a direct measure of the effectiveness of our
feedback protocol. The steady-state population is related to

the steady-state expectation @f by with s=((o),{c"),(c,))T, the position and widths of the
1+(0oy)ss three peaks are given by the eigenvalues ofithenatrix,

2 o= —3y/4— g2l k= \y216—- 02~T,+iQ,

No=—¥I2—20%n/ k=T, (5.9

s=Ms, (5.3

+=

(5.9

Figure 9 shows a plot of the steady-state population as a
function of the detector efficiency for parameters consistent
with the adiabatic approximation. Note that in this regime

the feedback is not sensitively dependent on the detectiof"€'€ . . .
Using these results, we write an approximate expression

efficiency. . )
Figure 10 shows the population as a function of the ratiofor the total spectrum of the atom in which the area under

of the couplingg to the cavity decay rate. The agreement each peak is apparent,

here we have neglected terms of ordér()?.

between the theory and numerical results is good in the limit B(T', /) C(Ty/ )

of g/k<<1, but fails at larger values aj/«. This is as ex- S(w)=Ad(w)+ ! 0

pected from Eq(4.13, and also explains the discrepancy in IM+(0+Q)? T+ (w)?

Fig. 9. We also note that the effectiveness of this feedback

begins to decrease as the valuesdare increased beyond . D(I'y /) 55
k. This is consistent with the arguments presented in Sec. 24+ (0—-Q)2 '
IVA.

The fluorescence spectrum of the atom provides an eXxere A s the coherentg=0) component of the spectrum,
perimentally accessible method for studying the ef“fectlve-coming ff0m<UT>ss<(T>ss- This is nonzero with the feedback

ness of this feedback. The spectrum of the atom is giveRyecisely because the feedback stabilizes the atom in a state
e_pr|C|tIy py the Fourier transform of the two-time correla- |+) with a definite dipole moment. To leading order this
tion function term evaluates to

fy ee]

S(w)= 27

e "(o(7)0(0))sdr. (5.2 479°C?

Y
=y . .
ATV rancy? ©9
An analytic expression for Ed5.2) follows by applying the
quantum regression theorem to EG&22 and(4.23. Using  Here the limit is for C,;—o, where C;=g% «y is the
textbook methodg19] we arrive at an expression for the single-atom cooperativity. Again we have neglected terms of
spectrum of the atom which is too lengthy to report. Insteacbrder y?/Q?, which includes the small coherent scattering

we consider some of the more salient features of our resultserm present even in the absence of feedback. The Lorentzian
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FIG. 11. Numericaldoty and analytic(solid line) calculations FIG. 12. Numericaldots and analytic(solid line) calculations

for the fluorescence spectrum with no feedback. The parametefy; the fluorescence spectrum with feedback. Other details are as in
used are the same as in Fig. 9. Both axes are measured in ugpits of Fig. 11.

peaks atv=—(), ©=0, andw=() have areaB, C, andD,  state, one of the sidebands in the atomic fluorescence spec-

respectively. In the limit of largé) they simplify to trum vanishes and the other doubles. These qualitative fea-
tures are as would be predicted by the simple quantum jump

Y 1 model using dressed stafed. However, to predict quantita-
B= 8 1+479C, -0, (5.7 tively the best regime, the effectiveness of the feedback, and

the exact shape of the fluorescence spectrum, requires the
rigorous quantum theory of feedback we have used &

_Y m_)o, (5.8  based on quantum trajectories.
4 (1+47C,)? For our feedback schen@hich involves photon count-
ing with a small local oscillatgr the best regime isy
y 1+87C, <g?%/k<g<k<Q. Homodyne detection, as considered in

Y
—7 (5.9  Ref.[26], could also be used as a basis for feedback although
it would be more difficult to model and analyze. With
Here the limits again are fopC,—o. In this limit we see homodyne-based feedback the considerations that led to the

that emission is divided equally between the-0 coherent conditiong<x do not obviously apply, and indeed in Ref.
peak, and thes=() Lorentzian peak. By contrast, in the no [26] the opposite condition held. However, the condition
feedback caserf=0), one may quickly observe that the area C1=9%/xy>1 would still be necessary, as the single-atom
under each of the sideband peaks is one-half that of the cefooperativity determines how much the field is influenced by
tral peak. In all cases the sum of all peaks is equay/th the atomic state.

Figures 11 and 12 show plots of the fluorescence spec- In the regimeg>«, the field states correlated with the
trum of the atom derived analytically from the adiabatically @tomic polarization states have a phase difference much
eliminated master equation and numerically from the fulllarger than the phase uncertainty of a coherent state. Hence
master equation. Figure 11 has no feedback and the sidéey may be reliably distinguished and the cavity takes on
bands are equal in size. The scale of both plots was set §€ role of a meter, with distinct “pointer stateg35] corre-
show the change in the relative sizes of the sidebands. B@ted with orthogonal states of the microscopic system
turning the feedback on in Fig. 11 we see that the low-energ¢atomic dipolg. Indeed, coherent states with macroscopi-
sideband is suppressed with the high-energy sideband efally different phases were one of the pointer states consid-
hanced. Also notice the appearance of thunction com-  €red in the early work of Refi36]. However, it is worth

ponent on resonance. These features should be measuraBl@Phasizing that this macroscopic difference between states
experimentally. of the intracavity field is not necessary for feedback. In our

regime, the two intracavity field states are barely distinct.
Over time scales that are long compared to the cavity decay
time, the light continuously leaking from the cavity reveals
We have shown that feedback can be used to stabilize sufficient information(through continuous samplihg@bout
strongly driven atom in one dressed state by reversing itthe phase of the cavity field to enable the experimenter to
polarization whenever its conditional state jumps into thediscriminate between the two atomic states. Feedback stabi-
other dressed state. The atomic state is conditioned updization of the atomic state is thus possible as long as the
phase-sensitive detection of the light emitted by a cavitytime scale for gaining this information is short compared to
mode which is strongly coupled to the atom. The cavity fieldthe average time between spontaneous emissions.
acts as a QND measuring device for the atom. When the It is also interesting to compare our regime with that
conditional state of the atom is forced to stay in one dressedhere «>(). In this regime it is possible to adiabatically

T 81+49C,

VI. DISCUSSION
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eliminate the cavity without first making the secular approxi-a stochastic noise term to E@.3),
mation in the frame rotating at Rabi frequenQy Thus the

cavity mode acts as a one-dimensional vacuum field for the 9
atom[37], so detecting the light from the cavity is equivalent Hy(t)= Q+—§(t)) oy. (A1)
to detecting the atomic emission into the other vacuum \/ﬂ

modes. Since we assumg?/ x>y, emission into other . ) . )
modes can be ignored compared to emission through th&his stochastic term can be interpreted as the quantum noise
cavity. In this regime, measuring the cavity emissions usind" the amplitude of the cavity mode which is coupled to the
exactly the samésmall local oscillator technique as we atom. Equation2.35 is recovered by noting thaig+ dpg

have proposed in this paper turns out to be practically iden=e'"%pSe'"d" and that the noisy terng(t) in Eq. (A.1)

tical to a measurement scheme proposed by one of us ambeys the usual Wiener increment statistics wilit))=0
Toombeg 15] for detecting quantum jumps between dressedand( &(t)?)=1/dt,

states. Thus the feedback scheme we have proposed here

would work in principle irrespective of the ratio a&f to (). 9
However, in the regime> () the purity of the conditioned ps+dpi=—i| | Q4+ —==¢&(1) ay,pg dt
state(and hence that of the feedback-stabilized s$tatsuld \/Z

depend strongly upon the detection efficiengy This is in
contrast to the regime of this paper where the purity of the
feedback-stabilized state depends only weakly ugon
The fact that the effectiveness of the conditionif@nd (A2)
hence feedbagkis not compromised by a detection effi-
ciency less than unity is an attractive feature of the schemehere p; is the conditioned density operator for the atom
we propose here. Paradoxically, other detection imperfecalone. Upon ensemble averaging over all possible trajecto-
tions may even improve its effectiveness. Real detectorgies we recover the last two terms in EQ.35.
have finite dead-time following a detection, during which
thzey cannot detect a_gain. If Ehis time were ”comp_arable 0 APPENDIX B: BRIEF REVIEW OF QUANTUM
g“/ k then the probability of a “bad detection,” as discussed TRAJECTORIES
in Sec. IVA, would be much reduced. In fact, this could lift
the g<« restriction derived in that section, and thereby The simplest measurement-based unraveling of a master
make the realization of the experiment more flexible. equation separates the evolution of the system into two parts
Feedback with a detector having a finite dead time could9]. The first is the jumps which correspond to detections at
still be modeled relatively easily within the master equationsome detector outside the system. The second corresponds to
formalism by using the theory of realistic detectors proposedhe nonunitary but smooth evolution of the system between
by Warszawski and two of U88]. The same theory could in these jumps. A quantum trajectory is the evolution of the
principle be expanded to encompass the delay time and reonditioned system statp®(t), consisting of alternating
sponse function of the feedback loop. However, at somgumps and smooth evolution for various times. A weighted
point the model would become so unwieldy that a quantunaverage over all possible conditioned evolutions leads to the
trajectory simulation would be the better option. A quantumunconditioned density operatqr(t). We follow the presen-
trajectory simulation would also be the only practical way totation in Ref.[39] in providing a more quantitative discus-
simulate another experimental option, namely to use theion of these ideas.
feedback to flip the phase of the cavity field, rather than the We begin by stating the formal solution of EQ.4),
phase of the atomic dipole. Since the dressed state is really
defined by the relative phase of the atom and field, in prin- p(t)=efp(0). (B1)
ciple this would have the same effect, and may be easier to
achieve experimentally. The exploration of these experimenThe effect of a photodetection on the system state is de-
tal possibilities using quantum trajectory theory is a topic forscribed by
future work.

g2

— —&(0)2dt(oypg+ paoy—oypgoy),

Jp=cpc’. (B2)
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We rewrite the master equation in terms of this jump super-
operator,Lp=Jp+(L—T)p, and use a generalized Dyson
‘expansion to separate out the two types of evolutions of the
monitored system,

APPENDIX A: EQUIVALENCE OF NOISY DRIVING c t t
AND ATOMIC QND MEASUREMENT p(t)= EO Odtmf dtp-1- - f dt;pS(t), (B3)
m= 0 0

We establish the equivalence of 4 o] term in Eq.
(2.395 and a noisy driving Hamiltonian. We begin by adding with
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P()=8(t—t) TS(tm—tm_1)- - - JS(t1)p(0). (B4) Pm=Tr[p°(t)]. Therefore, the unconditioned density opera-
_ tor becomes a weighted sufar equivalently, ensemble av-
The unnormalized, conditioned density operaigfi(t) de- erage over all trajectories:
scribes a particular series of jumps and smooth evolution

according toS(t)=e*~ 9. To normalize the conditioned c ot t t
density operator we simply divide by its traceg(t) P(t)zmz_o odtmfo dtp-p- - fo dtipm
=p%(t)/Tr[p°(t)]. This trace is also equal to the exclusive
probability density for a particular series of photodetections, X(ty, ...t [0 pC(1). (B5)
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