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Quantum jumps between dressed states: A proposed cavity-QED test using feedback
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A strongly driven cavity containing a single resonant strongly coupled atom exhibits a phase bistability. The
phase of the field is strongly correlated with the phase of the atomic dipole. It has been shown previously that
phase-sensitive monitoring of the field emitted by the cavity would induce conditional quantum jumps between
orthogonal atomic dipole states~‘‘dressed’’ states!. Here we show that such monitoring can be used to fix the
atom into a single dressed state. As soon as a state-changing quantum jump is inferred from the measurement
of the field, the atomic state is flipped using ap pulse. We study this feedback scheme analytically and
numerically. We show that the occupation probability of the desired fixed state can be as high as 1
21/8hC1, whereC1@1 is the single-atom cooperativity andh the detection efficiency~which does not have
to be close to unity!. The control of the atomic dynamics is manifest in the fluorescence spectrum. The widths
of all three peaks are modified from the usual Mollow spectrum, and almost all of the area under one of the
sidebands is transferred to the other sideband. This is as expected, as one of the dressed states is essentially
unoccupied, and transitions out of it do not occur. In addition, the width of the central peak goes to zero. This
indicates coherent scattering due to the nonzero mean atomic dipole created by the feedback.

DOI: 10.1103/PhysRevA.67.042106 PACS number~s!: 03.65.Yz, 42.50.Lc, 03.65.Ta
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I. INTRODUCTION

Bohr’s quantum jumps between atomic states@1# were the
first form of quantumdynamicsto be postulated. Of cours
Bohr’s old theory did not survive the quantum revolution
the 1920s. In its aftermath, quantum jumps were revived@2#
with a new interpretation as state reduction caused by m
surement. However, simple quantum jump models for ato
were never entirely forgotten. For example, the dressed s
model @3# was used successfully to give an intuitive exp
nation of the Mollow triplet@4# in resonance fluorescence.

It was the electron shelving experiments of Itano and
workers @5# which focused attention on theconditional dy-
namics of individual atoms. Subsequent work on waiti
time distributions@6,7# led to a renewal of interest in quan
tum jump descriptions@8#. It was shown by Carmichael@9#
that quantum jumps are implicit in standard photodetect
theory. Around the same time, stochastic quantum ju
equations were introduced as a tool for simulating the
namics of a dissipative system with a large Hilbert spa
@10,11#, and their links with quantum measurement theo
were also noted@12,13#. This measurement interpretation
generally known as quantum trajectory theory@9,14#. By
adding filter cavities as part of the apparatus, even the qu
tum jumps in the dressed state model can be interprete
approximations to measurement-induced jumps@15#.

The measurement interpretation of quantum trajecto
has proven invaluable for understanding and predict
quantum optical correlation functions, especially in cert
cavity QED experiments@16,17#. However, correlation func-
1050-2947/2003/67~4!/042106~13!/$20.00 67 0421
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tions traditionally were, and always can be, calculated wit
a deterministic formalism@18,19#. Is there more direct evi-
dence for the existence of interesting quantum states co
tioned upon continuous monitoring? In Ref.@20# one of us
suggested that ‘‘conditioning is realized by feedback.’’ Th
is, the way to see a conditioned state is by using the m
surement results on which it is conditioned in a feedba
loop to change the system dynamics@21#. This has recently
been realized by two of us and co-workers@22# in a weakly
driven cavity QED system. In that experiment, changing
driving field a precise time after the detection of a phot
from the cavity freezes the conditioned state until the driv
is returned to its initial value, when it resumes its evolutio

This paper proposes another way of realizing condition
by feedback, this time in astronglydriven cavity QED sys-
tem. We assume a single, strongly coupled (C15g2/kg
@1) atom resonant with the cavity. This system was sho
@23,24# to exhibit optical phase bistability, with the phase
the field strongly correlated with the phase of the atom
dipole. The case of many atoms was shown to exhibit opt
phase multistability@25#. Previously, two of us@26# have
shown quantitatively how phase-sensitive monitoring of
field emitted by the cavity would enable one to infer t
atomic state. This was also noted~in a different context! in
Ref. @27#. Such a measurement would cause ‘‘retroactiv
@26# quantum jumps between orthogonal atomic dipole sta
~‘‘dressed’’ states!, as predicted by the dressed atom mod
@3#. As noted above, these jumps could be induced dire
~not retroactively! by measuring the atomic fluorescence u
ing filters. But in practice, the efficiency of such a measu
©2003 The American Physical Society06-1



c

s
s
a
ur
a
f

ta

o
th
th
to
n
o
fu

c
h
d
c
th
. I
la
sy
ho
ld
f
f
i
.

th

a

e

s

th

ou

w

ld

e-
an
at

ay
gle
e
of
the

om

ro-

nce

he

m to
pa-
the
ny

ap-
of
vo-

m

ble
s

e

.

REINER, WISEMAN, AND MABUCHI PHYSICAL REVIEW A 67, 042106 ~2003!
ment would be so low that the cavity QED scheme is mu
more likely to be realized experimentally.

In this paper we show that with feedback, one of the
conditioned dressed states can be stabilized. The idea is
ply to flip the atomic state using ap pulse as soon as
state-changing quantum jump is inferred from the meas
ment of the field. We consider the simplest measurement
feedback scheme, and obtain quantitative predictions
how well the atomic state can be fixed in one dressed s
This turns out to be only weakly dependent uponh, unlike
other feedback-stabilization schemes~see Ref.@28# and ref-
erences therein!. We also calculate the complete spectrum
the feedback-modified atomic fluorescence, which shows
enhancement of one sideband at the expense of the o
This is also as would be predicted from the dressed a
model@3#. This experiment would thus be a test for the co
ditional states predicted by this model, and, more imp
tantly, a test of the conditional states predicted by the
quantum trajectory theory.

This paper is structured as follows. In Sec. II we introdu
the cavity QED system, and various ways to describe it. T
includes a semiclassical picture of the field and atomic
poles, an approximate quantum description which refle
this, and a quantum description of the atom alone in
regime where the field can be slaved to the atom. In Sec
we investigate the stochastic conditional dynamics in the
ter two descriptions. Based on this understanding of the
tem, in Sec. IV we propose our feedback scheme. We s
that for this scheme we do wish to work in the slaved-fie
regime, so that the system can be modeled by the state o
atom alone. Using a feedback-modified master equation
the atom we obtain quantitative predictions for the atom
state and the resonance fluorescence spectrum in Sec. V
compare this with the results of a numerical simulation of
full system. We conclude with a discussion in Sec. VI.

II. THE SYSTEM

The cavity QED system we consider is defined by
single, two-level atom~TLA ! strongly coupled to a single
mode of a Fabry-Perot cavity. This system is well describ
by the Jaynes-Cummings Hamiltonian@18,19#

HJC5\vasz1\vcb
†b2 i\g~s†b2b†s!, ~2.1!

wheres†, s, and sz5@s,s†# are the Pauli spin operator
for raising, lowering, and inversion of the atom, andb† and
b are the standard raising and lowering operators for
internal cavity field mode with frequencyvc . The strength
of the atom-field coupling is characterized by the dipole c
pling constant,g, and is given by

g5A m2va

2\e0V
, ~2.2!

wherem is the transition dipole moment,va is the atomic
transition frequency, andV is the cavity-mode volume.

The cavity QED system radiates energy through t
channels. The first channel is along the cavity axis~i.e.,
through the cavity mirrors! and causes decay of the fie
04210
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amplitude at the rate ofk. The second channel is spontan
ous emission from the two-level atom into modes other th
the cavity mode. This causes decay of the atomic dipole
the rate ofg/2, where we assume the atomic radiative dec
is essentially unmodified by the cavity. We use the sin
atom cooperativityC15g2/kg to describe the strength of th
coherent atom-field coupling relative to the rate of decay
the system through these two channels. We consider
strong coupling regimeC1@1 throughout this paper.

Figure 1 presents a simplified picture of the single at
cavity QED setup. We define the driving field asE, meaning
that in a frame rotating at the driving laser frequency it p
duces a Hamiltonian

Hd52 i\E~b2b†!. ~2.3!

We assume that the driving laser frequency is on resona
with both the cavity and atomic transitions (v l5vc5va).

A. Master equation

The closed cavity QED system is well described by t
Jaynes-Cummings Hamiltonian in Eq.~2.1!. Performing
measurements on any system requires opening the syste
environmentally induced fluctuations. This leads to dissi
tion which modifies the Jaynes-Cummings dynamics. If
system interacts weakly and homogeneously with ma
modes of the environment such that the Born-Markov
proximation is valid then these environmental degrees
freedom may be traced out to leave a modified system e
lution @19,29#. This evolution is described by a quantu
master equation of the Lindblad@30# type,

ṙ52 i @H,r#1 (
m51

M

D@cm#r[Lr, ~2.4!

whereM is the number of environmental channels availa
for the system to decay through. Given arbitrary operatorA
andB, the superoperatorD is given by

D@A#B[ABA†2~A†AB1BA†A!/2. ~2.5!

We incorporateg andk into the master equation with th
following substitutions:

c15Ags, ~2.6!

c25A2kb. ~2.7!

FIG. 1. An illustration of the single-atom cavity QED system
6-2
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Combining Eqs.~2.1!, ~2.3! and substituting Eqs.~2.6! and
~2.7! into Eq. ~2.4! leads to the following expression for th
quantum master equation for an open cavity QED system

ṙ5@g~b†s2s†b!2 iEy,r#12kD@b#r1gD@s#r,
~2.8!

where y[2 ib1 ib† is the phase quadrature of the cav
field and thereforex[b1b† is the amplitude quadrature.

B. Semiclassical fixed points

We begin our analysis of Eq.~2.8! by reviewing the semi-
classical results in the large field regime obtained by Als
and Carmichael@23#.

Constructing the equations of motion for the semiclass
variables,a5^b&,s5^s&, andw5^sz&, we find

ȧ52ka1E1gs, ~2.9!

ṡ5gwa2 1
2 gs, ~2.10!

ẇ522g~a* s1s* a!2g~w11!. ~2.11!

We assume thatg is so small as to be negligible. Then th
atomic steady state will be pure:^sx

2&1^sy
2&1^sz

2&51. This
condition can be recast in terms of the variablesw ands as

w214usu251, ~2.12!

where we used the fact thatsy52 i (s†2s) and sx5(s†

1s).
There exist two sets of fixed points for Eqs.~2.9!–~2.11!

in the g50 case. One corresponds toafix50 ~for 2E,g)
and the other towfix50 ~for 2E.g). Since we are intereste
in the limit of high driving, we consider the latter case whi
leads to the following set of fixed points:

afix
6 5

E1gsfix
6

k
, ~2.13!

sfix
6 52

g

4E 7 iA1

4
2S g

4ED
2

, ~2.14!

wfix50. ~2.15!

In the strong driving limit,E@g, these expressions simplif
to

afix
6 5

E
k

7
ig

2k
[ā7 i ~g/2k!, ~2.16!

sfix
6 57

i

2
. ~2.17!

These semiclassical fixed points correspond to the follow
set of quantum states:

ucfix
6 &5uafix

6 &221/2@ ug&7 i ue&][uafix
6 &u6&, ~2.18!
04210
g

l

g

whereuafix
6 & is a coherent state@18#.

We simplify further analysis by separating the mean c
herent component of the cavity field from its fluctuation
Rewriting Eq.~2.8! explicitly in terms ofa5b2ā,

ṙ5@g~a†s2s†a!2 i ~V/2!sy ,r#1gD@s#r12kD@a#r,
~2.19!

whereV52gE/k is the Rabi frequency.
Figure 2 shows theQ distribution@18# for the cavity field

in steady state. Notice the bimodal structure which cor
sponds to the two fixed points in Eq.~2.13!.

C. Secular approximation for Rabi frequency V

In this section we show that the semiclassical fixed poi
of the preceding section are central to the full quantum
namics in the limit whereV is much greater than all othe
relevant rates. Apart from its last part, where we derive
explicit expression for the steady stater, this section is taken
from Ref. @26#.

Consider the dynamics in the interaction picture with
spect to the Rabi HamiltonianH05Vsy/2. This changes Eq
~2.19! into

rG 5@g~a†s̄2s̄†a!,r̄ #12kD@a#r̄1gD@s̄#r̄, ~2.20!

where the bar indicates the operator is in the interaction
ture. The transformed atomic lowering operator is

s̄~ t !52
i

2
~me2 iVt1mz2m†eiVt!, ~2.21!

wherem5u1&^2u, mz5@m†,m#5sy . Notice that the cavity
field is invariant under this transformation.

Substituting Eq.~2.21! into the first term of Eq.~2.20! and
assuming thatV@g allows the use of the rotating-wave ap
proximation~RWA!. This lets us ignore the rapidly oscillat

FIG. 2. The Q(a-ā) distribution calculated numerically from
Eq. ~2.19! in steady state. The bimodal structure of this distributi
illustrates the two fixed points for the cavity field. These fix
points are separated along the phase quadrature byg/k. Parameters
used for this calculation are (g,k,V)/g5(60,20,1200). These pa
rameters were chosen so as to show the clear separation of the
points.
6-3
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REINER, WISEMAN, AND MABUCHI PHYSICAL REVIEW A 67, 042106 ~2003!
ing terms in the Jaynes-Cummings Hamiltonian. This le
to the following simplification of Eq.~2.20!:

rG 52 ig/2@xmz ,r̄ #12kD@a#r̄1gD@s̄#r̄. ~2.22!

This simplified master equation will be used in Sec. II D
our discussion of the adiabatic elimination.

Continuing on, we now substitute Eq.~2.21! into the third
term of Eq.~2.22!. We apply the RWA to arrive at

rG 52 ig/2@xmz ,r̄ #12kD@a#r̄1~g/4!~D@m#1D@mz#

1D@m†# !r̄. ~2.23!

Figure 3 illustrates the transitions described by the last te
in Eq. ~2.23!. TheD@m# andD@m†# correspond to the atom
flipping from theu2& to u1& states, and the reverse, respe
tively. These transitions correspond to the upper and lo
sidebands of the atom’s fluorescence spectrum, respecti
TheD@mz# term corresponds to transitions between the sa
atomic dressed states. If the atom is in one dressed state
the rate of state-changing jumps and non-state-chan
jumps are bothg/4. This gives a total rate of spontaneo
emission ofg/2, as expected for a strongly driven ato
~which is half-excited!.

Now consider the following ansatz@26# for the density
operatorr̄,

r̄5 (
s56

us&^su ^ E
2g/k

g/k

dyPs~y!u iy /2&^ iy /2u, ~2.24!

whereu iy /2& is a coherent state for the operatora. This an-
satz assumes the cavity field can be described wit
Glauber-Sudarshan coherent field distribution@18,19# on a
line connecting the two semiclassical fixed points of differe
phases. It also assumes that the atomic state is diagon
the dressed-state basis, and that its state may be corre
with the phase of the field. Substituting Eq.~2.24! into Eq.
~2.23! shows that these assumptions are correct, and lea
the following dynamic equations forP6 , the fieldP func-
tions associated with theu6& atomic states,

FIG. 3. Energy-level diagram for the dressed state of the at
Transitionsa andd correspond to theD@m# andD@m†# switching
terms, respectively. Transitionsb and c correspond to theD@mz#
term and are on resonance with the driving field.
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Ṗ6~y!5
]

]y
~6g1ky!P6~y!1~g/4!@2P6~y!1P7~y!#.

~2.25!

The probability for the atom to occupy the stateus& is given
by ps5*dyPs(y)5Tr@rus&^su#. In steady state, we find tha

P1
ss~y!5C~g2ky!g/2k~g1ky!g/2k21, ~2.26!

P2
ss~y!5C~g2ky!g/2k21~g1ky!g/2k,

~2.27!

whereC is a normalization constant. It is worth noting that
the g→0 limit we recover the semiclassical fixed points
P6

ss(y)→d(y7g/k).
Figures 4~a! and 4~b! show plots of Eqs.~2.26! and~2.27!

for two regimes. These illustrate the distribution of the fie
states for this system. Notice that the field is only defined
the region2g/k<y<g/k. We see that in the limit withg
,2k that the field distributions are centered around the fix
points. In the other limit withg.2k we see that the atomic
states are not as well centered on the fixed points of the fi
We will study stochastic dynamics in Sec. III to further illu
trate the dynamics that lead to these distributions.

.

FIG. 4. Steady-state distributions of the cavity field for tw
different values ofg. The top graph corresponds to the semiclas
cal fixed point limit withg/2k50.067. The lower graph shows th
mixing of the field states wheng/2k52.5. g/k50.33 for both
plots.
6-4
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D. Adiabatic approximation

As we will show in Sec. IV, it turns out that for the feed
back protocol we propose it is necessary to havek much
larger thang and g. In this limit the cavity field dynamics
will be slaved to the atomic dipole. This allows for the ad
batic elimination of the cavity field as in Ref.@39#. We begin
by expanding the density operator in the field state basi
include the zero- and one-photon excitations,

r̄5 r̄0u0&^0u1~ r̄1u0&^1u1H.c.!1 r̄2u1&^1u. ~2.28!

Substituting Eq.~2.28! into Eq. ~2.22! leads to the following
set of equations:

ṙ̄052 ig~mzr̄
1†2 r̄1mz!/21gD@s̄#r̄012kr̄2,

~2.29!

ṙ̄152 ig~mzr̄
22 r̄0mz!/21gD@s̄#r̄12kr̄1, ~2.30!

ṙ̄252 ig/2~mzr̄
12 r̄1†mz!1gD@s̄#r̄222kr̄2.

~2.31!

The atomic density operator is the full density opera
traced over the cavity field,r̄a5Trc( r̄)5 r̄01 r̄2. From Eq.

~2.29! and Eq.~2.31! we find thatṙ̄a is given by

rG a52 ig/2@mz , ‘ r̄11 r̄1†#1gD@s̄#r̄a . ~2.32!

Equation~2.30! is dominated by the linear term ink. This
term quickly damps the cavity mode and we ignore init
transients so thatrG 150. To leading order this leads to

r̄15 i
g

2k
r̄0mz . ~2.33!

In effect, we have slaved the cavity field state, determine
leading order by the off-diagonalr̄1, to the atomic state
determined to leading order byr̄0.

Substituting Eq.~2.33! into Eq.~2.32! gives the following
expression~to leading order! for the master equation of th
atom alone:

rG a5
g2

2k
D@mz#r̄a1gD@s̄#r̄a . ~2.34!

Transforming Eq.~2.34! out of the interaction picture recov
ers the original driving term,

ṙa5gD@s#ra1
g2

2k
D@sy#ra2 iV@sy ,ra#[Lara .

~2.35!

We thus see that the bad cavity limit allows for the adiaba
elimination of the cavity field, yielding a simplified maste
equation for the two-level atom alone. The first term d
scribes spontaneous-emission events that occur at the slo
rateg. The field contributes the second and third terms. T
second term corresponds to a quantum nondemolition~QND!
measurement on the state of the atom. This ‘‘measurem
04210
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can be viewed as the lossy cavity introducing a noisy driv
term in combination with the strong driving given by th
third term. This is shown in more detail in Appendix A.

III. STOCHASTIC DYNAMICS

A. Quantum trajectories

A brief review of the theory of quantum trajectories
provided in Appendix B, to which we refer readers unfam
iar with this field. We begin unraveling Eq.~2.20! with direct
cavity detections by introducing the following cavity ‘‘jump
operator:

Jr̄52kar̄a†. ~3.1!

Tracing over the cavity we arrive at an expression wh
describes the effect that Eq.~3.1! has on the atom,

Trc~Jr̄ !52kr̄2. ~3.2!

In the bad cavity limit one can slave the populated o
diagonal cavity field element with the vacuum element
settingrG 250. Then, to leading order, one finds the followin
expression forr̄2:

r̄25
g2

4k2
mzr̄amz . ~3.3!

Substituting Eq.~3.3! into Eq. ~3.2! we find

Trc~Jr̄ !5
g2

2k
mzr̄amz5Jar̄a , ~3.4!

which is equivalent to the ‘‘jumps’’ associated with the noi
QND measurement term from Eq.~2.34!.

We continue by constructing the (L2J) r̄ operator from
Eq. ~2.22!,

~L2J!r̄52 ig/2@xmz ,r̄ #2k~a†ar̄2 r̄a†a!. ~3.5!

Substituting Eq.~2.28! into Eq. ~3.5! we find that the non-
jump evolution is described by

Trc@~L2J!r̄#52
g2

2k
r̄a5~La2Ja!r̄a . ~3.6!

Equation ~3.6! together with Eq. ~3.4! demonstrate the
equivalence of unraveling the full density operator with ca
ity detections and unraveling the atomic density opera
with the mzr̄mz detections. Therefore, under the adiaba
approximation, monitoring the state of the cavity is equiv
lent to monitoring the state of the atom.

The above measurements are insensitive to the phas
the cavity field. For feedback we wish to distinguish differe
phases of the cavity field, and hence different atomic sta
This requires interfering the light emitted from the cavi
with a suitable local oscillator. An obvious possibility, co
sidered in Ref.@26#, is to use a large local oscillator to d
homodyne detection. Atomic jumps could be detected
6-5
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REINER, WISEMAN, AND MABUCHI PHYSICAL REVIEW A 67, 042106 ~2003!
looking for positive or negative transitions in the filtere
photocurrent, although the optimal signal extraction alg
rithm is much more complicated@26# and would require pro-
cessing the current using digital electronics, as in Ref.@31#.
Analysis of the resulting non-Markovian feedback would
quite difficult. In this paper we consider a much simpler s
of feedback, which is Markovian and which is based up
detecting the cavity light after aweak local oscillator has
been added.

Figure 5 illustrates how one could use a local oscillator
offset the large output cavity field. The intuitive idea is to s
the phase and amplitude of the local oscillator so as to ca
the output of the cavity when the field is in the semiclassi
fixed stateua1& corresponding to theu1& dressed state o
the atom. Detecting a single photon from the cavity p
local oscillator field indicates that the field has left that fix
state, thus implying that the atom has undergone a jump f
the desired dressed stateu1& to the otheru2&.

We have already added the real part of the local oscilla
when we changed from the full field operatorb to the fluc-
tuation field operatora. All that remains is to further offse
the cavity field by an appropriate amount. If we wish
stabilize the atom in theu1& state, the extra field is equal t
b5 ig/2k. The conditional dynamics in this case can be u
derstood with the help of the identity

D@a#r5D@a1b#2 1
2 @b* a2ba†,r#. ~3.7!

With the local oscillator in place, cavity jumps will now
correspond to the following operator@9,39#:

Jr̄52kS a1
ig

2k D r̄S a†2
ig

2k D . ~3.8!

By tracing Eq.~3.8! over the cavity field and following a
procedure similar to the one used to arrive at Eq.~3.4! we
find that unraveling the master equation with Eq.~3.8! is
equivalent to unraveling with the following ‘‘jump’’ opera
tor:

Trc~Jr̄ !5
g2

2k
~mz21!r̄a~mz21!. ~3.9!

For the atomic density operator, it turns out that

FIG. 5. The proposed direct detection scheme with a local
cillator to offset the large coherent field. The photodetector e
ciency is given byh.
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D@mz#ra5D@mz21#ra . ~3.10!

Thus the rewritten master equation~transformed back out o
the interaction picture! is simply

ṙa5gD@s#ra1
g2

2k
D@sy21#ra2

iV

2
@sy ,ra#.

~3.11!

The new jump operator, which corresponds to detectin
photon as shown in Fig. 5, issy21. Note that this takes
u1& to u2& as desired. When this happens, the detected p
ton can be used to trigger ap pulse to take the atom back t
stateu1&. This will be described in detail in Sec. IV.

B. Field dynamics under the secular approximation

The above analysis assumedk large enough to adiabati
cally eliminate the cavity field. We stated in Sec. II D th
this was required for the particular feedback protocol in t
paper. To justify this it is necessary to give up that assum
tion, and examine the stochastic dynamics of atom and fi
This is tractable if we make the secular approximation
Sec. II C.

Imagine that we are constantly monitoring the cavity o
put along with all of the spontaneous emissions from
atom, and resolving the three peaks of the Mollow tripl
Then the total state will be a pure state, and from Eq.~2.24!
the field will be in a coherent stateu iy /2& and the atom in one
of the dressed states.

The final term in Eq.~2.23! shows the atom will jump
between theu1& andu2& states at a rate ofg/4. Assume that
the atom is initially in theu1& dressed state and the field
y52g/k. From Eq.~2.23! we find the state of the cavity
field following a jump into theu2& dressed state is given b

ẏ5~g2ky!, ~3.12!

which implies thaty decays exponentially at ratek towards
the other fixed point,g/k. Each atomic state flip is followed
by the cavity field reversing its direction of motion. Figu
6~a! demonstrates such a trajectory withg,2k. The field
spends most of the time near one or the other fixed poin
the rate of atomic flips is increased such thatg.2k, then we
find a trajectory like the one shown in Fig. 6~b!. The field
spends most of its time in between the two fixed poin
These two figures provide the dynamic evolution whic
upon ensemble averaging, leads to the steady-state dist
tions shown in Fig. 4.

IV. FEEDBACK

A. Field dynamics with feedback

We begin our feedback analysis in the secular approxim
tion to examine the cavity field dynamics. There are seve
time scales involved in our problem and in this section
establish what the relative sizes for these should be in o
to give us the most effective feedback results.

Let the atom be in theu1& dressed state and the field
the corresponding fixed point coherent statef 50, wheref

s-
-

6-6
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QUANTUM JUMPS BETWEEN DRESSED STATES: A . . . PHYSICAL REVIEW A67, 042106 ~2003!
5y/21g/2k. With the weak local oscillator as describe
above, this means the detector sees a vacuum output fo
cavity field. The feedback protocol involves switching t
state of the atom only when we detect a photon from
cavity.

The following field dynamics illustrate a typical feedba
event. Say the atomic state flips fromu1& to u2& at t50 by
a spontaneous emission. Then the fieldf will subsequently
grow as

f ~ t !5~g/k!~12e2kt! for 0<t<tg . ~4.1!

Here tg is the time at which we first detect a cavity photo
emission. Since~in this picture where the atomic sta
change is treated as a known event!, the field is always in a
coherent state, this detection has no effect on the conditi
system state. However, with feedback, the detection trigg
a p pulse which switches the state of the atom. This ‘‘flip
will cause the field to reverse and head back towards
‘‘vacuum’’ as

f ~ t !5~g/k!~12e2ktg!e2k(t2tg) for t.tg . ~4.2!

For long times, the system is restored to the desired stat
u1& and f 50.

FIG. 6. Stochastic evolution of the cavity field followin
spontaneous-emission events. The top figure corresponds tog/2k/
52.5 while the bottom figure corresponds tog/2k50.067, which
are the same values used to calculate the distributions in Fig. 4.
parameterf 5y/21g/2k is the field displacement from theu1&
fixed point.
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We consider two possible events that will disrupt the
fectiveness of the feedback protocol. The first is a ‘‘ba
detection, following the ‘‘good’’ detection at timetg , as
shown in Fig. 7. It is a bad detection because, with o
simple feedback protocol~to switch the atomic phase when
ever a cavity photon is detected!, this detection will switch
the atom back into the wrong dressed stateu2&. We wish to
minimize the probability for this event.

The probability for a bad detection can be written as

Pb5E
0

`

dtgE
tg

`

dtbpb~ tbutg!pg~ tg!. ~4.3!

Here pb(tbutg) is the conditional probability density for de
tecting a bad photon at timetb following a ‘‘good’’ cavity
detection at timetg . With a detection efficiencyh, it is given
by

pb~ tbutg!52kh@ f ~ tb!#
2, ~4.4!

since the coherent field amplitudef (t) depends upontg al-
ready in Eq.~4.2!. Similarly, pg(tg), the probability density
for detecting the first photon at timetg , is given by

pg~ tg!52kh@ f ~ tg!#
2P~no g beforetg!. ~4.5!

Here P(no g beforetg), the probability for there to be no
detections prior totg , is equal to the solution of

Ṗ522kh@ f ~ t !#2P, ~4.6!

with P51 at t50.
Using all of the above expressions we arrive at the f

lowing for the probability of a bad detection:

he

FIG. 7. Dynamics of the cavity field. A spontaneous emiss
flips the atomic state att50. This is detected from the good dete
tion at time tg , and a feedback pulse applied. If a bad detect
subsequently occurs at timetb then an unwanted second feedba
pulse is applied, which puts the atom in the wrong state and dr
the cavity field in the wrong direction. The dashed line shows wh
the field should go without the bad detection attb . As before the
field is measured with the displaced operatorf 5(y1g/k)/2.
6-7
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REINER, WISEMAN, AND MABUCHI PHYSICAL REVIEW A 67, 042106 ~2003!
Pb5
z2

2 E0

`

du@k~u!#2 expF2zE
0

u

dvk~v !G , ~4.7!

where we have defined the parameterz52hg2/k2 and the
function k(u)5(12e2u)2. As stated, we wish to minimize
this probability, which depends only uponz. It is not difficult
to show that it is monotonically increasing withz, and is
therefore minimized for smallz. In this regime Eq.~4.7!
reduces to

Pb'
z

2
5

hg2

k2
. ~4.8!

Thus we requireg!k.
The second disrupting event occurs if the atomic st

flips back to stateu1& due to a spontaneous emission befo
its excursion into stateu2& has been noticed through th
detection of a cavity photon at timetg . At first glance this
event seems to be helpful because it is forcing the atom b
into the desiredu1& dressed state. However, this ignores t
fact that we wish to judge the success of the feedback by
elimination of the lower sideband in the Mollow triplet.

Figure 8 illustrates why this occurs if a feedback pu
forces the atom back into the proper state. If the atom fl
back of its own accord, this corresponds to theD@m# term in
Eq. ~2.23! which means a photon is emitted into the low
energy sideband of the spectrum.

More generally, the occurrence of a second dipo
changing spontaneous emission before the first one has
noticed indicates that the measurement is failing to k
track of the state of the atom. We would thus expect this

FIG. 8. Two possible events will keep the system in theu1&
dressed state. The top event goes undetected by the feedback
but leads to an unwanted sideband fluorescence photon. The bo
event is detected and suppresses the sideband photon.
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have other, less obvious, adverse consequences for our
ity to control the atomic state through feedback.

To suppress these events we first find, in a similar pro
dure as above, the full expression for the probability of t
system undergoing a state flip before the cavity has emitte
photon at timetg . This is

Pg512E
0

`

dtgP~no g beforetg!pg~ tg!. ~4.9!

Since the rate of state-changing spontaneous emission
g/4, the probability that there is no such event before timt
is simply given by

P~no g beforet !5e2gt/4. ~4.10!

ThusPg evaluates to

Pg512zE
0

`

due2gu/2kk~u!e2z*0
udvk(v). ~4.11!

This function is monotonicallydecreasingwith the vari-
able z. However, since we know from consideration of th
first disrupting process that we requirez!1, we find an ap-
proximate analytic expression forPg in the limit of smallz,

P'S 11
2kz

g D 21

. ~4.12!

For this to be small we evidently requireg/k!z, or g
!hg2/k. This condition can be understood from the ad
batic equation~2.35! for the atomic state. This shows that th
rate of the state-changing atomic jumps scales asg, whereas
QND measurement term~which is all that allows us to fol-
low the state of the atom! has a strength scaling asg2/k. To
follow the state of the atom well, we require the former to
small compared with the latter.

We finally combine all the inequalities that we have e
tablished so far for obtaining good feedback control of o
two-level system

V@k@g@g2/k@g. ~4.13!

It is worth noting that Eq.~4.13! corresponds to the sam
inequalities that were assumed in order to justify the ad
batic elimination method in Sec. II D. Also note that in ord
to minimize bothPb andPg , the optimalg would scale as

g;~k3g/h2!1/4. ~4.14!

It should be noted that photodetector dark counts will a
be a source of error for the feedback scheme. We ign
them because their typical rate~less than 102 s21) is much
less than the rate of photodetections (g2/k;107 s21). How-
ever, in practice there will be excess ‘‘dark’’ counts due
imperfect mode matching between the cavity output be
and weak local oscillator. In addition, imperfect cavity loc
ing ~length stabilization! will lead to excess effective noise i
the relative phase of the cavity output and local oscillat
Although this would have little deleterious effect on a hom
dyne scheme, it will contribute more dark counts to the ad

op,
om
6-8
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QUANTUM JUMPS BETWEEN DRESSED STATES: A . . . PHYSICAL REVIEW A67, 042106 ~2003!
tive photon counting scheme. This scheme would requ
interferometric stabilization of the entire optical setup, as
Ref. @32#.

B. Feedback master equation

The general method for deriving a direct detection fe
back master equation has been developed by one of us@21#.
In the limit of Markovian feedback Eq.~2.8! is modified in
the following way:

ṙ52 i @H,r#1D@Ucf #r1 (
m51

M21

D@cm#r. ~4.15!

HereU is the unitary feedback operator which acts followi
a detection from channelcf .

In this proposal the desired feedback operatorU flips the
state of the atom. This could be accomplished with the
plication of ap pulse along a mode which differs from th
cavity mode. This can be represented by the following
erator:

U5 i ~ u1&^2u2u2&^1u!5sx . ~4.16!

This approach is valid providing the feedback is applied
stantaneously, as we will assume for the remainder of
paper. This approximation will be valid in the limit where th
duration of the feedback pulse is shorter than 1/V, asV is
the fastest relevant atomic frequency. If this were not p
sible, then a more complicated pulse would have to be
plied in order to have the desired effect in the interact
frame rotating at frequencyV.

The feedback is conditioned upon detections of the ca
field in interference with the local oscillator. We fully resta
the master equation Eq.~2.19! using the identity~3.7! which
displays the decay channel with the local oscillator adde

ṙ5@g~a†s2s†a!2 iVsy/22 igx/2,r#1gD@s#r

12kD@a1 ig/2k#r. ~4.17!

We condition our feedback upon detections of the field,cf

5A2k(a1 ig/2k). Following Eq. ~4.15! we include the
feedback from Eq.~4.16! by modifying Eq.~4.17! to arrive
at an expression for the feedback master equation:

ṙ5@g~a†s2s†a!2 iVsy/22 igx/2,r#

12kD@sx~a1 ig/2k!#r1gD@s#r. ~4.18!

One further improvement of our analysis is the inclusion
the detector efficiencyh. This requires the following modi-
fication @21#:

ṙ5@g~a†s2s†a!2 iVsy/22 igx/2,r#12khD@sx~a

1 ig/2k!#r12k~12h!D@~a1 ig/2k!#r1gD@s#r.

~4.19!
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C. Adiabatic feedback master equation

We begin our analysis of Eq.~4.19! with the assumptions
in Eq. ~4.13!. This permits the use of the adiabatic elimin
tion that was discussed for the nonfeedback master equa
in Sec. II D. Following the same method used there, we fi
transform into the interaction picture defined byHI
5Vsy/2 and make the RWA as was done to arrive at E
~2.22!,

rG 52 ig/2@x~mz11!,r̄ #12khD@s̄x~a1 ig/2k!#r̄

12k~12h!D@~a1 ig/2k!#r̄1gD@s̄#r̄. ~4.20!

Adiabatically eliminating the field and then transforming o
of the interaction picture leads to the following feedba
master equation for the atom alone:

ṙa52 iV/2@sy ,ra#1gD@s#ra1~12h!
g2

2k
D@sy#ra

1
hg2

2k
D@sx~sy21!#ra . ~4.21!

We study both the fluorescence spectrum of the atom
the steady-state population of theu1& state. Both of these are
obtained from the dynamic equations for the quantities^s&
and ^sz&. These are found to be

^ṡ&52S g

2
1

g2

2k
1

hg2

k D ^s&2S g2

2k
2

hg2

k D ^s†&

1V^sz&/22
ihg2

k
, ~4.22!

^ṡz&52V~^s†&1^s&!2S g1
g2

2k D ^sz&2g.

~4.23!

From these we find the steady-state values for^sx&, ^sy&,
and ^sz& to be

^sx&ss5
2Vk2g

g2k212V2k213gkg212g4
, ~4.24!

^sy&ss5S 11
gk

4hg2D 21

, ~4.25!

^sz&ss5
kg~kg12g2!

k2g212V2k213kgg212g4
. ~4.26!

Note that onlysy is changed from its no-feedback valu
~zero! which is obtained by lettingh→0.

V. RESULTS

We present both analytical and numerical results for
feedback protocol. Numerical studies were carried out
solving Eq.~4.19! with the quantum optics toolbox softwar
for MATLAB @33#. Analytical calculations of Eq.~4.22! and
Eq. ~4.23! were performed with algebraic manipulation so
6-9
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REINER, WISEMAN, AND MABUCHI PHYSICAL REVIEW A 67, 042106 ~2003!
ware ~MAPLE!. We find that in the proper limits defined b
Eq. ~4.13! the two methods are in agreement. The results
present are for more typical cavity QED values@34#.

We begin by solving for the steady-state population of
u1& state. This is a direct measure of the effectiveness of
feedback protocol. The steady-state population is relate
the steady-state expectation ofsy by

P15S 11^sy&ss

2 D . ~5.1!

Figure 9 shows a plot of the steady-state population a
function of the detector efficiency for parameters consist
with the adiabatic approximation. Note that in this regim
the feedback is not sensitively dependent on the detec
efficiency.

Figure 10 shows the population as a function of the ra
of the couplingg to the cavity decay ratek. The agreemen
between the theory and numerical results is good in the l
of g/k!1, but fails at larger values ofg/k. This is as ex-
pected from Eq.~4.13!, and also explains the discrepancy
Fig. 9. We also note that the effectiveness of this feedb
begins to decrease as the values forg are increased beyon
k. This is consistent with the arguments presented in S
IV A.

The fluorescence spectrum of the atom provides an
perimentally accessible method for studying the effecti
ness of this feedback. The spectrum of the atom is gi
explicitly by the Fourier transform of the two-time correl
tion function

S~v!5
g

2pE2`

`

e2 ivt^s†~t!s~0!&ssdt. ~5.2!

An analytic expression for Eq.~5.2! follows by applying the
quantum regression theorem to Eqs.~4.22! and~4.23!. Using
textbook methods@19# we arrive at an expression for th
spectrum of the atom which is too lengthy to report. Inste
we consider some of the more salient features of our res

FIG. 9. Steady-state occupation of theu1& state as a function o
the detector efficiency. Numerical values are represented by
and the approximate analytical expression is shown as a solid
throughout the rest of the paper. This plot was calculated with
following parameters: (V,k,g)/g5(50,15,5).
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The spectrum, in the adiabatic regime, is described ra
well by the sum of three Lorentzians and ad function.
Therefore it is the location, width, and area under these th
peaks that is of most interest. Rewriting Eqs.~4.22! and
~4.23! in matrix form,

ṡ5Ms, ~5.3!

with s5(^s&,^s†&,^sz&)
T, the position and widths of the

three peaks are given by the eigenvalues of theM matrix,

l6523g/42g2/k6Ag2/162V2'G16 iV,

l052g/222g2h/k5G0 , ~5.4!

where we have neglected terms of orderg2/V2.
Using these results, we write an approximate express

for the total spectrum of the atom in which the area un
each peak is apparent,

S~v!5Ad~v!1
B~G1 /p!

G1
21~v1V!2

1
C~G0 /p!

G0
21~v!2

1
D~G1 /p!

G1
21~v2V!2

. ~5.5!

HereA is the coherent (v50) component of the spectrum
coming from^s†&sŝ s&ss. This is nonzero with the feedbac
precisely because the feedback stabilizes the atom in a
u1& with a definite dipole moment. To leading order th
term evaluates to

A5g
4h2C1

2

~114hC1!2
→ g

4
. ~5.6!

Here the limit is for hC1→`, where C15g2/kg is the
single-atom cooperativity. Again we have neglected terms
order g2/V2, which includes the small coherent scatteri
term present even in the absence of feedback. The Lorent

ts
ne
e

FIG. 10. Numerical calculation of the steady state occupation
a function of g/k. The system parameters are the same as th
used in Fig. 9 but withh51.
6-10
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QUANTUM JUMPS BETWEEN DRESSED STATES: A . . . PHYSICAL REVIEW A67, 042106 ~2003!
peaks atv52V, v50, andv5V have areasB, C, andD,
respectively. In the limit of largeV they simplify to

B5
g

8

1

114hC1
→0, ~5.7!

C5
g

4

118hC1

~114hC1!2
→0, ~5.8!

D5
g

8

118hC1

114hC1
→ g

4
. ~5.9!

Here the limits again are forhC1→`. In this limit we see
that emission is divided equally between thev50 coherent
peak, and thev5V Lorentzian peak. By contrast, in the n
feedback case (h50), one may quickly observe that the ar
under each of the sideband peaks is one-half that of the
tral peak. In all cases the sum of all peaks is equal tog/2.

Figures 11 and 12 show plots of the fluorescence sp
trum of the atom derived analytically from the adiabatica
eliminated master equation and numerically from the f
master equation. Figure 11 has no feedback and the s
bands are equal in size. The scale of both plots was se
show the change in the relative sizes of the sidebands
turning the feedback on in Fig. 11 we see that the low-ene
sideband is suppressed with the high-energy sideband
hanced. Also notice the appearance of thed-function com-
ponent on resonance. These features should be measu
experimentally.

VI. DISCUSSION

We have shown that feedback can be used to stabiliz
strongly driven atom in one dressed state by reversing
polarization whenever its conditional state jumps into
other dressed state. The atomic state is conditioned u
phase-sensitive detection of the light emitted by a cav
mode which is strongly coupled to the atom. The cavity fie
acts as a QND measuring device for the atom. When
conditional state of the atom is forced to stay in one dres

FIG. 11. Numerical~dots! and analytic~solid line! calculations
for the fluorescence spectrum with no feedback. The parame
used are the same as in Fig. 9. Both axes are measured in unitsg.
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state, one of the sidebands in the atomic fluorescence s
trum vanishes and the other doubles. These qualitative
tures are as would be predicted by the simple quantum ju
model using dressed states@3#. However, to predict quantita
tively the best regime, the effectiveness of the feedback,
the exact shape of the fluorescence spectrum, requires
rigorous quantum theory of feedback we have used here@21#,
based on quantum trajectories.

For our feedback scheme~which involves photon count-
ing with a small local oscillator!, the best regime isg
!g2/k!g!k!V. Homodyne detection, as considered
Ref. @26#, could also be used as a basis for feedback altho
it would be more difficult to model and analyze. Wit
homodyne-based feedback the considerations that led to
condition g!k do not obviously apply, and indeed in Re
@26# the opposite condition held. However, the conditi
C15g2/kg@1 would still be necessary, as the single-ato
cooperativity determines how much the field is influenced
the atomic state.

In the regimeg@k, the field states correlated with th
atomic polarization states have a phase difference m
larger than the phase uncertainty of a coherent state. He
they may be reliably distinguished and the cavity takes
the role of a meter, with distinct ‘‘pointer states’’@35# corre-
lated with orthogonal states of the microscopic syst
~atomic dipole!. Indeed, coherent states with macrosco
cally different phases were one of the pointer states con
ered in the early work of Ref.@36#. However, it is worth
emphasizing that this macroscopic difference between st
of the intracavity field is not necessary for feedback. In o
regime, the two intracavity field states are barely distin
Over time scales that are long compared to the cavity de
time, the light continuously leaking from the cavity revea
sufficient information~through continuous sampling! about
the phase of the cavity field to enable the experimente
discriminate between the two atomic states. Feedback s
lization of the atomic state is thus possible as long as
time scale for gaining this information is short compared
the average time between spontaneous emissions.

It is also interesting to compare our regime with th
where k@V. In this regime it is possible to adiabaticall

rs
f

FIG. 12. Numerical~dots! and analytic~solid line! calculations
for the fluorescence spectrum with feedback. Other details are a
Fig. 11.
6-11
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REINER, WISEMAN, AND MABUCHI PHYSICAL REVIEW A 67, 042106 ~2003!
eliminate the cavity without first making the secular appro
mation in the frame rotating at Rabi frequencyV. Thus the
cavity mode acts as a one-dimensional vacuum field for
atom@37#, so detecting the light from the cavity is equivale
to detecting the atomic emission into the other vacu
modes. Since we assumeg2/k@g, emission into other
modes can be ignored compared to emission through
cavity. In this regime, measuring the cavity emissions us
exactly the same~small local oscillator! technique as we
have proposed in this paper turns out to be practically id
tical to a measurement scheme proposed by one of us
Toombes@15# for detecting quantum jumps between dress
states. Thus the feedback scheme we have proposed
would work in principle irrespective of the ratio ofk to V.
However, in the regimek@V the purity of the conditioned
state~and hence that of the feedback-stabilized state! would
depend strongly upon the detection efficiencyh. This is in
contrast to the regime of this paper where the purity of
feedback-stabilized state depends only weakly uponh.

The fact that the effectiveness of the conditioning~and
hence feedback! is not compromised by a detection effi
ciency less than unity is an attractive feature of the sche
we propose here. Paradoxically, other detection imper
tions may even improve its effectiveness. Real detec
have finite dead-time following a detection, during whi
they cannot detect again. If this time were comparable
g2/k then the probability of a ‘‘bad detection,’’ as discuss
in Sec. IV A, would be much reduced. In fact, this could l
the g!k restriction derived in that section, and there
make the realization of the experiment more flexible.

Feedback with a detector having a finite dead time co
still be modeled relatively easily within the master equat
formalism by using the theory of realistic detectors propo
by Warszawski and two of us@38#. The same theory could in
principle be expanded to encompass the delay time and
sponse function of the feedback loop. However, at so
point the model would become so unwieldy that a quant
trajectory simulation would be the better option. A quantu
trajectory simulation would also be the only practical way
simulate another experimental option, namely to use
feedback to flip the phase of the cavity field, rather than
phase of the atomic dipole. Since the dressed state is re
defined by the relative phase of the atom and field, in p
ciple this would have the same effect, and may be easie
achieve experimentally. The exploration of these experim
tal possibilities using quantum trajectory theory is a topic
future work.
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APPENDIX A: EQUIVALENCE OF NOISY DRIVING
AND ATOMIC QND MEASUREMENT

We establish the equivalence of theD@sy# term in Eq.
~2.35! and a noisy driving Hamiltonian. We begin by addin
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a stochastic noise term to Eq.~2.3!,

Hd~ t !5S V1
g

A2k
j~ t !D sy . ~A1!

This stochastic term can be interpreted as the quantum n
in the amplitude of the cavity mode which is coupled to t
atom. Equation~2.35! is recovered by noting thatra

c1dra
c

5e2 iHdtra
ceiHdt and that the noisy termj(t) in Eq. ~A.1!

obeys the usual Wiener increment statistics with^j(t)&50
and ^j(t)2&51/dt,

ra
c1dra

c52 i F S V1
g

A2k
j~ t !D sy ,ra

cGdt

2
g2

k
j~ t !2dt2~sy

2ra
c1ra

csy
22syra

csy!,

~A2!

where ra
c is the conditioned density operator for the ato

alone. Upon ensemble averaging over all possible traje
ries we recover the last two terms in Eq.~2.35!.

APPENDIX B: BRIEF REVIEW OF QUANTUM
TRAJECTORIES

The simplest measurement-based unraveling of a ma
equation separates the evolution of the system into two p
@9#. The first is the jumps which correspond to detections
some detector outside the system. The second correspon
the nonunitary but smooth evolution of the system betwe
these jumps. A quantum trajectory is the evolution of t
conditioned system staterc(t), consisting of alternating
jumps and smooth evolution for various times. A weight
average over all possible conditioned evolutions leads to
unconditioned density operator,r(t). We follow the presen-
tation in Ref.@39# in providing a more quantitative discus
sion of these ideas.

We begin by stating the formal solution of Eq.~2.4!,

r~ t !5eLtr~0!. ~B1!

The effect of a photodetection on the system state is
scribed by

Jr5crc†. ~B2!

We rewrite the master equation in terms of this jump sup
operator,Lr5Jr1(L2J)r, and use a generalized Dyso
expansion to separate out the two types of evolutions of
monitored system,

r~ t !5 (
m50

` E
0

t

dtmE
0

tm
dtm21•••E

0

t2
dt1r̃c~ t !, ~B3!

with
6-12



tio

e
ns

a-
-

QUANTUM JUMPS BETWEEN DRESSED STATES: A . . . PHYSICAL REVIEW A67, 042106 ~2003!
r̃c~ t !5S~ t2tm!JS~ tm2tm21!•••JS~ t1!r~0!. ~B4!

The unnormalized, conditioned density operator,r̃c(t) de-
scribes a particular series of jumps and smooth evolu
according toS(t)5e(L2J)t. To normalize the conditioned
density operator we simply divide by its trace,rc(t)
5 r̃c(t)/Tr@ r̃c(t)#. This trace is also equal to the exclusiv
probability density for a particular series of photodetectio
o

e

p

A

J.

s

04210
n

,

pm5Tr@ r̃c(t)#. Therefore, the unconditioned density oper
tor becomes a weighted sum~or equivalently, ensemble av
erage! over all trajectories:

r~ t !5 (
m50

` E
0

t

dtmE
0

tm
dtm21•••E

0

t2
dt1pm

3~ t1 , . . . ,tm ;@0,t# !rc~ t !. ~B5!
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