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Abstract
Doppler and transit broadening effects inherent in a thermal atomic beam
reduce the size of quantum fluctuations in a cavity QED system. A cold
continuous atomic beam would reduce these effects, but would not eliminate
the different atom–field couplings associated with the random distribution of
atoms throughout the cavity. We present results that describe the effect that
this has on quantum fluctuations and how it could be used to improve future
studies on the fluctuations from a cavity QED system. We also report on
experimental progress towards a continuous cold atom source.

Keywords: cavity QED, non-classical states, intensity correlations

1. Introduction

The steady-state photon occupation number for a strongly
coupled system in the weak driving limit is much less
than one. In this limit, the emission of a single photon
initiates fluctuations that have been shown to violate classical
inequalities. The detection of the photon informs the
experimenter that a large fluctuation is underway, and using the
condition that a measurement is taken on photon arrival allows
one to observe the quantum dynamics of the system. Single-
photon fluctuations have been observed with conditional
intensity [1] and conditional field [2] measurements.

We consider the many-atom optical cavity QED system
with N two-level atoms coupled to a single TEM00 mode of a
Fabry–Perot cavity. When the atoms have been injected into
the cavity with a thermal beam, Doppler and transit broadening
effects typically degrade the size of the quantum fluctuations
by more than 50% [3, 4]. Cold atomic beams [5] extracted
from a magneto-optical trap could overcome these broadening
effects, but it would still create a random distribution of atom–
field couplings throughout the cavity mode. A single atom held
in a trap in a cavity [6–10] may even be subject to broadening
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from the harmonic energy levels of the trap that smear out the
dipole coupling of the atom to the field [11].

In order to better observe the quantum effects associated
with the conditioned fluctuations, we would like to further
understand the influence that the beam has on the size
of the fluctuations. Previous efforts have used numerical
calculations [1, 3]. In this paper, we present a solution to
the problem of a set of randomly distributed atoms coupled to
a Gaussian TEM00 mode of the cavity based on the distribution
of atoms in the cavity mode. This result is used to discuss the
limitations that a slow atomic beam creates in the observation
of quantum effects.

The extraction of cold atoms from a magneto-optic
trap (MOT) is an avenue for future experiments in cavity
QED. There are different geometries and realizations in
developing such beams. (The following reviews point to
relevant experiments [12–14].) Our experiment requires a
continuous beam of atoms in order to reduce atomic number
fluctuations and there should be no overlapping light fields that
disturb the coupling of the atoms to the cavity.

The paper is organized as follows: section 2 introduces the
cavity QED system and two types of correlation measurements
that illuminate the conditional dynamics. Section 3 details the
calculation of the conditional dynamics with an atomic beam
and includes a comparison of the theory and past experiments.
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Figure 1. The many-atom cavity QED system. The coupling of the
i th atom is parametrized by its position in the cavity. The system
radiates through spontaneous emissions and cavity emissions.

Section 4 presents our experimental setup for a cold atomic
beam and section 5 is the conclusion.

2. Theory

2.1. Cavity QED system

The many-atom cavity QED system [15] consists of N
two-level atoms, randomly coupled to a single mode of a
Fabry–Perot cavity, characterized by a field lowering (raising)
operator a(a†). The maximum atom–field coupling is
parametrized by g

g = µ

√
ωa

2h̄ε0V
(1)

where µ is the electric dipole moment of the two-level
transition and V is the cavity mode volume. Transitions
between the ground and excited states of the i th atom
are described by the standard raising (lowering) Pauli spin
operators σ †

i (σi ) and σ z
i = [σ †

i , σi ]. The Tavis–Cummings
Hamiltonian describes the atom–field couplings and under the
rotating wave approximation it is given by

HTC = ih̄
∑

i

gi (a
†σi − aσ †

i ) (2)

where gi is the strength of the coupling between the cavity and
the i th atom. For a Gaussian TEM00 cavity mode the coupling
is defined by

gi(r, z) = g cos(kzi ) exp(−r2
i /w

2) (3)

where r is the radial distance from the cavity axis defined by
z, k is the magnitude of the cavity field wavevector, and w is
the cavity mode waist (see figure 1).

We assume throughout this paper that the atoms and
cavity are on-resonance with each other and the driving field
E described by

Hd = ih̄(Ee−iω0 t a† − E∗eiω0t a). (4)

We also assume that the cavity QED system is weakly
and homogeneously coupled to the environment. This weak
coupling allows for the Born–Markov approximation which
traces out the environmental degrees of freedom and leaves a
modified equation that describes the dynamics of the system

alone. The result is a quantum master equation of the Lindblad
form [16]

ρ̇ = Lρ
= 1

ih̄
[HTC + Hd, ρ] + 2κD[a]ρ +

∑
i

γiD[σi ]ρ (5)

where D[A]B = AB A† − 1
2 (A

† AB − B A† A) and both atom
and cavity fields decay at rates γ /2 and κ respectively.

The influence that an atom has on the system is
parametrized by the single-atom cooperativity parameter of
the i th atom: Ci = g2

i /γ κ and the collective cooperativity
parameter C = ∑

i Ci that in the case of N maximally coupled
atoms is: C = NC1. Both relate the strength of the atom–field
coupling to the two decay rates.

Figure 1 illustrates the model we use to describe the
randomly coupled atoms in the cavity. The individual atoms
spontaneously emit, so the atomic polarization radiatively
decays at the rate γ /2 with the atomic inversion decaying at
the rate γ and the cavity field leaks out at the rate κ .

2.2. Conditional dynamics

Multi-time correlation functions can be calculated from
equation (5) in a deterministic manner, but quantum
trajectories further illustrate the system dynamics by
unravelling equation (5) in a way that corresponds to
experimental measurements. Carmichael showed that, in the
Markovian limit, equation (5) could be solved by a stochastic
evolution of a wavefunction [16]. The stochastic nature of
this evolution is directly related to the random nature of
the photoemissions from the cavity QED system. A more
complete discussion of quantum trajectories in relation to
optical cavity QED can be found in [17]. In the weak
field limit, with identical couplings, gi = g, and assuming
that g

√
N > κ, γ the system wavefunction evolves into the

following steady state [18]:

|ψss〉 = |0,G〉 + λ

(
|1,G〉 − 2g

√
N

γ
|0,E〉

)

+ λ2

(
ξ0

1√
2
|2,G〉 − θ0

2g
√

N

γ
|1,E〉

)
+ · · · (6)

where |n,G〉 describes the state with n photons in the cavity
mode and all atoms in the ground state. We have not written
the second order term in λ that represents two excitations in the
atoms and none in the field, as we have limited our discussion to
processes measurable by photons escaping out of the cavity and
this term does not contribute. The |E〉 state is the symmetrized
one-atom excited state. λ is the steady-state field equal to
(E/κ)/(1 + 2C), and

ξ0 = (1 − 2C ′
1)(1 + 2C)

1 + 2C − 2C ′
1

θ0 = 1 + 2C

1 + 2C − 2C ′
1

,

(7)

where C ′
1 = C1[1/(1 + γ /2κ)] and ξ0, θ0 are of order unity for

C > C1, our regime of interest.
A cavity emission is modelled by acting with the cavity

lowering operator, â, on the steady state which results in the
following dynamic wavefunction.
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|ψc〉 = |0,G〉 + λ

(
ξ(τ)|1,G〉 − θ(τ)

2g
√

N

γ
|0,E〉

)
(8)

where the conditioned field, ξ(τ), and the conditioned atomic
polarization, θ(τ), are both of the general form f (τ) =
1 + A f exp(−(2κ + γ )τ/4)[cos(�τ) + B f sin(�τ)] with A f

and B f given by

Aξ = −4CC ′
1

1 + 2C − 2C ′
1

(9)

Bξ = 2κ + γ

4�
(10)

Aθ = − Aξ
2C

(11)

Bθ = 4κ2 − γ 2 − 16�2

16�κ
, (12)

where the vacuum Rabi frequency�=√
g2 N −((κ−γ /2)/2)2 .

Note that the emission of a single cavity photon at time
τ = 0 causes a jump in both the cavity field and the atomic
polarization of sizes Aξ and Aθ respectively.

2.2.1. Classical bounds on the intensity correlation. The nor-
malized two-time intensity correlation function is defined by

g(2)(τ) = 〈:I (t)I (t + τ):〉
〈I (t)〉2

. (13)

By normal- and time-ordering the creation and annihilation op-
erators of the intensity (I = a†a), and assuming the stationary
state approximation, g(2)(τ) can be considered a conditional
intensity measurement. It gives the probability of detecting a
photon at some delay τ following an initial photon. From equa-
tion (8) it is clear that this is equivalent to measuring |ξ(τ)|2.
The quantum nature of the collapse of equation (6) makes it
possible for the weakly driven cavity QED system to violate
Schwarz type inequalities for g(2)(τ). The two inequalities are

g(2)(0) � 1 (14)

|g(2)(0) − 1| � |g(2)(τ) − 1|. (15)

Carmichael et al [18] found an expression for the two-time
intensity correlation in the weakly driven many-atom cavity
QED system, for the case when the vacuum Rabi frequency
(�) is real: g

√
N > (κ − γ /2)/2. Equation (16) shows

g(2)(τ) in terms of the coefficients associated with the field
and polarization jumps from equations (8)–(10):

g(2)(τ) = |ξ(τ)|2
= |1 + Aξ exp[−(2κ + γ )τ/4][cos(�τ) + Bξ sin(�τ)]|2,

(16)

Aξ is the ratio of the change in the field to the mean field given
that a photon is emitted. On resonance and for strong coupling,
this change will always be negative. As the coupling constant g
increases, C1 increases and so does the size of the discontinuity,
which grows relative to the steady-state amplitude λ. For very
large coupling constants (large C1), the jump can be many
times larger than the mean intracavity field λ.

Figure 2 illustrates how the quantum jump associated with
the cavity emission could lead to violations of equations (14)
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Figure 2. g(2)(τ ) for (κ, γ,�)/2π = (5, 6, 50) MHz and different
atom–cavity coupling strengths. (i) Illustrates a violation of
equation (14) for g/2π = 3 MHz and (ii) shows a violation of
equation (15) for g/2π = 8 MHz. Notice the function ‘bouncing’
off the zero axis that corresponds to the field crossing zero.

and (15). The size of the jump is given by Aξ (0) = 1−ξ(0) and
the correlation function equation (16) is determined at equal
times by ξ(0). So two ranges of values are possible: first if
0 < ξ(0) < 1 we see a violation of equation (14). Second,
if ξ(0) < 0 then there can be a violation of equation (15)
without violating equation (14) [18]. This latter situation
arises because the correlation function measures a conditional
intensity, the conditional field is very negative and its square
positive. This gives rise also to the phenomenon of ‘bouncing’
where the system oscillates at twice the vacuum Rabi frequency
because of equation (16).

2.2.2. Atomic polarization–intensity cross-correlation. The
quantum phenomenon in the dynamics is the presence of the
jump in the cavity field following the photoemission. Looking
back at equation (6) one can see that this jump depends on ξ0

which modifies the |2,G〉 amplitude away from the coherent
state value of 1. This is due to the atom–field coupling, g, and
the jump is evidence of the non-classical nature of the cavity
field.

Equation (5) can be used to derive a set of Maxwell–
Bloch equations that describe the dynamics of the expectation
values for the cavity and atomic degrees of freedom (see for
example [19]). Fluctuations in the cavity field can be initiated
with a step in the drive at some time τ = 0. It is important
to note that although the cavity field will experience a jump
at τ = 0, the polarization field will not. The polarization
field will simply lag behind the cavity field in its oscillation.
Evidence for the true nature of the entanglement of this system
lies in observing the jump in the polarization field following
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Figure 3. Intensity–intensity correlation g(2)(τ ) (dashed curve A)
and atomic polarization–intensity cross-correlation j (2)(τ )
(continuous curve B) comparison for cavity QED
(κ, γ, g,�)/2π = (5, 6, 3, 50) MHz. Notice the difference in
scales between the two correlation functions.

an emission along the cavity axis. The following correlation
function should be used to observe such a jump:

j (2)(τ) = 〈a†σ †(τ)σ(τ)a〉
〈σ †σ 〉〈a†a〉 . (17)

j (2)(0) quantifies the degree of entanglement in the jump.
This correlation function is difficult to measure in general,
but in the weak field limit we can resort to the conditional
measurements discussed before and condition a fluorescence
intensity measurement on the detection of a cavity photon.
From equation (8) we find that j (2)(τ) is equivalent to |θ(τ)|2
and that the size of the step in the fluctuation is given by
|1 + Aθ |2. Denisov et al have studied this correlation function
and its time reversal properties in [20].

Figure 3 compares the quantum jump associated with the
cavity emission between the cavity field and the polarization
field. Notice both the step in the polarization field at τ = 0
and the difference between the two fluctuations.

3. Calculation of conditional dynamics with an
atomic beam

In order to observe violations of equation (15) shown in
figure 2(ii) and to see the step in the polarization field in
figure 3, we need to optimize the size of the field step Aξ .
This can be accomplished with a large atom–field coupling
g and a continuous cold atom beam which should reduce
broadening effects. For the case of N identically coupled
atoms equation (9) reduces, in the limit of large N , to Aξ =
1 − 2C ′

1. This means that removing broadening effects should
allow us to observe bouncing when C ′

1 = 1/2. This result
does not take into account the random distribution of the
atoms throughout the cavity. In this section we present an
analytical approach that describes the random distribution of
the atoms along with homogeneous transit broadening effects
and a comparison of these two modifications with recent
experimental results.

3.1. Calculation

Carmichael and Sanders [21] showed that the one-atom prob-
ability distribution for a standing wave TEM00 cavity mode is

PF(p) = ϑF
cos−1(p)

p
d p, (18)
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Figure 4. The one-atom probability distribution for the coupling to
the cavity with F = 0.1.

where p is the ratio g(x, y, z)/g, ϑF is the normalization con-
stant of the distribution, and F is the normalized interaction
volume inside which p � F . We ignore any atoms with
gi < gF . Figure 4 shows the features of this distribution.
Notice the cutoff set at p = F and that the atom is most likely
to be weakly coupled to the cavity.

We use equation (18) to create a distribution of atoms
inside the cavity. Rempe et al [3] reported that for a random
distribution of atom–field couplings with C = ∑

j C j , Aξ is
modified in the following way:

1 + Aξ = (1 + 2C)
1 − ∑

j
C′

j

1+
∑

k C′
k −2C′

j

1 +
(
1 + γ

κ

) ∑
j

C′
j

1+
∑

k C′
k −2C′

j

. (19)

Foster et al show in [1] an alternative, equivalent formulation of
equation (19). Equation (19) reduces to (9) in the limit where
all atoms are maximally coupled. It should also be stressed that
equation (19) assumes that all the atoms are equally detuned
which is clearly not the case for an atomic beam. We will treat
all atoms resonantly. For a treatment of detunings, see [1].

We use equation (18) to evaluate the two sums in (19).
The first sum over index k is the scaled-collective cooperativity
parameter

∑
j C j/(1 + γ /2κ). Our approach is to couple an

atom to the cavity according to equation (18) and repeat for
N atoms. N is defined by the size of the interaction volume,
VF , and the density, ρab of the atomic beam. The interaction
volume is

VF = λc Mw2
0

∫ 1

F

cos−1(p)

p
d p, (20)

where M is the number of wavelengths of the cavity mode
included in the mode volume and λc is the wavelength of the
cavity light. The scaled cooperativity parameter becomes

C̄ ′ =
∫ 1

F C ′
1

cos−1(p)
p d p∫ 1

F
cos−1(p)

p d p
× ρabVF . (21)

We know that for a homogeneously broadened cavity QED
system, the collective cooperativity parameter is related to
the experimentally accessible vacuum Rabi frequency C̄ =
�2/κγ . We use this fact along with equation (21) to obtain

λcρabMw2
0 = 8�2

g2π
. (22)
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The dependence on F has been removed and we can now set
F = 0. As the volume extends to infinity, we include more
atoms whose coupling approaches zero. We now evaluate the
average of the sum over the index j in equation (19). Similarly
to equation (21) we write

∑
=

∫ 1
0

C′
1

1+C̄′−2C′
1

cos−1(p)
p d p∫ 1

0
cos−1(p)

p d p
× 8�2

πg2

∫ 1

0

cos−1(p)

p
d p. (23)

We can recast equation (23) into the following form:

∑
= 8�2

2πg2

∫ 1

0

z cos−1(z)

a2 − z2
dz, (24)

where

a2 = �2 + κγ
(
1 + γ

2κ

)
2g2

. (25)

We substitute the analytic form of equation (24) back into (19)
to obtain an expression for the step in the field averaged over
a random distribution of atoms:

1 + Aξ = (1 + 2C)
1 + 2C

C1
ln

(
1
2 + 1

2

√
1 − a−2

)
1 − (1 + γ /κ) 2C

C1
ln

(
1
2 + 1

2

√
1 − a−2

) .
(26)

The overbar on Aξ means we have averaged over the atomic
distribution. Equation (26) provides a value for the initial
fluctuation given a random distribution of atoms at rest. Notice
that this function only requires the experimentally measurable
values for g, κ, γ , and �.

We simplify equation (26) in the experimentally
interesting limit of large atomic number where C/C1 � 1

Aξ = − 3
4 C ′

1, (27)

and the N identically coupled atom case in the same limit is

Aξ = −2C ′
1. (28)

We find that, in the large beam density limit for a TEM00

Gaussian mode, the random distribution of atoms reduces the
size of the field fluctuation by a factor of 3/8.

3.2. Homogeneous transit broadening

A thermal atomic beam degrades the size of quantum
fluctuations through transit and Doppler broadening. We
describe homogeneous transit broadening effects with the
addition of a non-radiative homogeneous dephasing term to
the system master equation (5) (see [22]),

Ldephaseρ = 1
2γT

∑
i

(σ i
zρσ

i
z − ρ) = 1

2γTD[σz]ρ (29)

where γT is equal to the average transit rate and is a function
of the cavity waist and beam temperature. This addition to
the master equation serves as a diffusive term that randomly
flips the phase of the collective atomic polarization field. This
approximates the effect of atoms leaving the cavity interaction
region and modifies the radiative lifetime of the atoms in the
following way: γ → γ ′ = γ + γT/2.
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Figure 5. ξ(0) as a function of C ′
1. Crosses are from different

experimental runs (see [1, 23, 24]). Filled symbols are calculations
with varying degrees of corrections: diamonds are for N identically
coupled atoms, squares are for N randomly coupled atoms from
equation (26) with no transit broadening corrections, triangles
include the homogeneous transit broadening described by
equation (29).

3.3. Comparison with experiment

We have a large number of g(2)(τ) measurements under
different experimental conditions associated with our
experiments in quantum feedback [23, 24]. Very briefly, a
collimated beam of optically pre-pumped 85Rb atoms interacts
resonantly at the D2 line (780 nm) with a single mode of a
high finesse Fabry–Perot cavity. The cavity defines a TEM00

mode with two mirrors with different transmission coefficients,
T1 = 15 ppm and T2 = 300 ppm. The input transmission is
smaller than the output to ensure that most of the signal escapes
from the cavity on the detector side. A typical cavity finesse
for this arrangement is F ≈ 21 000. We modify the coupling
constant g by changing the separation (from 300 to 900 µm)
and the radius of curvature (from 5 to 100 cm) of the mirrors
to obtain (3 < g < 12). The reader can obtain complete
experimental details in [1, 23, 24] that include our data taking
procedure.

Figure 5 compares our measurements of the field step ξ
from the correlation function g(2)(0), that characterize the sub-
Poissonian statistics of the state of the electromagnetic field
with the calculations from the model and its refinements from
the previous sections. The measurements of g(2)(0) that we use
to obtain ξ(0) (crosses) typically have statistical errors of less
than 5%. We start assuming N identically coupled atoms with
the coupling constant g from the experiment and the vacuum
Rabi frequency� set to match the experiment (diamonds). We
then treat the atoms as N randomly coupled to the mode using
equation (26) with g and � from the experiment. This brings
the theoretical prediction (squares) closer. We finally treat
transit broadening as a homogeneous process that modifies
γ /2π from 6.0 MHz to γ ′/2π = 9.2 MHz (triangles). The
agreement between experiment and theory gets better with each
additional approximation. Further refinements would include
inhomogeneous processes such as individual atomic detunings
and transit times. These require a quantum Monte Carlo
simulation. The agreement between our two corrections and
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Figure 6. Sketch of a three-dimensional moving molasses setup.
The up- and down-going beams are detuned from the cross-beam by
δ. Four bars carry current I in opposite directions to create a
quadrupole field in the horizontal plane.

the data suggests that we have a simple, analytical, approach
for building cavities for observing the bouncing and cross-
correlation effects.

4. Continuous cold beam

In order to reduce the effects that are limiting our measurements
(see figure 5) we require a new source of atoms for future
cavity QED experiments with the following constraints: the
atoms should be continuous in order to maximize data-taking
time. The atoms should be cold so as to reduce the Doppler
and transit broadening effects, since both effects scale with the
average velocity of the beam. The MOT trap beams should not
overlap with the interaction volume of the cavity QED system
to reduce background scattering. We also need to work with
a relatively dense beam so that we typically have 50 or more
atoms within the cavity volume at any given time, so reducing
atom number fluctuation effects.

With these constraints in mind we review some of the
previous work towards cold continuous atomic beams. Several
groups have made progress by modifying the 3D MOT
arrangement. Lu et al [25] loaded a 3D MOT from a
background vapour and extracted atoms along one of the trap
beams by unbalancing the power. Arlt et al [26] created
pulsed cold atoms. They obtained typical atomic fluxes of
5 × 109 atoms s−1 with velocities around 7–20 m s−1 with a
velocity spread of 2–3 m s−1 at FWHM. Weyers et al [27]
employed a moving molasses technique to extract atoms along
one of the trap beams.

The 2D MOT configuration makes the extraction process
simpler. There is no magnetic confinement to overcome in the
up–down direction. Berthoud et al [28] were able to extract
atoms from this setup with a magnetic field applied along the
z-axis. The flux of the beam in that setup, through a 1 cm
diameter probe, was around 1.8×108 atoms s−1 with a velocity
between 0.7 and 3.0 m s−1. The magnetically extracted beam
is complicated by the fact that it has three different velocity
classes. The same group later modified their setup by switching
to a moving molasses for extraction [5]. With the moving
molasses they improved the beam flux by an order of magnitude
and had a clean way of controlling the beam velocity.

We have a cold atom apparatus that follows [5]. Figure 6
shows the setup where four independent trap beams are detuned
from each other in order to induce a drift velocity in the
downward direction. The four current-carrying bars serve to
create a 2D magnetic quadrupole field which traps the atoms
in the x–y plane.

The (up-) down-going beams are detuned by (+)−δ from
the overall detuning �. Typical values for δ range between
100 and 800 kHz. This detuning induces a drift velocity in the
downward direction

v = λδ

cosα
(30)

where α = π/4 is the angle that the up- and down-going beams
make with the horizontal beam.

4.1. Experimental setup

Our system consists of a Coherent MBR110 Ti:sapphire laser.
The output beam is split into a three beams for locking,
trapping, and probing the atoms. We lock on to the 5S1/2, F =
3 → 5P3/2, F = 4 transition of 85Rb at 780 nm with a
saturation spectroscopy setup.

A New Focus Vortex laser serves to repump the atoms
which fall out of the cycling transition and into the 5S1/2, F =
2 state. Another saturation spectroscopy setup provides the
reference for locking this laser to the appropriate transition.
The remaining power is mixed with the horizontal axis trap
beam via a 1 × 2 single-mode fibre at 780 nm.

Independent control of the frequency of each trap beam
is obtained by single-passing on-resonance light through an
acousto-optical modulator (AOM) which downshifts the beam
by 210 MHz. Three polarizing beamsplitters are then used to
separate out each trap beam. They are double-passed through
80 MHz line centre AOMs and coupled into the trapping region
with a standard circular polarization configuration. In order to
achieve the detunings shown in figure 6, we independently
launch the trap light from the fibre output couplers. The
couplers create a clean Gaussian mode beam with diameter
at 1/e2 of 8.7 mm. The power in each beam is approximately
3.1 mW. The horizontal axis beam is mixed with the repumper
described above and retro-reflected.

The vacuum system pumps out both the trap cell and a
lower chamber where the atomic beam is detected. The cell is
optical quality quartz connected to a Pyrex glass tube attached
to a high vacuum flange. An ion pump keeps the vacuum down
to 1–2 × 10−8 Torr. At these pressures the trap 1/e lifetime is
approximately 1 s. We introduce Rb atoms into the chamber
by running a current through a Rb dispenser.

4.2. Results

We detect the cold atoms in two different ways: direct
detection of the fluorescence onto a photomultiplier tube
(PMT), and imaging with a charge coupled device (CCD)
camera. The first detection system consists of a Hamamatsu
R636 photomultiplier tube (PMT). A low noise current pre-
amplifier from Stanford Research Systems SRS570 amplifies
the signal from the PMT and we record it for further analysis
with a Lecroy 9354A digital oscilloscope.

We load the trap for about 1 s, then as we shut off the
trap beams, a shutter opens in front of the PMT. We collect
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Figure 7. Fluorescence signal from the falling atoms FS from a
resonant laser probe 1 cm below the trap centre. The probe is turned
on at τD about 20 ms after the trap light has been turned off.

the fluorescence from a resonant probe beam (≈80 ms) with
an f/3 imaging system. The height of the probe and the PMT
can be adjusted so that they are imaging up to 1 cm below the
trap centre. We minimize room light background with a 780
interference filter in front of the PMT. Figure 7 shows a typical
fluorescence signal FS of ≈500µs above the background from
the atoms traversing the probe.

The large scatter from the uncoated cell makes it difficult
to detect the atoms falling through the probe. We have found
improvements in the signal-to-noise ratio if we wait until the
atoms are in the centre of the probe area before turning on the
probe. We use this technique of changing the delay between
when the trap beams are shut off and when the probe is turned
on in order to reconstruct the fall time of the cold atoms.

Figure 8(i) shows the fluorescence from cold atoms pass-
ing through the resonant probe located ≈7.5 mm below the
trap centre after their release from the trap for a detuning of
100 KHz. The continuous line is a fit to a Gaussian. We repeat
the measurement with four different detunings of 100, 200,
300, and 600 kHz. We fit each distribution and find the time
location of the peak with uncertainties of less than 10%. Fig-
ure 8(ii) shows the measured peaks of the distributions for four
different detunings. The continuous curve is the result of the
calculation of the time evolution of the peak of the distribution
from the kinematics of the cold atoms. We use equation (30)
to find that the arrival times of the peak of the distributions
correspond to velocities of 11, 22, 33, and 66 cm s−1.

We use a CCD camera to collect the image from a probe
region that is 25 cm below the trapping region in order to
detect the continuous beam. The CCD camera allows us to
take successive pictures with and without atoms to subtract
resonant background. We integrate the signal over the entire
visible probe area for both pictures and subtract one from the
other to arrive at a signal normalized by the number of pixels
included in the integration area. The results we report come
from subtracting two large numbers. The beam-on and -off
cases are 0.206 ± 0.036. This translates into a beam flux,
through the probe, of 3.1 ± 0.6 × 104 atoms s−1.

The flux is small and at present will not be sufficient for
conditional dynamics in cavity QED with many (≈50) atoms
in the cavity. One drawback to the current setup is the size and
shape of the glass cell used for trapping. Pumping the atoms
into a dark state before exiting the trapping region should also
significantly enhance the beam flux [29].
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Figure 8. (i) FS fluorescence signal from atoms passing the probe
with detuning δ = 100 kHz. The continuous curve is a Gaussian fit
to the data. (ii) Peak of Gaussian distribution for four different
detunings. The continuous curve is the calculation for the
kinematics.

5. Conclusion

We have found expressions for the conditional dynamics of
cavity QED in the presence of the random distribution of
coupling constants brought by an atomic beam. The beam
reduces the size of the non-classical effect, but does not destroy
it. Other mechanisms that damage the fragile quantum state
such as inhomogeneous broadening and transit broadening can
decrease to acceptable levels with a cold atomic beam. We have
presented our current realization of such a beam to continue
measuring the conditional dynamics of cavity QED.
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