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1. INTRODUCTION
The study of mode coupling in an optical waveguide [1] is fun-
damentally important for good control of connectorization
and transmission. This is especially true for tapered optical
fibers with subwavelength waists, where light propagates in
a mode that exhibits a large evanescent component propagat-
ing outside the waveguide. Nanofibers are ideal for probing
nonlinear physics, atomic physics, and other sensing applica-
tions [2–5]. As the light propagates through the taper, it suc-
cessively encounters regimes where the fiber is single mode,
multimode, and then single mode again. Careful design of
adiabatic tapers leads to ultralow loss fibers [6]. Adiabatic cri-
teria give an upper limit on how steep a taper can be, but are
too vague for optimization of transmission. Here we are inter-
ested in giving quantitative bounds and constraints on the
taper geometry.

Using a spectrogram analysis of the transmission signal
through the fiber [7], we are able to identify the modes
excited during the tapering process and extract the amount
of energy transferred to each of these modes. Using this
analysis, we show the importance of geometry control
and fiber cleanliness in reaching transmissions as high as
99.95% in commercial fibers at 780 nm. Our nanofibers
can handle more than 400 mW of optical power in ultrahigh
vacuum. After reaching the cut-off radius, the excited modes
couple to radiative modes [8] and diffract outside of
the fiber.

Our analysis provides a path to fully model the electromag-
netic field evolution in a nanofiber. This is crucial for a com-
plete modeling of the coupling between light and matter [9,10].
In the example of atoms trapped on the evanescent field
around a nanofiber waist, it is necessary to know the coupling
coefficients between the modes of the field and the atoms.
This work details the modal evolution in the fiber, opening

perspectives for the design of even more adiabatic fibers,
making them usable in extreme conditions [11].

This paper presents our protocols, diagnostics, and
characterization tools for fabricating nanofibers. It is struc-
tured as follows: we first overview our experimental goals
and conditions in Section 2. Section 3 presents the modal
evolution in tapered fibers. We then study in Section 4 adia-
baticity in tapered fibers. Section 5 analyzes in more detail
the transmission signal. We introduce the spectrogram to an-
alyze the transmission [7] in Section 6. By modeling and diag-
nosing the fiber pull, we identify in Section 7 crucial elements
to improve the transmission. Section 8 looks into the other
losses present in the fiber. Section 9 is the conclusion of
the paper.

2. MOTIVATION AND CONSTRUCTION
OVERVIEW
Controlling neutral atoms with dipole traps is a successful and
promising avenue for the implementation of a growing
number of scientific and technical applications [12]. The off-
resonant interaction between light and atoms in the presence
of an intensity gradient produces a dipole force that can gen-
erate traps: detuning below atomic resonance attracts atoms
to go to the most intense region, creating an optical tweezer
[13,14], and above-resonance detuning keeps the atom in the
intensity minima, requiring more complicated geometries
[15–18]. One drawback of optical tweezers obtained by tightly
focusing a laser beam comes from diffraction, which limits the
trapping volume extension in the axial direction. One solution
to this limitation is the use of optical nanofibers [4,9,19]. These
devices offer enough light confinement and guidance to trap
atoms over a few centimeters in the axial direction and
present the advantage of being integrable to other devices
[10,20–22]. We are interested in introducing this device into
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a 12 mK cryogenic environment to probe interactions
between a trapped neutral atom and a superconducting
circuit [11].

Following the work of Warken in [23], we produce our fi-
bers using a heat-and-pull technique, summarized below (see
Ref. [24] for details on the algorithm and the hardware). An
oxyhydrogen flame at stoichiometric combination brings a
0.75 mm long fiber portion to a temperature that exceeds
its softening point. Two high-precision computer controlled
motors pull on the fiber ends at a typical velocity of
0.1 mm∕s. We use an algorithm that relies on conservation
of volume, which calculates the trajectories of the motors
to produce a fiber of chosen geometry. The code is available
at the DRUM Digital Repository of the University of
Maryland [25].

We pull a SM800 fiber from Fibercore that has a numerical
aperture of 0.12 and a cutoff wavelength of 794 nm. Using
the Sellmeier coefficients provided by Fibercore, we deter-
mine the core (ncore � 1.45861) and the cladding (nclad �
1.45367) indices of refraction. The pull is divided into approx-
imately 100 steps, such that the taper is composed of a
series of sections small enough to be considered linear.
Our tapers are generally composed of a section with a con-
stant few mrad taper angle that reduces the fiber to a radius
of 6 μm, and then connects to an exponential section that gen-
tly reaches submicrometer radii (on the order of 250 nm). The
central waist is uniform, and its length can be between 5 mm
and 10 cm. A pull generally lasts for a few hundreds of
seconds.

3. MODAL EVOLUTION
A. Modes in a Cylindrical Waveguide
The description of modes in a cylindrical waveguide using
Maxwell equations can be found in several references, e.g.,
[8,26]. The modal fields vary as exp�i�βlmz − ωt��, where βlm
is the propagation constant of the mode of symmetry and or-
der �l;m�. The propagation of light inside a two-layered step
index fiber depends on the V parameter of the fiber,

V � 2π
λ
a

����������������
n2
1 − n2

2

q
; (1)

where a is the core radius, n1 is the core index of refraction,
n2 is the surrounding medium index of refraction, and λ is the
free space wavelength. The relation between βlm and the V
parameter is called the dispersion relation of mode �l;m�.
In our tapers, we can approximate the fiber as a two-layer step
index cylindrical waveguide in two regions: at the beginning
of the taper, the light is confined to the core and guided
through the core-to-cladding interface. We assume that the
core and the cladding radii decrease at the same rate along
the taper, which implies that there is no diffusion of the core
into the cladding during the tapering process. In the waist,
what was initially the core in the center of the fiber is now
negligible (acore ≈ 10 nm ≪ λ). The light is then guided
through the cladding-to-air interface.

B. Three-Layer Fiber
Since we continuously decrease the fiber radius during the
pull, the fundamental mode leaks from the core to the clad-
ding. In that region, the presence of the core, the cladding,

and the air influence the mode (see Fig. 1). A proper treatment
has to take into account all of those interfaces. We model our
fibers by a three-layered structure, and we calculate the
dispersion relations for a series of modes using the fully vec-
torial finite difference mode solver from commercial software
FIMMWAVE [27]. Figure 2 shows a plot of neff � β∕k0 as a
function of the radius of the SM800 fiber described in
Section 2.

We are interested in modes that are initially launched into
the core, thus guided by the core-to-cladding interface. Core
modes have most of their energy contained in the core, and
their effective indices of refraction satisfy nclad < neff < ncore.
Figure 2 shows that the HE11 mode effective index is initially
greater than nclad � 1.45367 (green curve indicated by an ar-
row). Some higher-order modes from the LP11 family may be
accepted in the core, close to their cutoff condition. (The fiber
cutoff wavelength is 792 nm > 780.24 nm, so strictly speak-
ing, we are not working in the fiber single-mode regime.) Ex-
perimentally, we filter higher-order modes that have been
launched or excited with a 1.27 cm diameter mandrel, effec-
tively placing us into the single-mode regime.

When the fiber radius decreases, nHE11
eff approaches nclad.

Since we model the fiber by a three-slab cylindrical wave-
guide, the cladding area is finite: the core becomes too
small to support the fundamental mode around the point
where nHE11

eff reaches nclad (R � 19.43 μm in Fig. 2). The mode
progressively leaks into the cladding to be guided by the clad-
ding-to-air interface. The characteristic length-scale of the
waveguide is R ≫ λ, and many modes can be guided by the
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Fig. 1. (a) Schematic of the stretched fiber. At a given time, the fiber
is composed of two tapers and a uniform waist of radius r and length
w. The total stretch is equal to L. (b) Calculated intensity profile of the
mode for a radius of fiber equal to 60 μm, 15 μm, and 190 nm. Note that
the position axes are not quantitative, and have been scaled to make
the plots visible. The profiles are normalized to their maximum power.
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cladding-to-air interface (nair < neff < nclad), together with the
fundamental mode. As long as R ≫ λ, the air has little influ-
ence on the effective index of many of the accepted modes
(neff ≈ nclad for all the modes shown in Fig. 2). The indices
are so close to each other that the modes interact and ex-
change energy easily. For that reason, this is the critical region
of the taper, where the adiabaticity condition is the most strin-
gent. By symmetry, for a fully cylindrical fiber, intermodal en-
ergy transfer will only happen between modes of the same
family (one color in Fig. 2). Energy transfers between modes
from different families are a consequence of the presence of
asymmetries.

Further decreasing R, we observe that the modes’ effective
indices approach nair � 1. The dispersion curves separate,
and adiabaticity can again be easily achieved. When the index
of refraction of a mode reaches nair, the mode is not guided by
the fiber anymore and radiates into the air. This radius, spe-
cific to each mode, is called its cutoff. The highly excited
modes leave the fiber first, and the number of modes allowed
in the waveguide decreases progressively [see Fig. 2(c)].
Under 0.3 μm, the only mode that can propagate is the
HE11 mode, whose index asymptotically approaches 1. The
fiber is once again single mode.

4. ADIABATICITY IN FIBERS
Achieving high transmission in nanofibers requires precise
control of the taper geometry, where the mode adiabatically
escapes from the core to the cladding before coupling back to
the core [8,28]. High transmission through tapered nanofibers
is indicative of their quality [6,29].

A. Adiabaticity Criterion
The mode conversion in a taper is strongly related to the taper
geometry. If a taper is too short (taper angle too steep), the
mode evolution is nonadiabatic, and we observe losses.
Inversely, as the taper is lengthened, the mode conversion
is more adiabatic. In the limit of a very shallow angle, we in-
tuitively understand that the transmission can reach 100%,
since all the energy remains in the fundamental mode through-
out the evolution. Following this idea, an adiabaticity criterion
has been derived [8] relating the characteristic taper length, zt,
to the characteristic beating length between two modes, zb.

zt is the length associated with the tapering angle Ω at ra-
dius R, defined by

zt �
R

tan�Ω� : (2)

zb is the beat length between two modes (the spatial fre-
quency of the beating)

zb �
2π

β1 − β2
� λ

neff;1 − neff;2
; (3)

where β1 is the fundamental mode propagation constant at
radius R and β2 is the propagation constant at radius R of
the first excited mode with the same symmetry as the funda-
mental mode (EH11). Equation (3) relates the beat length to
the inverse of the distance between two curves in Fig. 2. Mode
conversion in a taper is adiabatic when the fiber is long
enough: zt ≫ zb [8]. If the two modes are close, zb is large,
making the adiabaticity condition more difficult to satisfy.
The choice of EH11 gives the most stringent condition on
the fiber length, as it produces the shortest beat length
between the fundamental mode and any mode with sym-
metry l � 1. Nevertheless, this condition remains too vague
when one wants to optimize the taper geometry for a given
transmission.

Using the dispersion relations from FIMMPROP, we can
solve the equation zt � zb, when the beat length equals the
taper length. The blue curve in Fig. 3 separates the plane into
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two regions: in order to be adiabatic, taper angles need to be
much smaller than the ones indicated on the curve. Above the
curve, the angles correspond to nonadiabatic tapers.

Figure 3 gives an upper limit on the taper angle at a spe-
cific radius using the condition zb � zt from Eqs. (2) and
(3). It does not provide any quantitative information on
the intermodal energy transfer for a given taper: calculations
in Section 4.D show that the angles in Fig. 3 lead to large
energy transfers. We are interested in producing fibers with
high transmissions, greater than 99.90%, and we need to
find the optimal geometry necessary to reach a specific
transmission.

B. Transmission of a Tapered Fiber Section
We perform numerical simulations with FIMMPROP to ex-
plore the parameter space and find the optimal adiabatic pro-
file for a given transmission. The fiber tapers from 62.55 μm
radius down to 250 nm radius. Using the indices of refraction
for our SM800 fiber (see Section 2), we divide the taper into a
discrete series of linear sections (32 sections in this work). At
the end of each section we project the output field into the
first family of modes (here we use the 15 first modes of family
1) to obtain specific amplitude and phase information in terms
of the excited modes. The S matrix, relating input and output,
contains all the mode phases and amplitudes necessary to re-
late the input and output fields of that particular section.

Figure 4 shows the modal evolution in a tapered section
when the input is in the fundamental mode. When Ω is small
(or the length L is large), the modal evolution is adiabatic and
the transmission approaches unity as seen in the plot for the

normalized power in the HE11 mode in Fig. 4. When Ω
increases, some energy couples to higher-order modes, and
the fundamental mode transmission decreases. For the small
angles considered here, Fig. 4(a) shows energy transfer to one
mode only (EH11 mode-dashed green curve). Energy transfer
to other modes (HE12 mode and higher) is negligible within
the resolution of the plot. The oscillations in the transmission
are due to modal dispersion in the fiber, which leads to spatial
beating: two modes see different indices of refraction and ac-
cumulate a phase difference as they propagate through the
fiber (see Section 3.A). The phase accumulation increases
and can become large for small angles (or increased fiber
length). In the particular situation of Fig. 4(b) where only
two modes beat together, the EH11 power reaches local
maxima for zero phase differences and local minima for π
phase differences. The situation can become complex when
more than two modes are excited. Consequently, there exist
some situations in which large intermode energy transfer dur-
ing propagation still results in good fundamental mode trans-
mission. Thanks to mode spatial interferences, most of the
energy can couple back to the fundamental mode during
the propagation. In this case, one relies on interference in
the nonadiabatic effects.

C. Genetic Algorithm
We obtain the total transmission T after calculating the pro-
jection on the fundamental mode of the full S matrix, given by
the product of all S matrices for each section. We want to find
the shortest tapered fiber given a target transmission. For this
task, we use the genetic algorithm function from MATLAB to
find an optimal solution. This approach is efficient with large
problems and allows the use of information of previous runs
to improve the computing time in contrast with Monte Carlo
methods and other optimization techniques that use determin-
istic approaches. Typical parameters for the algorithm are a
population size of 500, a crossover probability of 0.7, a muta-
tion probability of 0.025, and a number of generations of 500.
The genetic algorithm can probe a large parameter space: for
each section, we have calculated 1500 S matrices, for angles
that can vary between 10 and 1.57 rad. We run the algorithm
more than 1000 times with different sets of parameters to ap-
proach the global minimum.

D. Fully Adiabatic Fiber
We will define total transmissions greater than T � 0.9990 as
a fully adiabatic fiber. In this section, we investigate fibers
with limited intermode energy transfers during the pull. This
means that the power contained in the fundamental mode can-
not deviate too much from T everywhere in the taper. In this
case, the interference between higher-order modes plays a
minimal role in the final transmission. We benefit from the ro-
bustness with respect to variation in parameters that is asso-
ciated with an adiabatic process. We obtain the most strict
condition on the angles that can be used to reach a specific
transmission. We run the algorithm with the added condition
that the transmission of each small taper section is greater
than T . That way, we make sure that the fundamental mode
power is greater than T at 32 points in the taper. Between
those points the fundamental mode power can oscillate,
but remains constrained around T , ensuring the limitation
of intermode energy transfer everywhere in the taper.

0 0.2 0.4 0.6 0.8
10.0

5.0

0.0

(1
-N

or
m

al
iz

ed
 H

E
11

 p
ow

er
)1

0-4
 

0 0.2 0.4 0.6 0.8
0.0

5.0

10.0

0 0.2 0.4 0.6 0.8

−π

−π/2

0

π/2

π

 Ω (mrad)

H
E

11
 to

 E
H

11
ph

as
e 

di
ffe

re
nc

e

(b)

(a)

(N
or

m
al

iz
ed

 E
H

11
 p

ow
er

)1
0-4

 

Fig. 4. Transmission of one section (tapering from 25.5 to 23.5 μm)
as a function of angle when the input is the fundamental mode. (a) Am-
plitude of the fundamental HE11 (continuous blue) and the first
higher-order mode EH11 (dashed green). (b) Phase difference be-
tween the fundamental and the first higher-order mode.
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Figure 5 shows results from the genetic algorithm for opti-
mized adiabatic fiber tapers using target transmissions of
99.90% and 99.99%. We plot the taper angle as a function of
the fiber radius as in Fig. 3. We observe similar behavior: large
taper angles are allowed for large fiber radii, and then reach a
minimum around the transition region at 20 μm, before in-
creasing again at smaller radii. For T � 0.9999, the optimal
taper in Fig. 5 (red-dashed curve) shows angles as low as
0.4 mrad, 30 times smaller than the zb � zt criteria. The results
in Fig. 5 give precise bounds on adiabaticity, with minimum
power transmitted to higher-order modes. This last point en-
sures that this algorithm is insensitive to phase effects: the
final transmission is not a consequence of constructive inter-
ference between several modes and will be independent of
perturbation to the fiber geometry.

Figure 6 shows the optimized taper profiles corresponding
to T � 0.9990 (blue continuous line) and T � 0.9999 (red-
dashed line). Strikingly, for T � 0.9999 the optimized adia-
batic taper is only 4.5 cm long, on the order of typical
nonadiabatic taper lengths produced with a heat-and-pull
method [24] (the 2 mrad taper presented Section 5 is
≈6 cm long and still presents nonadiabaticities). Note, how-
ever, that in Fig. 6, Ω varies continuously as a function of

z, and can be large at the beginning of the pull. Experimen-
tally, we show below (see Section 7) that abrupt variations
of Ω during the pull can induce detrimental asymmetries in
the taper. With our apparatus, we have precise control of
the taper geometry for linear and exponential profiles [24].
Reaching adiabaticity that way would require a linear taper
angle Ω ≈ 0.5 mrad, and a substantially increased length.
One could chose to use smaller clad fibers [30] or to chemi-
cally pre-etch fibers, allowing shorter adiabatic tapers with
improved handling.

E. Utilizing Nonadiabaticity
Limiting intermodal energy transfer in a taper to arbitrarily
small values is possible, but can be impractical due to large
taper lengths. An alternative approach consists of allowing
large energy transfers, yet reaching high transmissions by
careful design and phase control in the fiber. Section 3.A
shows that different modes interfere together as they propa-
gate in the taper. Taking advantage of this spatial beating, we
can design fibers with particular phase combinations that al-
low high transmission, despite the presence of nonadiabatic-
ities. In this section, we run the genetic algorithm with only a
condition on the final transmission (T ≥ 0.9999): intermodal
energy transfer in each section is no longer limited. Using
this nonadiabaticity, it is possible to produce short high-
transmission tapers.

We calculate the shortest fiber length that has 99.99% total
transmission in the fundamental mode using the genetic algo-
rithm. Figure 7(a) shows that the taper angles allowed here
are much larger than the ones presented above in the adia-
batic case (Fig. 5). At large fiber radii, the taper angle reaches
≈100 mrad. Closer to the transition region, the minimal taper
angle can still be as large as 2 mrad. From the taper angles
used here, we know that the fundamental mode is not
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propagating adiabatically in this taper. Figure 7(b) shows the
corresponding profile. Figure 7(c) shows a 99.99% transmis-
sion (green continuous line) fiber with a 3.7 mm length, a fac-
tor of 12 shorter than in the adiabatic case (red-dashed line)
calculated using FIMMPROP. This greatly reduces the length
requirements for high-transmission fibers, which is particu-
larly relevant for our application.

Using FIMMPROP, we model the tapered structures pre-
sented in Figs. 6 and 7 by putting together a succession of
32 linear tapered sections obtained with the genetic algorithm.
The input is set to 100% in the HE11 fundamental mode,
and the simulation includes 15 modes of family l � 1. We cal-
culate the modal evolution (phases and amplitudes) along the
taper. In the adiabatic optimized case [red-dashed curve
Fig. 7(b)], we confirm that the power contained in the funda-
mental mode is close to 99.99% throughout the taper. Higher-
order mode excitations are negligible, and the evolution is
adiabatic. Using nonadiabaticity [green curve Fig. 7(b)], we
observe large energy transfer to higher-order modes. Around
R � 23 μm, more than 7% of the energy has been transferred
to higher-order modes. However, using this particular geom-
etry, the resulting phase combinations lead to high transmis-
sion in the fundamental mode.

Nonadiabaticity can lead to high transmission with shorter
tapers, which is particularly useful for taper design. In the rest
of the paper, we experimentally study fibers that exhibit this
behavior. Exploiting nonadiabaticity requires particular atten-
tion because of their sensitivity to mode phases: deviations
from the calculated profile might lead to situations in which
mode interference causes large losses, with less energy end-
ing in the fundamental mode than initially expected. One
needs to reproduce the calculated geometry as accurately
as possible. As discussed above, producing the taper in Fig. 7
with a continuously varying angle is not the best option for us,
due to the presence of large angles and possible experimental
asymmetries. Moreover, this particular taper length (3.7 mm)
is too small in comparison to the heating-zone size (0.75 mm in
our experiment) to accurately produce such a profile. Our typ-
ical profiles start with a linear section (Ω of a few mrad) down
to 6 μm radius, followed by an exponential section down to
250 nm radius. We calculate with FIMMPROP the HE11 mode
evolution through such a taper (Ω � 2 mrad) and show
that it benefits from nonadiabatic effects, leading to high
transmission.

We start by investigating geometries we can produce with
good accuracy using our fiber puller. Figure 8 shows the trans-
mission of the first fewmodes of family l � 1 through a 2 mrad
taper. We create a taper with FIMMPROP that reproduces the
experimental profile, which has been validated with micros-
copy measurements [24]. Initially, all the power is contained
in the fundamental mode. Around R � 23 μm, ≈0.4% of the
energy is transferred to higher-order modes because of non-
adiabaticities (up to HE13, the fifth mode of family l � 1). This
illustrates that non-negligible higher-order mode excitations
can be observed below the zb � zt limit (the taper angle Ω �
2 mrad is at least a factor of five below the zb � zt limit every-
where in the taper). Those modes beat together, and by the
end of the taper, 99.97% of the energy is transmitted through
the fundamental mode. For different taper angles, we observe
that our typical tapers benefit from nonadiabaticity (see
Section 5). If there is still room for optimization, the simplicity

of the linear geometry makes it the ideal candidate for our
application.

5. ANALYSIS OF THE TRANSMISSION
SIGNAL
We evaluate the quality of a pull by monitoring the transmis-
sion of a few milliwatts from a 780.24 nm laser through the
fiber during the process. We normalize the signal to remove
fluctuations of the laser intensity. Figure 9(a) shows a typical
transmission as a function of time for a successful 2 mrad
pull. The transmission and normalization fiber outputs are
connected to two Thorlabs DET10A photodetectors, which
deliver a signal to a SR570 low-noise differential preamplifier
from Stanford Research Systems. A Tektronix DPO7054 dig-
ital oscilloscope set on high-resolution mode and sample rate
of 10–20 ksample/s records the data. The fiber is thinned dur-
ing the pull, and as its radius decreases, we observe different
notable features in the transmission signal. Figure 9(b) shows
the relation between time and radius for the particular pull of
Fig. 9(a) calculated using the algorithm for fiber pulling that
was validated in [24], with a deviation from the experimental
measurements lower than 8% at all diameters.

A. Single-Mode Section
The fiber is initially close to being single mode (V ≈ 2.45) at
the light wavelength we use to measure the transmission. We
carefully launch the fundamental mode with a 1.27 cm radius
of curvature mandrel wrap, to filter higher-order modes from
the initial launch. During the first 100 s (down to 25 μm ra-
dius), we observe a constant transmission. A 2 mrad taper
is completely adiabatic in this region (see Fig. 3). The funda-
mental mode is confined to the core and does not interact with
any other mode.

B. From Single Mode to Multimode
As the fiber radius decreases, the fundamental mode effective
index approaches the cladding index of refraction (see Fig. 2).
The fiber core becomes too small to support the fundamental
mode, which progressively leaks into the cladding to become
guided by the cladding-to-air interface. The point at which the
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fundamental mode leaks into the cladding is nHE11
eff � nclad, at

R � 19.43 μm. At that point, the waveguide is so large in com-
parison to the wavelength of the light that the fiber is multi-
mode (V ≈ 170). The dispersion relation curves of all the
modes are close to each other [see Fig. 2(a)], and the modes
can easily interact. Figure 5 shows that the tapering angle has
to be smaller than 0.3 mrad in order to be adiabatic in that
region. The transmission signal therefore shows mode beating
(see Fig. 10).

Energy transfer to higher-order modes occurs during the
transition from core to cladding because of this nonadiabatic-
ity. For a cylindrically symmetric fiber, such a transfer of en-
ergy is only possible from the fundamental mode to other
modes of order l � 1 (by symmetry). Once they have been ex-
cited in the fiber, those modes coexist and propagate together
with different propagation constants, given by the dispersion
relation curves (green curves in Fig. 2). The optical path
length inside the fiber is

�L�n �
Z
fiber

nn
eff�z�dz: (4)

Equation (4) shows that different modes accumulate a
phase difference. The modulation observed in the transmis-
sion signal around radius 20 μm is a signature of the presence
of higher-order modes beating together.

The beating signal is related to the relative phases when
light couples back into the fiber core as R increases in the

second taper. When R reaches 19.43 μm in the second taper,
energy couples back into the core. Although the two tapers
are identical, the presence of beating between modes breaks
the symmetry (see Fig. 11). Depending on the fiber length, the
phase accumulation between modes leads to a different field
distribution entering the core at 19.43 μm. The fraction of en-
ergy that can couple back into the core depends on the field
distribution at this point. If the modes travel through an inte-
ger number of beat lengths, the field distribution returns to its
initial input. The reciprocity theorem implies that all the en-
ergy couples back into the core. If the modes experience a

(a)

(b)

Fig. 11. Schematic of the modal evolution in the transition region. All
the power is initially contained in the fundamental mode (blue pro-
file). When the core of the fiber becomes too small compared to
the wavelength, the light escapes into the cladding (green arrows)
and some higher-order modes can be excited (red profile). The radius
of the waist is equal to 20 μm, so that the excited modes do not ex-
perience any cutoff as they propagate through the waveguide. (a) The
length of the fiber is an integer number of beating lengths. (b) Length
of the fiber, not an integer of beating lengths. The mode profiles were
calculated with FIMMPROP.
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during the manufacturing process. (b) Evolution of the waist radius
during the pull, calculated from the algorithm described in [24]. The
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noninteger number of beat lengths, the field distribution is
different from what it was initially and only a fraction of en-
ergy can couple back into the core: the rest of the energy cou-
ples to cladding modes. The cladding light is not detected
since we filter the higher-order modes placing a mandrel wrap
in front of the detector. At the fiber output, we therefore only
observe on the detector the light that coupled back into the
fiber core.

C. Single Mode Again
As we continue to thin the fiber, the modes’ effective indices
approach the air index of refraction. When R (equivalently, the
V parameter) becomes small enough, the excited modes cut
off and couple to radiation modes in air. Meanwhile, the fun-
damental mode’s effective index asymptotically approaches
nair without reaching a cutoff. A small enough fiber can con-
sequently be single mode again after all the higher-order
modes cutoff. For the SM800 fiber, the single-mode cutoff oc-
curs at 300 nm radius. After this cutoff, we do not see any beat-
ing anymore, and the transmission is steady again: we
measure a transmission of 99.950(23)%, where the dispersion
of the distribution is 5.8 × 10−3 and the dispersion on the mean
is 1.2 × 10−5. Possible systematic effects related to fiber clean-
liness and the detectors’ and amplifiers’ long-term stability
prevent us from giving a better bound than 0.023% to the mea-
sured uncertainty in the transmission, but T is close to unity,
both in the measurement and in the simulation. Note that the
simulation Section 4.E looks at the propagation through a sin-
gle taper. In the present case, light goes through two tapers,
explaining why the measured transmission is slightly smaller
than the simulated one.

6. SPECTROGRAMS
We extract the evolution of the frequencies contributing to the
beating process as a function of pull time using spectrograms,
which plot local, windowed Fourier transforms of the trans-
mission signal as a function of time. We use the spectrogram
function in MATLAB with a window of 8192 points and an

overlap of 7000 points. [See Fig. 12 for an example of a
spectrogram of the transmission from Fig. 9(a)]. The modula-
tion in the transmission does not have a single frequency. The
frequency is chirped for various reasons. First, the stretch of
the fiber is not a linear function of time. Its form depends on
the chosen pulling parameters, and can be calculated using
our algorithm. Second, the propagation constants of the
modes are not only radius-dependent, but the way they evolve
also depends on the mode. The difference between two curves
varies as a function of R, which means that the phase does not
accumulate at a constant rate.

Each curve in the spectrogram signals the interaction
between two modes beating at a given frequency. They all
appear when the fiber enters the multimode regime
(R ≈ 19.43 μm). The presence of these curves indicates non-
adiabaticities in the pull. The curves terminate before the
end of the pull, at a point that corresponds to the cutoff of
one of the two beating modes. We now have the task to iden-
tify which modes are excited, how they are excited, and
whether there is a way to suppress their excitation. Given
the specificity of the phase accumulation for a couple of
modes, it is possible to label the modes excited during the
pull and use the spectrogram as a diagnostic to evaluate
the adiabaticity and symmetry of the fibers.

A. Modeling the Pull
The phase accumulation between two modes is a function of
their optical path length, which depends on the geometry of
the fiber at a time t [see Eq. (4) above]. When the stretch at
that time is equal to L, the phase accumulation between two
modes is

Φi;j�L� �
Z

L

0
�βi�r�z�� − βj�r�z���dz; (5)

with spatial frequency K [7]

Ki;j�L� �
1
2π

dΦi;j

dL
: (6)

B. Identifying the Modes
We know the profile at the end of a step from the pulling al-
gorithm described in [24]. We use the dispersion relations ob-
tained with FIMMPROP to calculate the differences, Δβi;j , in
propagation constants for mode i and mode j. By integrating
numerically Δβi;j�z� at each step, we obtainΦi;j�L�. A numeri-
cal differentiation of Φi;j with respect to L gives us the evo-
lution of the spatial frequency as a function of step (see
Fig. 13). From our simulation of the pull, we know the stretch
as a function of time, and we can plot the evolution of the
spatial frequency as a function of time.

We calculate the spatial frequency for a thousand pairs of
modes with different radial symmetry (l � 1 to 6) and azimu-
thal order (m � 1 to 20), and we map them on the spectro-
gram. We can then identify and label the curves observed
on the spectrogram by looking for their overlap with the ex-
perimental curves. We get an excellent matching without any
scale adjustments.

We can identify in the spectrogram (2 mrad tapered fiber)
the signature of beating between four modes (see Fig. 14). All

Fiber Length (mm)

N
or

m
al

iz
ed

 B
ea

t F
re

qu
en

cy

40 50 60 70 80
0

0.05

0.1

30 20 10 4 2 1 0.5 0.3
Radius (µm)
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those modes have the symmetry l � 1 (see Fig. 2) as expected
for a cylindrically symmetric fiber. We observe higher-order
mode excitation up to the fifth mode of family l � 1, which
is consistent with the simulations (Section 4.E). The total
HE11 transmission is 0.9995, meaning that 0.05% of the energy
has been transferred to the other modes. We suppose here
that all the losses come from the transfer of power to other
modes. This power is radiated in air when those modes reach
cutoff. The contribution of other losses such as Rayleigh scat-
tering is expected to be much smaller. The power spectral
density (PSD), which defines the colormap in a spectrogram,
gives a representation of how the remaining power is distrib-
uted between the higher-order modes as a function of time. By
plotting the PSD at different times, we evaluate the power con-
tained in each branch contributing to the beating. Below
R � 4 μm, those contributions are almost constant, and the
higher-order mode relative power is distributed as follows:
5.5� 0.5% in HE12, 9� 0.5% in EH12, and 85.5� 0.5% in
HE13. Note that we only resolve the beating between the fun-
damental mode and one excited mode. The beating between
excited modes exists, but this second-order effect is too weak
to be visible in the spectrogram.

7. APPLICATION: QUALITY OF THE PULL
We can use the spectrogram analysis to design and diagnose
its quality while pulling a fiber. The number of modes excited
and which modes are excited give us information about the
adiabaticity, asymmetries, and quality of the fiber after
the pull.

A. Multiangle Taper
The beating amplitude and higher-order modes excitations
seen in Figs. 9 and 12 show that the angle of tapering near
the critical region at 19.43 μm is nonadiabatic. A shallower
taper angle around that region could lead to a more adiabatic
transition. Following this idea, we study a fiber with a 2 mrad
angle until a radius of 20 μm, and then decrease the angle to
0.75 mrad. After R � 6 μm, the pull is exponential down
to R � 250 nm.

We see that the transmission at the end of the pull is only
97.850% from Fig. 15. This corresponds to a transfer of energy
to the higher-order modes larger than 3%, a factor of 60 worse
than in the linear 2 mrad pull (Fig. 9). The beating amplitude is
much larger than in the 2 mrad case. This is surprising since
this pull is designed to be more adiabatic, and simulations
with FIMMPROP confirm that we still expect a transmission
T ≥ 99.90%.

B. Tracking Asymmetries
The spectrogram analysis in Fig. 16 shows excitation to the
TE01, TM01, and HE21 modes, which do not belong to the fam-
ily of the fundamental mode. The largest transfer is still to the
same family, with a different distribution. Coupling to other
families should not be observed for a fiber with cylindrical
symmetry. This suggests that our multiple angle tapers intro-
duce some asymmetries in the fiber. We imaged the fiber using
an optical microscope near the angle change regions (see
Fig. 17) to further investigate the decrease of transmission.

Figure 17 shows that the bottom angle of the fiber exceeds
the top angle. Although the measured diameters are as ex-
pected, superimposed plots of the top and bottom edges show
that there are imperfections around the transition. We observe
a peak at the transition radius (R ≈ 20 μm) in the distance
between the edges. We believe that the excitation of higher-
order modes at this radius is a consequence of this asymme-
try. We do not observe the same imperfection around the
transition region for a 2 mrad flat fiber. The abrupt change
in angle exacerbates imperfections in the pulling process
by introducing some asymmetries. These results further sup-
port the idea that single-angle linear tapers are good candi-
dates for our application. Further increasing adiabaticity
would require us to decrease Ω, leading to large taper lengths.
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Because of geometrical and handling constraints, we find it
ideal to work with 2 mrad tapers. To work with steep and
multiple angles might require a smaller flame or a more
symmetric heating.

8. UNDERSTANDING THE LOSSES
A. Losses
Understanding the losses in nanofibers is important for our
future applications [11,24], which require knowledge of such
photon loss. We identify two main loss mechanisms that con-
tribute to the final losses: coupling to higher-order modes
through nonadiabaticities and scattering around the waist
of the nanofiber [8]. Systematic effects such as the presence
of impurities on the fiber surface, or asymmetries in the pull,
enhance the losses through those mechanisms.

B. Coupling to Higher-Order Modes
We have observed and characterized in this paper the effect of
nonadiabaticities in the taper. Their presence induces energy
transfer to higher-order modes. As we reach the single-mode
regime, those higher-order modes cutoff. They cannot be
guided by the fiber anymore, and they diffract out as radiative
modes. In a plane transverse to the fiber, one can observe a
characteristic diffraction pattern further supporting the fact
that this effect is most the important for the pulls considered
in this study.

C. Rayleigh Scattering
Rayleigh scattering is present in any glass, leading to scatter-
ing of light and attenuation in the transmitted signal [8]. The
attenuation coefficient for fused silica is small at a wavelength
of 780.24 nm. By imaging the fiber, it is possible to directly
observe the scattering. Experimentally, it is particularly
visible on the fiber waist, but remains of the order of
3 dB∕km, justifying the fact that we neglected it in this paper.

D. Systematic Effects
Transmission varies drastically with the surface state of the
fiber. When the fiber is initially dirty, the spectrogram analysis
shows the excitation of more modes corresponding to more
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losses. We attribute this to the presence of impurities on the
surface of the fiber at the beginning or during the pull. A dust
particle on the fiber waist leads to losses through coupling to
higher-order modes or scattering. The cleanliness of the fiber
is critical before and during the pull. Such imperfections are
avoidable by properly cleaning the fiber and imaging the fiber
prior to a pull as explained in [24]. All the pulls presented in
this paper were performed after applying the cleaning pro-
cedure described in [24].

9. CONCLUSION
We have demonstrated our ability to produce ultralow loss
optical nanofibers. Reaching high transmissions is important
for many nanofiber applications. We have described an algo-
rithm that calculates the optimum taper length for a given
transmission, or equivalently the optimum transmission for
a given taper length. This new approach concerning adiaba-
ticity in tapered fibers gives more precise bounds than the tra-
ditional adiabaticity condition, which helps in the design of a
suitable taper geometry. We show that in our experiments, the
transition from the single-mode regime to the multimode re-
gime is nonadiabatic, inducing excitations of higher-order
modes during the tapering. Having good control of the taper
geometry is crucial for limiting losses due to those excitations.

The propagation of different modes during the pull leads to
a characteristic beating pattern in the transmission. Plotting
the spectrogram of the transmission signal and using a model
of fiber pulling, we are able to identify the modes excited
during the pull. This gives information for the analysis of the
quality of a fiber and the understanding of loss factors, which
will help in the manufacture of even more adiabatic fibers.
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