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Abstract. The two peaks of the vacuum Rabi splitting behave like simple harmonic oscillators
for very weak excitation. The transmission spectrum of a cavity filled with two-level atoms
shows this doublet at low values of the driving intensity, but only a single peak at high values.
The evolution from a doublet to a singlet is governed by the anharmonic response of the system
as the driving intensity increases. The anharmonicity can grow to a point where frequency
hysteresis appears in the transmission spectrum. This work investigates theoretically with a
semiclassical model the transition from the doublet into the singlet. The stability of the different
solutions is analysed as the parameters of atomic and cavity detuning vary. The model is
extended to include the experimentally relevant transverse profile of the cavity mode as well as
the standing wave structure of the field.

1. Introduction

The study of the spectroscopy of a collection of two-level atoms coupled to a single mode
of the electromagnetic field has a long and distinguished history in quantum optics [1]. The
pioneering work of Śanchez Mondraǵon et al [2] analysed the Jaynes–Cummings model [3]
where a single atom couples to a single mode of the electromagnetic field. They revealed
the composite structure of the system and the importance of the coupling between the
atom and the field. They calculated the spectrum and termed the double peak present for
very weak excitation the vacuum Rabi splitting. It was soon realized that the structure is
indeed present even whenN atoms couple to a single mode of the electromagnetic field
[4], with the enhancement in the coupling constant due to the coherent interaction of all
of them. In the presence of dissipation caused by the finite transmission of the cavity and
by the spontaneous emission of the atom, the double-peak structure can still survive under
conditions very similar to those established by Lamb [5] in his work on level crossings.
The conditions amount to an impedance matching. First, the difference between the two
dissipation rates has to be smaller than the coupling rate. Second, the average of the
dissipation rates has to be smaller than the coupling rate, to allow multiple exchange of
excitation inside the system before the energy decays away.

Over the last two decades, the investigations of the fundamental interaction of two-level
atoms coupled to a single mode have taken two main paths. The first, dedicated to the active
system, produced a vast literature examining a single excited two-level atom interacting with
the mode of a resonator either in the microwave regime (see, for example, the review paper
by Raithelet al [6]) or in the visible [7]. The second path studies the passive system, where
the atoms are in the ground state and the cavity mode is externally excited. The latter is
the canonical model of optical bistability [8].
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The experiments of Kaluznyet al [9] with Rydberg atoms in microwave cavities in
superradiance showed the exchange of excitation between the electromagnetic mode and the
collection of two-level atoms. Focusing on the passive system in the optical domain, Brecha
et al [10] studied the transient response of a collection of two-level atoms in a single-mode
optical cavity to very weak step excitation. The exchange of energy between the cavity and
the atoms produced oscillations in the transmitted field at the coupling frequency. Later,
different experimental groups began to study the low intensity spectrum of the same system,
either by using sideband techniques [11, 12] or by measuring the transmission of the cavity
as a function of the excitation frequency [13].

It was recognized early in the discussion of the passive problem that the underlying
mechanism in the limit of very weak excitation could be described by a model of two
coupled harmonic oscillators. Carmichael [14] formalized this idea using the Schwinger
representation of a two-level atom in terms of two boson operators, the first representing
the creation (annihilation) of an excited state and the second the creation (annihilation) of
a ground state. Of the three harmonic oscillators present in the problem (one for the field
and two for the atom), only two oscillators are necessary: one for the field and one for the
excited state of the atom. The validity of this approach breaks down as soon as the excited
state contains an appreciable population. In the weak-field limit the results derived from
the quantum mechanical and semiclassical approaches are the same because the physics is
contained in a pair of coupled harmonic oscillators.

This paper presents a semiclassical analysis of the passive system ofN two-level atoms
coupled to a single mode of the electromagnetic field. We go beyond the weak excitation
limit and take into account the experimentally relevant transverse profile of the mode and the
standing waves of the Fabry–Perot cavity. This permits us to make quantitative predictions
for on-going experiments. The review chapter by Carmichaelet al [15] stated the existence
of bistable behaviour in the transmitted intensity of a driven cavity. They study a full
quantum model and only show semiclassical calculations to contrast the different qualitative
predictions of the two (see also Tian and Carmichael [16]). We were motivated by this
difference to investigate further the problem of the transmitted spectrum of a driven cavity
filled with N two-level atoms. There is a distinct evolution of the transmitted spectrum
that requires a careful analysis with an experimentally appropriate model. The presence
of a Gaussian transverse profile qualitatively changes the phenomenology predicted with
plane waves [17]. This paper shows the results of an investigation on the evolution of the
vacuum Rabi peaks as the parameters of the system vary. We map the position of the peaks
as the excitation of the system increases. We allow for a possible detuning between the
atomic and the cavity resonance frequencies. The explored values of the rates for cavity
decay, atomic decay and single-atom coupling are kept within the experimentally relevant
range [18], where all of them are of the same order. This defines the intermediate regime
of cavity quantum electrodynamics.

The relevance of this problem goes beyond the field of quantum optics. Recent
observations in semiconductor microcavities reveal similar phenomena. The vacuum Rabi
doublet has been studied experimentally [19–21] using excitons in cavities. Although the
transmitted spectrum at low intensity shows the same vacuum Rabi splitting, the underlying
physical mechanisms in semiconductors and two-level atoms differ significantly. The
bosonic character of the excitons and the way they may couple to each other, changes
the spectrum qualitatively from the one obtained with two-level atoms.

The paper is organized as follows. In section 2 we present the semiclassical model of the
system with plane waves. Section 3 is dedicated to analytical results obtained with the model
under certain limits in order to gain physical understanding. Section 4 presents numerical
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results of the model in the presence of atom–cavity detuning. Section 5 generalizes the
model to include the experimentally relevant transverse profile of the electromagnetic field
of the cavity as well as the standing waves of the Fabry–Perot cavity. Section 6 summarizes
the work and presents the conclusions.

2. Model

We start with the Maxwell–Bloch equations for the atoms–cavity system, following the
literature in optical bistability [8]. We work with a collection ofN radiatively broadened
two-level atoms interacting with a single plane-wave travelling mode of the electromagnetic
field. We take the uniform field limit [8] where the absorption by the atoms and the
transmission of the mirrors go to zero, while their ratio remains constant and arbitrary.
The decay rate of the atoms is characterized byγ⊥ and the cavity field decays with a rate
κ. The dipole coupling betweenN two-level atoms and the cavity mode isg

√
N , where

g = (µ2ω/2h̄ε0V )1/2; µ is the transition-dipole moment of the atom,ω the resonance
frequency of both atoms and cavity andV the cavity mode volume. The cooperativity
parameter of optical bistabilityC is related to the dipole coupling by

C = g2N

2γ⊥κ
. (1)

The cavity and atomic detunings are given by2 and1, respectively

2 = ωc − ωl

κ
(2)

1 = ωa − ωl

γ⊥
(3)

where ωc, ωl and ωa are the frequencies of the cavity resonance, excitation source and
atomic resonance. The detunings are measured in units of the cavity half widthκ and
the atomic resonance half widthγ⊥. We only consider radiative decay in the model, so
2γ⊥ = γ‖, with γ‖ = τ−1, whereτ is the radiative lifetime of the atomic transition. Then
for a ring cavity with plane waves the Maxwell–Bloch equations have the following form:

dx

dt
= −κ[(1 + i2)x − y + 2Cp] (4a)

dp

dt
= −γ⊥[(1 + i1)p − xm] (4b)

dm

dt
= −γ‖

[
m − 1 + 1

2(xp∗ + x∗p)
]

(4c)

wherey is the intracavity field without atoms, normalized to the square root of the saturation
intensity of the atomic transition. It is proportional to the driving input field that excites
the system through the field enhancement factor of the cavity.x is the intracavity field
in the presence of atoms, normalized to the square root of the saturation intensity of the
atomic transition. It is proportional to the output field through the transmission properties of
the exit mirror. p is the scaled atomic polarization andm the scaled population difference
between atoms in the ground state and in the excited state. The intensities associated with
the driving and transmitted fields areY = |y|2 andX = |x|2.

The steady state solution to the Maxwell–Bloch equations 4(a–c) leads to the state
equation of optical bistability [8]:

y = x

(
1 + 2C

1 + |x|2 + 12

)
+ ix

(
2 − 2C1

1 + |x|2 + 12

)
. (5)
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We define a detuning� of the excitation frequency, which in the resonant case (ωa = ωc)
is

� = γ⊥1 = κ2 . (6)

Using equations (1) and (6) we derive from (5) an implicit expression for the transmitted
field

x = y
κ(γ⊥ + i�)

(κ + i�)(γ⊥ + i�) + g2N/(1 + γ 2
⊥|x|2/(γ 2

⊥ + �2))
. (7)

The transmission can be written in the following form to stress the two normal modes
present in the low intensity regime:∣∣∣∣xy

∣∣∣∣2

=
∣∣∣∣ A

i� + �1
+ B

i� + �2

∣∣∣∣2

(8)

where

A = κ
γ⊥ + �1

�1 − �2
(9)

B = κ
γ⊥ + �2

�2 − �1
(10)

and

�1,2 = −κ + γ⊥
2

± i

√
−

(κ − γ⊥
2

)2
+ g2N

1 + γ 2
⊥|x|2/(γ 2

⊥ + �2)
. (11)

In the limit of very low excitation,|x|2 � 1, the system behaves like two coupled
harmonic oscillators and�1,2 are the eigenvalues of the linearized Maxwell–Bloch
equations. In this limit, it is convenient to define the vacuum Rabi frequency as

�V R = g
√

N . (12)

Note that in order to have an imaginary part in the eigenvalues�1,2 from (11), the difference
between the two decay ratesκ and γ⊥ should be small compared to the vacuum Rabi
frequency. To avoid overdamping in the system, the average of the two decay rates has to
be smaller than the vacuum Rabi frequency.

3. Analytical results

To study the transmission, we present in figure 1 the transmitted spectrum for three values
of the incident intensityY . We normalize the spectra to the valuesXcrit , Ycrit at the point
where the system jumps down from the upper branch of the on-resonance hysteresis curve.
In the low intensity regime the structure of (8) shows two harmonic oscillators. They
correspond to the normal modes of the atoms–cavity system when the excitation is very
small. As the intensity increases, the excitation|x|2 changes the eigenvalues given in the
low intensity limit of (11). The peaks move toward the on-resonance centre and deform
into a multivalued shape before they meet. The system exhibits frequency hysteresis in this
regime.

We present in the remainder of this section an approximation with analytical results that
helps us to understand the physical origin of the phenomenon described. We follow the
work of Zhuet al [13] in recognizing from (5) the possibility of a phase difference between
the driving fieldy and the intracavity fieldx for a weak field. Although a zero phase is not
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Figure 1. Transmitted intensity of the atoms–
cavity system as a function of excitation
frequency�. The curves correspond to different
driving intensitiesη = Y/Ycrit . The broken
curve follows the condition for zero-phase shift
between the input and output fields. We show
only the features reached by scanning� from
below to above atomic resonance. The dotted
curve corresponds to an unstable state. (�V R =
35.5 MHz, κ = γ⊥ = 3.0 MHz, Xcrit = 137,
Ycrit = 556.)

a sufficient condition for a peak, a nonzero phase difference leads to destructive interference
and decreases the transmission. We generalize this condition for arbitrary intensities.

The broken curve in figure 1 is obtained by demanding a phase difference of zero
between the driving and the intracavity field. It is the skeleton curve for the evolving peaks

2 = 2C1

1 + |x|2 + 12
. (13)

The solution2 = 1 = 0 gives a peak only for high intensity. The condition imposed
by (13) becomes more transparent in the resonant case (ωa = ωc) when the cavity decay
rateκ and the atomic decay rateγ⊥ are equal

γ 2
⊥|x|2 + �2 = g2N − γ 2

⊥ . (14)

The left-hand side of (14) is the square of the generalized Rabi frequency while the
right-hand side is the square of the coupling constant betweenN two-level atoms and
a single mode of the electromagnetic field, in the limit of largeN . This shows that a high
transmission due to a zero-phase difference can be achieved when the frequency separation
between one of the sidebands and the main peak of the Mollow spectrum matches the
frequency of the coupling constant. The Mollow triplet itself is not observable in this
method of probing the atoms–cavity system where one detects the transmission of the
cavity as a function of driving frequency.

The zero-phase condition guides the position of the anharmonic peaks remarkably well
and links their evolution to classical optics. From a purely phenomenological point of view,
one can argue that the transmitted spectrum in the high intensity regime should be a singlet,
since the atoms are saturated and do not affect the transmission of the system significantly.
In the limit of no dissipationκ → 0, γ → 0 andκ/γ → constant, the steady state solution
shrinks into the curve given by the zero-phase condition.
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The transmitted spectrum is described by the steady state solutions of the Maxwell–
Bloch equations. For intermediate excitationX/Xcrit 6 1, figure 1 shows that the steady
state solution ceases to be a single-valued function of�. The dotted curves indicate
unstable solutions according to a linear stability analysis of the steady state solutions of
the Maxwell–Bloch equations. The transmission is bistable and exhibits hysteresis as the
excitation frequency varies. The deformation of the harmonic oscillator into a bistable shape
recalls the presence of an anharmonicity. Next we focus on the transition of the oscillator
between the low intensity regime where it is harmonic, to the place where the intensity is
large enough that the anharmonic oscillator presents an unstable solution. We take one of
the two oscillators from (8) and, following the work in [22], expand its frequency response
around the linear eigenvalue. Then we solve to first order in|x|2 while still keeping the
following approximations:

g2N

1 + γ 2
⊥|x|2/(γ 2

⊥ + �2
) �

(κ − γ⊥
2

)2
(15)

and

γ 2
⊥|x|2

γ 2
⊥ + �2

� 1 . (16)

This produces a shift in the resonant frequency�0 from the vacuum Rabi value to

�0 = �V R − g
√

N

2
(
1 + (�0/γ⊥)2

) |x|2 . (17)

The resulting equation for the oscillator reduces to a third-order polynomial in|x|2
that produces the characteristic shape of the anharmonic oscillator. The onset of hysteresis
appears when the transmission curve develops a point of infinite slope. The critical values
are

�h = �0 −
√

3
κ + γ⊥

2
(18)

|xh|2 = 2√
3

κ + γ⊥
γ 2

⊥
g
√

N (19)

|yh|2 = 8

3
√

3

(κ + γ⊥)3

κ2γ 2
⊥

g
√

N . (20)

These conditions for frequency hysteresis are different from the conditions for on-
resonance intensity bistability and require smaller intensities. The point where the two
oscillators merge into a single peak in figure 1 corresponds to the point where the on-
resonance intensity bistability switches down. Wheng

√
N is large compared to

√
κγ⊥, the

values are

Xcrit ≈ g2N

κγ⊥
(21)

Ycrit ≈ 4
g2N

κγ⊥
. (22)

We have progressively approximated the expression for the single oscillator by higher-
order expansions in the intracavity intensity|x|2. This is equivalent to an expansion of the
non-linear atomic polarization. The higher orders approximate quantitatively correctly the
hysteresis behaviour, reproducing the threshold for the unstable part of the curve.
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4. Evolution with atoms–cavity detunings

So far the transmitted spectrum has been studied when the atoms and the cavity are resonant
with each other(ωa = ωc) and the coupling between them is at a maximum value. As they
are allowed to be at different frequencies, the coupling decreases and the behaviour of the
system resembles more the case of an uncoupled cavity and atoms. Here we limit the
study to the semiclassical model, but point out that the case of the quantum mechanical
calculation has been treated by Haroche [23]. In the weak-field limit, extensive theoretical
and experimental studies have been performed by Raizen [24]. When the excitation is
no longer small, a new complication appears since the steady states calculated with the
transmission function given by a generalization of (8) may develop dynamical instabilities
[17]. We start by analysing the eigenvalues with a detuningδ between the cavity and the
atoms

δ = ωa − ωc (23)

so that now

� = γ⊥1 = κ2 + δ . (24)

The imaginary part of two of the eigenvalues of the atoms–cavity system are plotted
in figure 2 for the case of very weak excitation, as the detuningδ changes. The figure
presents an avoided crossing at the point where the atoms and the cavity are on resonance.
This is the splitting due to the exchange of energy between the cavity and the atoms. When
the detuning is large, the atoms and the cavity decouple and one of the eigenvalues clearly
acquires the value of the detuned cavity, while the other asymptotically reaches zero, the
eigenvalue related to the atoms. The dotted curves are the eigenvalues when the coupling is
turned off,g = 0. The labels in the figure mark the eigenvalue corresponding to the cavity
and to the atoms. The broken curve shows the zero-phase condition (13). The zero-phase
condition has turning points for small� and largeδ, since the phase shift introduced by

Figure 2. The full curves are the imaginary
part of two of the linearized eigenvalues of
the system in the limit of very low intensity
|x|2 � 1. They show an avoided crossing
as the atoms–cavity detuningδ changes. The
dotted curves are the eigenvalues when the
interaction is turned off,g = 0. The two
oscillators decouple as indicated in the figure.
The broken curve is the zero-phase condition
from (13). (�V R = 35.5 MHz, κ = γ⊥ =
3.0 MHz.)
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the atoms is always finite and cannot compensate for arbitrarily large cavity detunings. A
zero-phase difference does not imply that the transmission will have a maximum and the
part of the broken curve that crosses zero is one such example. Figure 3 presents a series
of transmitted spectra for very weak excitation. The asymmetry in the height of the two
peaks as the detuningδ varies shows the decoupling of the two oscillators. The highest
peak corresponds to the cavity resonance.

Figure 3. Transmitted spectrum for very
weak excitationY/Ycrit = 0.001 in the
presence of detuning between the atoms
and the cavityδ. The curves are labelled
by the atoms–cavity detuningξ = δ/�V R .
(�V R = 35.5 MHz, κ = γ⊥ = 3.0 MHz,
Xcrit = 137,Ycrit = 556.)

For the parameter space investigated in this paper, we have found, using computer
calculations, that there is a direct connection between the zero-phase condition (13) and
the eigenvalues of the linearized Maxwell–Bloch equations. This connection can be seen
for a fixed value ofx by looking at the eigenvalues as a function of�. The imaginary
parts of two of them undergo minima in their absolute values at the frequency given by
the zero-phase condition. The evolution of the system is clearly guided by this pair of
eigenvalues and equivalently by the zero-phase condition. This connection can additionally
be seen analytically in the linearized Maxwell–Bloch equations for the good cavity limit
(κ � γ⊥). The two eigenvalues in this limit have imaginary parts that correspond to the
zero-phase condition plus a correction of higher order in|x|2.

When the intracavity intensity is not small, we use the zero-phase condition from (13)
and follow its behaviour as a function of intensity|x|2. These plots are constructed with a
fixed value ofx. The three-valued solutions for certain values ofδ represent three different
steady states of the system, but not all of them are stable.

Figure 4 shows the modified diagram with the zero-phase condition when the intensity
is not zero. The avoided crossing picture of figure 2 is lost and there is a maximum value
for the detuning in the branches. As the power increases, the structure simplifies until it
produces a single value representing the single peak observed in figure 1. Figure 5 maps
the stability of the solutions based on a linear stability analysis of the Maxwell–Bloch
equations 4(a–c). The calculation closely follows [17]. There are two possible kinds of
instability, in one the system loses stability and jumps to another stable solution, the real
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Figure 4. Evolution of the zero-phase
condition in the presence of detuning between
the atoms and the cavity with intermediate
intensities. The curves are labelled according
to the transmitted intensitiesρ = X/Xcrit .
(�V R = 35.5 MHz, κ = γ⊥ = 3.0 MHz,
Xcrit = 137.)

Figure 5. Linear stability analysis for
the region studied in figure 4, showing
the switching instability region with crosses
and the dynamical instability with dots for
X/Xcrit = 0.3. (�V R = 35.5 MHz,
κ = γ⊥ = 3.0 MHz, Xcrit = 137.)

and imaginary parts of the eigenvalue go to zero. This is the intensity switching in optical
bistability. The second possibility is where the stable solution loses stability and the system
reaches a time-dependent steady state, in which the real part of the eigenvalue goes to
zero, while there is a non-zero imaginary part. The new dynamical state reached is the
single-mode instability of optical bistability [17].

5. Evolution with Gaussian transverse profile

The early experimental realizations in the optical regime of the simple canonical model of
a collection of two-level atoms interacting with a single mode of the electromagnetic field
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Figure 6. Transmitted spectrum as a function of
the driving intensityYG with Gaussian transverse
profile and standing waves when atoms and cavity
are resonant (ωa = ωc). (�V R = 35.5 MHz,
κ = γ⊥ = 3.0 MHz, Xcrit = 386,Ycrit = 2464.)

[25–27] quickly demonstrated the need to include the transverse spatial profile of the cavity
mode as well as the standing waves of the Fabry–Perot cavity. Quantitative comparisons
between theory and experiment for the steady state response of the system achieved absolute
agreement to within reported uncertainties of 10% [28]. The importance of the transverse
profile was also stressed in the study of the dynamics of the states of the system [17].
Calculations of the quantum statistics [29] and squeezing spectrum [30] have also included
the transverse profile. Xiaoet al [29] stress the importance of recovering the results of the
plane-wave theory whenever the intracavity field is extremely small. We have extended
the results presented in the previous sections as we are interested in absolute comparisons
between experiments in our laboratory and theory [18, 31]. We follow closely the treatment
of [28, 32]. Starting from the Maxwell–Bloch equations and with the appropriate boundary
conditions, the steady state equation relating the input and output intensities for the cavity
in the presence of standing waves and a Gaussian transverse profile is

yG = xG[(1 + 2Cχ) + i(2 − 2C1χ)] (25)

whereχ has the form

χ = 3

2|xG|2 ln

[
1

2
+ 1

2

(
1 + 8|xG|2

3(1 + 12)

)1/2]
. (26)

In equation (25),yG is the intracavity field in the absence of atoms, normalized to the
square root of the saturation intensity.|yG|2 = YG is related to the input intensity by the
enhancement factor of the cavity.xG is the intracavity field in the presence of atoms,
normalized to the square root of the saturation intensity.|xG|2 = XG is related to the output
intensity by the transmissivity of the exit mirror. The cooperativityC and the detunings1
and2 are defined by (1)–(3) in section 2.

In figure 6 we present the transmitted spectrum of a Fabry–Perot cavity operating in
the TEM00 Gaussian mode filled with a collection of homogeneously broadened two-level
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Figure 7. Modification of the transmitted
spectrum in the Gaussian standing wave
theory in the presence of atomic cavity
detuningδ. The three traces are labelled
by the atoms–cavity detuningξ = δ/�V R

and are taken with the same value of
driving intensityYG/Ycrit = 0.6 (�V R =
35.5 MHz, κ = γ⊥ = 3.0 MHz, Xcrit =
386,Ycrit = 2464).

atoms. The series of curves in this three-dimensional representation corresponds to a series
of different values of the input intensity. The parameters chosen for this plot imply a well
developed hysteresis in the input–output steady state of the system. The values of the three
relevant ratesg, γ⊥ andκ fall in the intermediate regime of cavity quantum electrodynamics.
For very low intensities, the two peaks of the vacuum Rabi splitting are visible. As the
intensity of the driving field increases, they become anharmonic and evolve into a single
peak. For very high intensities the single peak resembles the empty cavity transmission as
expected when the atoms are saturated. In the presence of detuning between the atoms and
the cavity, the symmetric spectra from figure 6 become asymmetric as shown in figure 7.
Anharmonicity and hysteresis are still present but quantitatively modified.

Although the qualitative behaviour is similar, there are quantitative differences between
the plane-wave results and those including the transverse profile. Figure 8 presents a
comparison of the two models. For the resonant case ofωa = ωc, we focus on the
positive side of the spectrum since the negative side is a mirror image of it as can be seen
in figure 6. We have chosen parameters that produce the same low intensity spectrum. This
means they have the same vacuum Rabi frequency�V R. We normalize the spectra to the
valuesXcrit , Ycrit at the point where the system jumps down from the upper branch of the on-
resonance hysteresis curve. This point coincides with the place where the two anharmonic
curves touch. The curves including the transverse profile show a very different evolution
as a function of the driving field. The shape of the anharmonic peak is highly distorted in
comparison to the equivalent one obtained with the plane-wave theory of section 2. The
positions of the unstable regions causing the frequency hysteresis are quantitatively very
different in terms of�V R. In terms of the necessary relative driving intensity, the Gaussian
spectrum shows earlier hysteresis than the plane wave (η = 0.1).

We have been unable to find a closed analytic expression for the zero-phase condition
when the standing waves and the transverse structure of the field are included; however, a
numerical calculation is possible. We demand that the driving fieldyG and the transmitted
field xG have the same phase in the steady state. Then the imaginary part of (25) is set to
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Figure 8. Comparison of the transmitted spectra between the plane-wave theory and the Gaussian
standing wave theory with the atoms and cavity resonant (ωa = ωc). The broken curve shows
the zero-phase condition. The two plots have the same value for�V R but are normalized in
the intensity by the respective switching intensities for the plane-wave model and the Gaussian
standing wave model. The curves are labelled according to their values ofη = Y/Ycrit and
ηG = YG/Ycrit . For the plane waveXcrit = 137, Ycrit = 556. For the Gaussian standing wave
Xcrit = 386, Ycrit = 2464 (�V R = 35.5 MHz, κ = γ⊥ = 3.0 MHz).

zero. In figure 8 we show with broken curves the results for both the plane-wave theory
and the Gaussian with standing waves. The condition serves clearly as the skeleton curve
for the evolution of the oscillators.

6. Conclusions

The study of the evolution of the vacuum Rabi sidebands has been extended in two
directions. In the first one we found a connection between a zero-phase condition and
the evolution of the peaks as the intensity increases. In the second one we extended the
model to include the experimentally relevant condition of the Gaussian transverse profile of
the electromagnetic field mode and the standing waves present when the mode is formed
inside a Fabry–Perot resonator.

We have analysed the system in terms of the Maxwell–Bloch equations that are
appropriate for a large number of atoms. The linearized eigenvalues of the Maxwell–Bloch
equations are closely linked to the zero-phase condition. The models are semiclassical
in origin and cannot provide detailed information on the underlying quantum processes.
However, since the dynamical behaviour of the semiclassical and quantum systems in the
regime of large numbers of atoms is governed by the same eigenvalue structure, the study
of one can sometimes shed light on the other.

The evolution from a pair of simple harmonic oscillators to highly anharmonic ones is
caused by the non-linear polarization of the collection of two-level atoms. As the intracavity
intensity increases, the atomic transition saturates and higher-order terms of the driving
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field have to be taken into account. The anharmonicity is the semiclassical counterpart
of the multiphoton resonances in the energy level structure of an atom–cavity system that
allow for the generation of non-classical states of the electromagnetic field in the system
[33, 34].

These calculations permit the exploration of the parameter space of the atoms–cavity
interaction in a systematic way. Future work includes the development of a fully quantum
mechanical model and its connection with the semiclassical results.
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