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Entangled and Disentangled Evolution for a Single Atom in a Driven Cavity

J. Gea—Banacloche,l’4 T.C. Burt,2 P.R. Rice,3’4 and L. A. Orozco®

'"Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
*Raytheon Company, Science and Technology, Garland, Texas 75042, USA
3Department of Physics, Miami University, Oxford, Ohio 45056, USA
“Department of Physics, University of Maryland, College Park, Maryland 20742, USA
(Received 5 October 2004; published 10 February 2005; corrected 14 February 2005)

For an atom in an externally driven cavity, we show that special initial states lead to near-disentangled
atom-field evolution, and superpositions of these can lead to near maximally entangled states. Somewhat
counterintutively, we find that (moderate) spontaneous emission in this system actually leads to a transient
increase in entanglement beyond the steady-state value. We also show that a particular field correlation
function could be used, in an experimental setting, to track the time evolution of this entanglement.
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In a recent, beautiful experiment, Auffeves and co-
workers [1] have verified the prediction [2] that, for a
two-level atom interacting with a single mode of the elec-
tromagnetic field, in a coherent state with a moderately
large number of photons, the natural evolution of the
system leads to an entangled, ““Schrodinger cat’’-like state
in which two different states of the atom are correlated
with two distinguishable states of the field. Interestingly,
the possibility of preparing such entangled superpositions
in the above system (which is described by the so-called
Jaynes-Cummings model, or JCM) arises from the exis-
tence of special trajectories along which the joint evolution
of field and atom is to a good approximation unentangled,
i.e., factorizable. It is the coherent superposition of such
trajectories that results in an entangled state.

The purpose of this Letter is to show that a similar
situation arises in a related system of interest, namely, a
single atom in an externally driven optical cavity. Optical
cavities with atoms have been proposed for quantum in-
formation processing [3]. These systems intrinsically con-
vert matter qubits into light qubits, the natural means of
information exchange, and so the generation and charac-
terization of large atom-field entanglement in this system is
of importance as a (small) first step towards such applica-
tions. Furthermore, the present model has a number of
distinctive features that make it of fundamental interest.
Unlike the JCM, it is an open system, yet, as we shall see,
approximately factorizable trajectories exist in the absence
of spontaneous emission. Additionally, and somewhat sur-
prisingly, we find that the inclusion of spontaneous emis-
sion actually helps to create transient entangled states that
are typically more entangled than the steady state. We also
show that there is a particular field correlation function that
might be used to keep track, in “real time,” of the physical
processes responsible for the evolution of this entangled
state. (There seems to be a growing interest in exploring
the connections between ‘“‘quantum optics’-style correla-
tion functions and entanglement; see, e.g., [4], and refer-
ences therein.)
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Although this system has been studied before in great
detail (see, e.g., [9,6]), the transient regime we are inter-
ested in here has escaped attention in most of these pre-
vious studies, because they make use of a “‘secular
approximation’ on the Rabi frequency that results in an
atom-field state that is explicitly disentangled at all times.
An important exception is [7], where the splitting of the
field states in phase space, that plays an essential role in
what follows, was explicitly discussed and illustrated (see,
in particular, Fig. 10.8 of [7] and compare it to Eq. (7)
below), although the question of entanglement was not
quantitatively addressed there. (But see [8] for a very
recent discussion.)

The starting point for our analysis is the following
master equation for the joint atom-field density operator p:
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Here, g is the atom-cavity field coupling constant, a’ and a
are creation and annihilation operators, o_ and o, are the
atom’s raising and lowering operators, & is the amplitude
of the external, driving field, « is the cavity loss rate, and y
is the spontaneous emission rate.

It was first shown in [9] that, in the absence of sponta-
neous emission, approximately unentangled, quasi-pure-
state trajectories for this system are obtained whenever
the initial joint atom-field state is of the form

1 . .
|WO.(ro, o)) = ﬁ(e_'¢°|€> * [g)lrge %), (2)

where |e) and |g) are the atomic excited and ground states,
respectively, and |rge %) is a field coherent state of
arbitrary amplitude r, and phase ¢,. Trajectories starting
from these special states remain approximately factoriz-
able and quasipure for fairly long times, in spite of the
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dissipation represented by the term « in Eq. (1); they retain
approximately the same form as (2), only with a time-
dependent phase ¢ . (¢) for the field and the atomic dipole,
and (in general) a time-dependent amplitude r-(¢) for the
field as well:

|V (1570, po)) = &=V PL(r- (1), (D). (3)

The overall phase ®.(r) will be discussed shortly below.
For ¢ (¢) and r-(¢), however, we note that consistency
requires that they approximately obey the semiclassical
equations of motion, derived from (1) by factoring the
expectation values of atom-field operator products. If one
further treats the field as a classical quantity in these
equations, one finds, for £ > g/2 (the so-called “‘strong
driving” condition), a pair of steady states, with phases
b= Ty = Fsin (g/26) and amplitude ry =
(E/kK) cose,. (The subscripts u and [ refer, respectively,
to the “‘upper” and ‘“lower” steady state, and follow the
notation of [5].) The corresponding states of the quantum
system are respectively |WU) = |¥Y (r,, —¢,,)) and
|W9) = |0 (ry, ¢,,)) in the notation of (2).

In general, coherent superpositions of states of the form
(2) also need to be considered. Unlike in the ordinary JCM,
these superpositions do not remain approximately pure for
as long as the trajectories (3) themselves, because of the
cavity losses. Formally, one can see that the photon anni-
hilation operator, acting on the corresponding coherent
states, will multiply them (at random times) by different
phase factors [7], leading to an overall decoherence rate
that depends on how different the field phases in the
superposition are to begin with. In the absence of informa-
tion about the field phase or a record of cavity decay
events, therefore, the proper way to write the approximate
steady state of the system (always neglecting spontaneous
emission) is as the incoherent superposition

Pss = %lq’(-)i— (rss’ _¢ss)><q,(—)%—(rsw _(){)ss)l

S BN b

which, as an incoherent superposition of product states, is
clearly unentangled, or “‘separable.”

Consider, however, a single realization of the above
system, which may have started from a coherent superpo-
sition of states of the form (2). Even after the system has
reached a steady state, and the superposition has deco-
hered, it may be argued (at least for as long as the individ-
ual solutions (3) remain approximately valid) that the
decoherence is of the form of a random relative phase
between the terms of the superposition, a phase that, more-
over, might be knowable in principle, if we had a record of
the times at which photons were emitted out of the cavity
(or alternatively, through a monitoring of the transmitted
field such as described in [8]). We may then ascribe a
“conditional” pure state to the system, of the form

L (1~ +
\/§ +\'ssr ss \/-2‘

where ®' is a random relative phase (time-dependent, in
general, since the states in the trajectories (3) have overall
phases that go, for short times, as ®. (1) = Fgryt/2; this is
analogous to the JCM and is responsible for the Rabi
oscillations that occur when the two field states overlap).
For normalization purposes, it has implicitly been assumed
that the two field states in (5) are orthogonal, which will be
approximately the case if rg sin¢g;, > 1. For large &, this
condition becomes g/2x > 1.

Using the explicit expressions (2) in (5) shows that this
is, in general, an entangled state, although not maximally
so, since as long as ¢, # 0 the two atomic states involved,
% (e'?s]e) + |g)) and % (e~ '®s|e) — |g)), are not orthogo-
nal. Assuming the field states are orthogonal, the reduced
density operator for the atom alone can be written as
pa =3leXel — 4 single)gl + 4 sindlg)el + 51gXgl,
with eigenvalues (1 * sin¢,,)/2, which means that the
“entropy of entanglement,” = —Tr(pylogyp,) =
1 — ¢2,/21n2 for small ¢,,.

Consider now what happens when one has a relatively
small spontaneous emission rate, and a spontaneous emis-
sion event occurs. Starting from a state like (5), the atom
collapses to the ground state |g), so after renormalization
one has

W) = WL (rys o)) (5)
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-
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This expression has been split into two pairs of terms, the
first one associated with the u steady state of the field, and
the second one with the [ steady state. Each one of these is a
superposition of the appropriate steady state (|¥9 ) in the
first set of square brackets and | W ) in the second set) and
another term where the field and atom have the “wrong”
relative phase. As shown in [9], for short times, these
nonstationary terms evolve by changing the phase of both
field and atom at an approximate rate *g/r,,, so the total
time-evolved state is of the form |W(¢)) = %(I\I’u(t» +

e~ |W,(1)), with

W, () = %[e-%f/2|w<rm —4.))
- eigrmt/Zl\I}g(rss’ _¢ss + gt/rss»]
1

|,\I’l(t)> = ﬁ[eilngSt/zl’\I,g‘(rSS’ ¢SS - gt/rYS)>

- eigr”t/zlwpo—(rm’ ¢n)>]

)
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Along either one of these two (1 or /) branches, the two
field states involved become approximately orthogonal as
soon as t > ~2/g, the JCM’s “collapse time.” If r, is
sufficiently large, the phase difference gr/r,, between the
corresponding atomic states along the same branch at that
time may still be quite small, in which case they will still
be nearly orthogonal, and the overall state will be highly
entangled. Specifically, for either state u or / we find for
small gt/2r,

2
E = f1(0) = f2()sin(2gro) ¥ - s (&), ®
where u = ¢ ¢/ and f,(u) = [uln[(1 — u)/(1 + u)] —
In(1 — u?)]/In4 and f,(u)=[2u(1 —1n2) + uln(l — u?)+
In[(1 +u)/(1 —u)]]/In16 are functions associated with
the overlapping coherent states; at t = 0, f; = 0, and f, =
0.7, whereas after the collapse time f; — 1 and f, — O,
and one has large entanglement provided gt/ r, is not too
large. Equation (8) applies also to the superposition % X

[1W, (1) + e~ |W,(2))], regardless of the value of &', as
long as the field states in |W,(¢)) are orthogonal to those in
|W,(2)).

Figure 1 shows a plot of the entropy of entanglement E,
as a function of time for the u branch, based on the
expression (7) for the system’s state. The Rabi oscillations
actually cause the entanglement to peak some time before
the collapse is complete. Also shown are the result of a
single quantum trajectory simulation (dashed line) and the
result of integrating the density matrix equations of motion
(dotted line). The agreement between the solid and dotted
lines indicates that the approximation (7) is indeed quite
good. The dashed line, on the other hand, suggests that the
disruption to the relative phase of the terms in (7) caused
by cavity losses may sometimes reduce the entanglement
obtained along an individual quantum trajectory.

The above analysis shows that, rather surprisingly, spon-
taneous emission may actually help generate substantial
atom-field entanglement in this system by periodically
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FIG. 1. Solid line: entanglement predicted by Eq. (7). Dashed

line: the result of a single quantum trajectory calculation. Dotted
line: the result of a density matrix calculation. Model parame-
ters: £ = 0.7g and k = 0.125g.

resetting the wave function to a state such as (6), which
can later evolve into something close to a (nearly-) maxi-
mally entangled state of the form (7). This expectation is
borne out by further quantum trajectory calculations, in-
cluding spontaneous emission, such as the one shown in
Fig. 2. Note the pattern: after each spontaneous emission
event, the atom-field entanglement naturally goes down to
zero, but then it quickly rises to, sometimes, a very high
value. This happens on the time scale of 2/g, which for a
good optical microcavity could be of the order of 1073 s or
longer. Clearly, if y is too large the picture will become
more complicated, with multiple branching happening be-
fore the maximal entanglement can be reached; one thus
wants to have y < g, as in Fig. 2. Similarly, the decoher-
ence of the superpositions u and / can be estimated from
[9] (Sections 3.7-3.11) as given by = exp(—g’«t’/3),
which equals exp(—8x/3g) for t = 2/g, so one also wants
8k < 3g. These constraints are well within the reach of
current optical microcavities.

If the steady state is taken to be the mixed state (4), as
opposed to the conditionally pure (5), the # and [ branches
in (6) must be superimposed incoherently, although along
each of them the evolution is still coherent and given by
(7). After the “collapse time,” when all the field states
involved have become orthogonal but the phase shift
gt/rg is still small enough to be approximately negli-
gible in the atomic states, the resulting mixed state can
be written schematically as p = 1 [¥, ¥, | + [V X¥],
with [W,) = —311)(e'?|e) — 1g)) + 512)(e"?=|e) + |g))
and W) =113)(e ?sle) + |g)) — 114X (e |e) — |g)).
(Various overall phases have been absorbed in the field
states |1), |2), |3), and |4).) Treating the field as a four-
dimensional system, we find, by the “realignment crite-
rion” [10], that this p still describes an entangled state.
Specifically, if G is the 4 X 16 rearrangement of the 8 X 8
matrix p, we obtain Tr[(GG')/2] = /2> 1. Thus, we
conclude that even when the mixed nature of the steady
state, for an ensemble of identically prepared systems, is
considered, spontaneous emission does indeed lead to a

15 20 25 30 35 40 45 50

FIG. 2. Atom-field entanglement calculated for a quantum tra-
jectory starting from the cavity in the vacuum state and atom in
the ground state. Model parameters as in Fig. 1, except that the
spontaneous emission rate y = 0.4g. The sharp (vertical) drops
to zero entanglement correspond to spontaneous emission events
that reset the system’s wave function to a state |®)|g), whatever
the field state |®) may happen to be at that instant.
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FIG. 3. Solid line: hf7(7) — 1 for the same parameters as in
Fig. 1, based on the expressions (7). Dashed line: the result if the
pure state |W,(z)) (or |W,(z))) is replaced by an incoherent
superposition of |¥,) and |¥_).

transient entangled state, a time of the order of the collapse
time after the emission event occurs.

In both the pure and mixed-state cases, the separation of
the field along each (u# and /) branch into a coherent
superposition of nearly orthogonal states is essential to
the generation of entanglement. This separation can be
tracked by using the intensity-field correlation function
[11] A"7(7) = (o +(0)ag(1)o-(0))/(o+0-Xag), where
the field quadrature operator a,4(7) can be calculated at
the time 7 as ay(7) = UT(7)ay(0)U(7), and U(7) is the
evolution operator. Experimentally, hf7(7) gives the evo-
lution of the transmitted field conditioned on the detection
of a fluorescent photon (i.e., a spontaneous emission event)
at the time 7 = 0. The approximation (7) can then be used
to calculate it; the result (which does not depend on
whether |W,) and |¥,) are added coherently or incoher-
ently, as long as the field states in |W,) are orthogonal to
those in |W})) is plotted in Fig. 3 (solid line), where the
similarity to the pure state entanglement curve (Fig. 2) is
readily apparent. To better understand this similarity, one
may consider the following approximate result for small

gt/

T — 1= [tang,, + usin(gre)] S — 1<gt>2, ©)

2 4\ry
with u = exp(—g?#?/2), as before. Like Eq. (8), Eq. (9)
shows Rabi oscillations (although with the opposite sign)
that die away at the collapse time. In both cases, the ini-
tial rise of the curves is due to the growing separation, in
phase space, of the two field states making up the u or /
branch, although the entanglement eventually saturates,
around the collapse time, whereas h*7 — 1 may continue
to grow (due to the term tand ,gt/2r,,) up to a time of the
order of 1/2«.

We conclude that, through the collapse time, the corre-
lation function Af7(7) may be used to track the physical
processes underlying the growth of the atom-field entan-
glement in the system, subsequent to a spontaneous emis-
sion event, although, in order to make the entanglement

ss

correspondence quantitative, a fair amount of theory needs
to be assumed. In particular, note that it is not enough to
observe an increase in h*7 — 1 to conclude that entangle-
ment must be growing, since 27 — 1 would rise, as a
result of the separation of the field states, even if the
superposition of states making up |V, (7)) in Eq. (7) was
completely incoherent [dashed line in Fig. 3; or set u = 0
in Eq. (9)], in which case there would be no entanglement
at all. The Rabi oscillations are thus critical evidence that
the superposition is coherent and the underlying state is
entangled. Ironically, these oscillations disappear around
the collapse time, just when one expects entanglement to
be largest. In an experimental setting, the underlying co-
herence might be revealed using methods such as those
suggested in [1], to reverse the sign of rotation of the field
states and bring back the oscillations.

The feasibility of exploring this entanglement phenome-
non is within reach of current strong-coupled optical cavity
QED experiments. It will open the strong driving parame-
ter space that is different from the one most explored to
date: the weak driving regime. Further work is necessary to
expand this to the case of more than one atom [12], and to
properly account for multiple (partly overlapping) sponta-
neous emission events.
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