Erratum: Isotope shifts in francium isotopes ${ }^{206-213} \mathrm{Fr}$ and ${ }^{221} \mathrm{Fr}$ [Phys. Rev. A 90, 052502 (2014)]

R. Collister, G. Gwinner, M. Tandecki, J. A. Behr, M. R. Pearson, J. Zhang, L. A. Orozco, S. Aubin, and E. Gomez (Received 9 July 2015; published 20 July 2015)

DOI: 10.1103/PhysRevA.92.019902
PACS number(s): 32.10.Fn, 31.30.Gs, 37.10.Jk, 42.62.Fi, 99.10.Cd

A King plot in our publication used literature D_{2} isotope shifts along with our D_{1} isotope shift measurements to extract combinations of the mass and field shift constants to compare with theory. The ${ }^{206} \mathrm{Fr}$ point was in strong disagreement with the linear fit of the King plot. This 10σ discrepancy has been resolved with an updated D_{2} isotope shift [1], determined using more data with better frequency resolution, and we now include it in our King plot analysis. Additionally, the D_{2} isotope shift and ground-state hyperfine splitting for the isomer ${ }^{206 m} \mathrm{Fr}$ are now available [1]. This enables us to determine its D_{1} isotope shift and include it in our King plot.

We include revised versions of Fig. 4 and Table I here. The revised King plot now has slope $F_{D_{2}} / F_{D_{1}}=1.0521(8)$ and intercept $\left(N_{D_{2}}+S_{D_{2}}\right)-\left(N_{D_{1}}+S_{D_{1}}\right) \frac{F_{D_{2}}}{F_{D_{1}}}=194(78) \mathrm{GHz}$ amu with $\chi^{2} / n d f=7.00094 / 7$. Evaluating the normal mass shift constants

TABLE I. Revision and addition to Table I, using our measured D_{1} isotope shifts and the nuclear spins, D_{2} isotope shifts, and ground-state hyperfine splittings from [1]. The D_{2} isotope shifts are recalculated using ${ }^{221} \mathrm{Fr}$ as the reference isotope as in our previous paper.

	Our paper			Ref. [1]	
Isotope	$A\left(P_{1 / 2}\right)(\mathrm{MHz})$	$D_{1} \delta \nu_{\text {IS }}(\mathrm{MHz})$		Spin	$A\left(S_{1 / 2}\right)(\mathrm{MHz})$
206 m	$869.91(8)$	$29236(5)$	7	$D_{2} \delta \nu_{\text {IS }}(\mathrm{MHz})$	
206	$1716.9(2)$	$29175(5)$	3	$6616.0(7)$	$30689(5)$

Fit Results
$\chi^{2} / \mathrm{ndf}=7.00094 / 7$
slope $=1.0521 \pm 0.0008$
int $=194 \pm 78 \mathrm{GHz} \mathrm{amu}$

FIG. 1. (Color online) Revised Fig. 4. The King plot fit now includes ${ }^{206} \mathrm{Fr}$ and ${ }^{206 m} \mathrm{Fr}$.
produces the specific mass shift constant difference $\delta \mathcal{S}$ between the two transitions $\delta \mathcal{S}=S_{D_{2}}-S_{D_{1}} \frac{F_{D_{2}}}{F_{D_{1}}}=176(78) \mathrm{GHz} \mathrm{amu}$. The main conclusions on the specific mass shift difference and the field shift ratio are unchanged. This reaffirmed precise result becomes a possibly useful constraint on higher-order physics contributing to a King plot.
[1] A. Voss, F. Buchinger, B. Cheal, J. E. Crawford, J. Dilling, M. Kortelainen, A. A. Kwiatkowski, A. Leary, C. D. P. Levy, F. Mooshammer, M. L. Ojeda, M. R. Pearson, T. J. Procter, and W. A. Tamimi, Nuclear moments and charge radii of neutron-deficient francium isotopes and isomers, Phys. Rev. C 91, 044307 (2015).

