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ABSTRACT
The spectroscopic hyperfine constants for all the alkali atoms are reported. For atoms from lithium to cesium, only the long lived atomic
isotopes are examined. For francium, the measured data for nuclear ground states of all available isotopes are listed. All results obtained since
the beginning of laser investigations are presented, while for previous works the data of Arimondo et al. [Rev. Mod. Phys. 49, 31 (1977)] are
recalled. Global analyses based on the scaling laws and the hyperfine anomalies are performed.

Published by AIP Publishing on behalf of the National Institute of Standards and Technology. https://doi.org/10.1063/5.0098061

Key words: Alkali atoms; Hyperfine structure; Atomic data.

CONTENTS
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Spectroscopic Tools . . . . . . . . . . . . . . . . . . . . . . 3

2.1. Samples . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.1. Atomic beam (AB) . . . . . . . . . . . . . . . 3
2.1.2. Vapor cell (VC) . . . . . . . . . . . . . . . . 3
2.1.3. Magneto-optical trap (MOT) . . . . . . . . . 3
2.1.4. Fountain (FOUNT) . . . . . . . . . . . . . . 3
2.1.5. Optical dipole trap (ODT) . . . . . . . . . . 3
2.1.6. Thermoionic diode (TD) . . . . . . . . . . . 3

2.2. Spectroscopic techniques . . . . . . . . . . . . . . . 3
2.2.1. Coherent-control spectroscopy (CCS) . . . . 3
2.2.2. Delayed detection (DD) . . . . . . . . . . . . 3
2.2.3. Double-resonance optical pumping (DROP) 4
2.2.4. Electromagnetic induced transparency (EIT) 4
2.2.5. Frequency comb spectroscopy (FC) . . . . . 4
2.2.6. Frequency modulated laser (FML) . . . . . . 4
2.2.7. Hyperfine optical pumping and focus (HOPF) 4
2.2.8. Hyperfine quantum beats (HQB) . . . . . . . 4
2.2.9. Ion detection (ION) . . . . . . . . . . . . . . 4
2.2.10. Laser-induced fluorescence spectroscopy

(LIF) . . . . . . . . . . . . . . . . . . . . . 4
2.2.11. Level crossing by magnetic or electric fields 4

2.2.12. Maser (MA) . . . . . . . . . . . . . . . . . 4
2.2.13. Magnetic field decoupling (MFD) . . . . . 4
2.2.14. Microwave spectroscopy (MWS) . . . . . . 4
2.2.15. Optical radio frequency or microwave

double resonance (ORFDR) . . . . . . . . 4
2.2.16. Optical−optical double-resonance (OODR) 4
2.2.17. Optical spectroscopy (OS) . . . . . . . . . . 5
2.2.18. Resonant ionization spectroscopy (RIS) . . 5
2.2.19. Saturated absorption spectroscopy (SAS) . 5
2.2.20. Stark spectroscopy (SS) . . . . . . . . . . . 5
2.2.21. Two-photon sub-Doppler spectroscopy

(TPSDS) . . . . . . . . . . . . . . . . . . . 5
3. Hyperfine Theory . . . . . . . . . . . . . . . . . . . . . . . 5
4. Measured Hyperfine Constants . . . . . . . . . . . . . . . 6

4.1. Lithium . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2. Sodium . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3. Potassium . . . . . . . . . . . . . . . . . . . . . . . 11

4.3.1. 39K . . . . . . . . . . . . . . . . . . . . . . 13
4.3.2. 41K . . . . . . . . . . . . . . . . . . . . . . 13

4.4. Rubidium . . . . . . . . . . . . . . . . . . . . . . . . 13
4.5. Cesium . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.6. Francium . . . . . . . . . . . . . . . . . . . . . . . . 24

5. Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 24

J. Phys. Chem. Ref. Data 51, 043102 (2022); doi: 10.1063/5.0098061 51, 043102-1

U.S. Secretary of Commerce

https://scitation.org/journal/jpr
https://doi.org/10.1063/5.0098061
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0098061
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0098061&domain=pdf&date_stamp=2022-November-9
https://doi.org/10.1063/5.0098061
https://orcid.org/0000-0003-4916-7285
https://orcid.org/0000-0003-2659-7565
https://orcid.org/0000-0001-9805-5605
mailto:ennio.arimondo@unipi.it
https://doi.org/10.1063/5.0098061


Journal of Physical and
Chemical Reference Data ARTICLE scitation.org/journal/jpr

5.1. Quantum number scaling law . . . . . . . . . . . . 24
5.2. Anomalies . . . . . . . . . . . . . . . . . . . . . . . 30

6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7. Note added in proof. . . . . . . . . . . . . . . . . . . . . . 32

Supplementary Material . . . . . . . . . . . . . . . . . . . 32
8. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . 32
9. Author Declarations . . . . . . . . . . . . . . . . . . . . . 32

9.1. Conflict of Interest . . . . . . . . . . . . . . . . . . . 32
10. Data Availability . . . . . . . . . . . . . . . . . . . . . . . 32
11. References . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

List of Tables
1. Measured A and B values for Li isotopes . . . . . . . . . . 8
2. Measured A and B values for 23Na . . . . . . . . . . . . . . 10
3. Measured A and B values for K isotopes . . . . . . . . . . 11
4. Measured A and B values for 85Rb isotope . . . . . . . . . 14
5. Measured A and B values for 87Rb isotope . . . . . . . . . 16
6. Measured C values for 87Rb and 133Cs . . . . . . . . . . . . 19
7. Measured A and B values for 133Cs . . . . . . . . . . . . . 20
8. Measured A and B values for Fr isotopes with g next to the

isotope to indicate the nucleus ground state . . . . . . . . 25
9. Light alkali hyperfine anomalies 1Δ2 with states listed in

order of increasing L, then of increasing n and finally of
increasing J . . . . . . . . . . . . . . . . . . . . . . . . . . 31

List of Figures
1. For Cs scaling test, with B in MHz, vs the n number in

logarithmic scale states. . . . . . . . . . . . . . . . . . . . 24
2. A(n∗)3 scaling test, with A in MHz, vs n number. . . . . 29
3. B(n∗)3 scaling, with B in MHz, for Rb isotopes versus

n, with open blue circles for the 87Rb data, and open
red squares for the 85Rb data, with error bars for the
experiments. . . . . . . . . . . . . . . . . . . . . . . . . . 29

4. A(n∗)3 scaling, with A in MHz, vs n for the 210, 211, and
212 Fr isotopes. . . . . . . . . . . . . . . . . . . . . . . . 30

5. R(S/P1/2) ratio for the 72S1/2 and 72P1/2 states of francium
isotopes vs the isotope number. . . . . . . . . . . . . . . . 31

1. Introduction
Atomic spectroscopy was a key element in the original develop-

ment of quantum mechanics theory at the beginning of the twentieth
century. Its exploratory role continued after the Second World War
when microwave sources, very stable Radio frequency generators,
optical pumping, and later on lasers entered into the laboratories.
The atomic contributions to quantum electrodynamics, parity vio-
lation, and the present searches for variation of the fundamental
constants and for dark matter tests are noteworthy. In this scenery,
the alkali atoms and their hyperfine splittings represent an important
reference because of their rather simple energy level structure and
their relatively easy laboratory exploration. Furthermore, they offer
an opportunity to verify new experimental tools for a direct com-
parison within a wide research community. Very precise hyperfine
constants of the alkalis are required for a large variety of atomic

physics and quantum simulation experiments. More accurate hyper-
fine structure measurements have also revitalized their use in stud-
ies and tests of nuclear physics and fundamental symmetries in
nature. Formidable progress achieved by atomic physics calculations
supporting and also stimulating research on the above-mentioned
advanced topics has refined its tools on the alkali hyperfine data.

A complete collection of hyperfine constants for alkali atoms
was published by Arimondo et al. (1977) at the time when laser
sources introduced high-resolution atomic spectroscopy. Since that
time, new spectroscopy tools have been developed, and technolog-
ical advances have produced extremely precise atomic measure-
ments. This progress is the motivation of the present work. The
most amazing example of the combination of scientific and tech-
nological progress is the atomic fountain proposed by Zacharias in
1953, unpublished but described by Ramsey (1956). Although it does
not operate for room temperature atoms, it is very successful for
launching ultracold ones, as exploited for hyperfine measurements
based on atomic clocks [e.g., see Guéna et al. (2014) and Ovchin-
nikov et al. (2015)]. Using such a tool, the hyperfine ground states
of rubidium and cesium are presently measured with such a preci-
sion that small variations of the fundamental constants can be tested.
Recently, the use of frequency combs to perform absolute optical
frequency measurements has provided alkali hyperfine values with a
precision increased by a factor of up one thousand. In addition, some
well assessed spectroscopy tools have been refined. For instance,
in Bayram et al. (2014), the detection of delayed quantum beats at
the hyperfine transition frequencies is used to determine very pre-
cise hyperfine coupling constants in several cesium excited states
for which the precision of other techniques suffers from short life-
times. These approaches have increased the precision for a large set
of hyperfine measurements.

In another class of experiments, the hyperfine constants have
been determined for excited states accessible only by laser sources
covering new spectral regions or by multiple laser excitations. The
most spectacular example is the alkali Rydberg states investigated
for hyperfine structure up to levels with principal quantum number
n ≈ 70. For completeness, here we report a third class of hyper-
fine measurements of pre-laser times for alkali states not recently
investigated. A very interesting example of this class is the ground
state hyperfine structures of lithium and sodium for which the
precise atomic-beam investigations of 1973–1974 remain the refer-
ence point. Certainly, atomic fountain experiments applied to those
atoms could yield a precision comparable to that of the atomic
clocks.

This work presents a complete overview of the measured hyper-
fine constants for the alkali atoms in ground or singly excited
electronic states. It enlarges or supersedes the recent reviews of
Das and Natarajan (2008), Kiran Kumar and Suryanarayana (2014),
and Williams et al. (2018) that report a limited dataset for lighter
alkalis. We also add data to the francium review of Sansonetti (2007).
The main target is to provide to interested experimentalists and the-
oreticians the full set of hyperfine data in an easily accessible form.
We have collected the hyperfine data of the stable alkali isotopes
published after the review of Arimondo et al. (1977). In order to
give a complete overview, our tables include measurements already
reported in that review in all cases where new and more precise
values are not available. We do not examine the unstable isotopes
for the alkalis from lithium up to cesium as for them very limited
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data were recently published. Instead, we review the full spectrum
of the francium nuclear ground state isotopes because of the recent
interest associated with this atom as a test of the nuclear struc-
ture owing to the large number of explored isotopes for this alkali.
This review intends to cover the experimental investigations, while
discussing theoretical results only briefly. However, it should be
mentioned here that theoretical comparison has greatly progressed,
and global analyses for a given alkali atom have produced a large set
of theoretical values for the hyperfine constants.

For the experimentalists, this overview might stimulate inves-
tigations of specific atomic states for which the precision remains
low. As advanced spectroscopic techniques are usually tested only
on a few states, a large set of high precision data might boost the the-
oretical effort for global analyses. Based on Kramida (2022) “NIST
atomic energy levels and spectra bibliographic database” (NIST
stands for National Institute of Standards and Technology, USA),
we have examined all articles that to the best of our knowledge
have been published so far. However, we have disregarded publi-
cations that do not target the hyperfine splittings. For publications
by the same research group reporting subsequent measurements
with increasing precision our Tables include only the most recent
value.

Section 2 presents the experimental tools exploited to measure
the hyperfine constants. At first, the atomic sample is examined
from vapor cells up to ultracold atomic clouds where the spatial
and velocity confinement greatly increases the spectral resolution.
In the following, the experiments are classified within some broad
categories allowing a connection to the precision reached in ground
and excited states. The core part of this review is Sec. 3. It is com-
posed of tables reporting the hyperfine constants for each alkali
isotope classified on the basis of the atomic state and for a given
state in chronological order. Before presenting the tables, the basic
theoretical concepts of the hyperfine interaction are briefly recalled.
For each atom we discuss the main results and we mention large
discrepancies, if any, between the data of a given state. For Rb and
Cs atoms, where more data are available, Sec. 4 presents scaling laws
vs the quantum number of the excited states. Such scaling is applied
to determine or confirm the sign of the hyperfine constants for
several states. The scaling law is applied also to the S states of
francium isotopes for which few data are available. Hyperfine
anomalies producing information on the nuclear structure are
discussed, at least for the states measured with reasonable precision.
A short section concludes this review.

2. Spectroscopic Tools
2.1. Samples
2.1.1. Atomic beam (AB)

In an atomic beam atoms propagate along a given direction
with a small spread in the orthogonal plane, see Ramsey (1956).
Usually, an exciting laser propagates perpendicularly to the beam
propagation leading to a very small Doppler broadening.

2.1.2. Vapor cell (VC)
In a glass/quartz cell the atoms are in the vapor phase and their

vapor pressure and the atomic density are controlled by the cell
temperature.

2.1.3. Magneto-optical trap (MOT)
The combined action of laser cooling and magnetic field con-

finement produces dense atomic samples having a greatly reduced
Doppler linewidth. Such samples allow to detect weak absorption
features, as for highly excited states, and to perform experiments
with long interaction times leading to increased precision.

2.1.4. Fountain (FOUNT)
In a fountain, atoms from a MOT are launched vertically by

radiation pressure or a moving optical lattice [see Metcalf and
van der Straten (1999)]. Excitation and detection take place at the
same vertical position, the first one at the launching time and the
second after the parabolic motion. Very high parabolic evolutions
are used in order to increase the interrogation time. This approach
is applied to the atomic clocks.

2.1.5. Optical dipole trap (ODT)
In the experiment by Neuzner et al. (2015) a single 87Rb atom

is trapped by an optical dipole trap created by a 2D optical lattice.
Cavity-enhanced state detection of the optical absorption produces
a good signal-to-noise ratio even for a single atom. Light-shift
correction is carefully applied.

2.1.6. Thermoionic diode (TD)
In the presence of a weak electrical discharge in a VC, the

light excited atoms are ionized by electron collisions. These ions
diffuse into the space charge region of the diode, compensate par-
tially the space charge, and increase the thermionic diode current, as
described in Herrmann et al. (1985).

2.2. Spectroscopic techniques
The experimental techniques used to measure the reported

hyperfine measurements are classified in the following. Several
research groups have introduced a specific name for their technique.
While our classification scheme is concise, detailed presentations of
the techniques can be found in textbooks, such as Ramsey (1956),
Kopfermann (1958), Foot (2005), Budker et al. (2008), and Inguscio
and Fallani (2013).

2.2.1. Coherent-control spectroscopy (CCS)
This saturated absorption spectroscopy is based on copropa-

gating pump and probe acting on a three-level V system. Similar to
saturated absorption spectroscopy in a two-level system and to the
electromagnetic-induced transparency in a Λ level scheme, a pump
laser originates an atomic coherence in a branch of the V scheme.
The absorption profile of a probe laser is modified. The frequency
difference between pump and probe lasers furnishes the excited state
energy splitting, as in Das and Natarajan (2005).

2.2.2. Delayed detection (DD)
The natural linewidth of a spectroscopic resonance is

reduced by monitoring the atom evolution for times longer
than the spontaneous emission lifetime. This refinement was
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combined with other techniques, such as laser-induced fluores-
cence by Shimizu et al. (1987) or hyperfine quantum-beats by
Deech et al. (1977), Krist et al. (1977), and Yei et al. (1993).

2.2.3. Double-resonance optical pumping (DROP)
A double-resonance optical excitation on a ladder three-level

scheme is applied. An increased signal-to-noise ratio is obtained
by detecting the population of the ground state rather than the
excited state one. In the copropagating geometry, one laser excites
zero velocity atoms on the lower transition and a second laser is
scanned in frequency, as in Moon et al. (2009). In the counterpropa-
gating geometry, it is often combined with electromagnetic-induced
transparency.

2.2.4. Electromagnetic induced transparency (EIT)
This coupling/probe spectroscopy is based on the very narrow

coherent feature produced in the absorption spectrum of three-level
Λ or ladder systems. For the Λ scheme, a very narrow linewidth is
determined by the long relaxation rate of the ground state coher-
ence. Counterpropagating lasers and one laser locked to an atomic
transition are used to produce sub-Doppler resolution, as presented
in Krishna et al. (2005) and Wang et al. (2013, 2014a).

2.2.5. Frequency comb spectroscopy (FC)
The atomic absorption peaks are determined with a reference

to a frequency comb. The absolute precision of the frequency read-
ings is largely increased [see, for instance, Udem et al. (1999) and
Das et al. (2006a)].

2.2.6. Frequency modulated laser (FML)
When the exciting laser is modulated at the hyperfine splitting

frequency, cross-over resonances are induced in three-level Λ or V
systems, as in Noble et al. (2006). The advantage of this technique is
that only a single laser is required.

2.2.7. Hyperfine optical pumping and focus (HOPF)
Hyperfine transitions induced by microwaves or by optical

pumping change the relative populations of the hyperfine levels
of the ground state. In HOPF, this modification is detected by
measuring the atomic beam intensity at the exit of a magnet that
focuses or defocuses atoms with different magnetic quantum num-
bers. The focused atoms are analyzed by a mass spectrometer, as in
Liberman et al. (1980).

2.2.8. Hyperfine quantum beats (HQB)
Quantum beats are based on coherent pulsed excitation of

excited hyperfine levels producing a time decay of the excited state
populations modulated by the hyperfine frequency splitting. Polar-
ized excitation and detection are required, as in Deech et al. (1977).
Bellini et al. (1997) applied delayed pulses of a frequency comb in
order to probe the coherent hyperfine superposition of excited states.

2.2.9. Ion detection (ION)
This detection technique is very sensitive because a single ion

can be detected. It is applied within different schemes, such as the
resonant laser ionization (RIS), the selective electric field ionization
of a Rydberg state, or the thermoionic diode operation.

2.2.10. Laser-induced fluorescence spectroscopy (LIF)
The emitted fluorescence is monitored as a function of the

laser frequency. In Doppler spectroscopy, a high resolution is
achieved by a careful analysis of the absorption lineshapes, as in
Truong et al. (2015). In an AB with the laser propagation perpen-
dicular to the atomic motion, the resolution is limited by the natural
linewidth. By applying a sudden change to the laser phase and mon-
itoring the atomic evolution at a later time T, subnatural width
resolution reaching ≈1/(2T) is achieved in Shimizu et al. (1987).
For short-lived atoms with low density using a fast beam and a
collinear laser propagation, LIF is combined with nuclear decay to
increase the signal to noise ratio as in Duong et al. (1987) and
Lynch et al. (2016).

2.2.11. Level crossing by magnetic or electric fields
An energy crossings of excited state levels vs an external

parameter, either magnetic field (MLC) or electric field (ELC),
is monitored [see, for instance, Nagourney et al. (1978) and
Auzinsh et al. (2007)]. A precise determination of the applied field is
required.

2.2.12. Maser (MA)
The emission frequency of a maser operating on a hyperfine

ground state transition is measured in Tetu et al. (1976).

2.2.13. Magnetic field decoupling (MFD)
Starting from an initial anisotropic Zeeman sublevel population

distribution, the hyperfine constants are derived from the polariza-
tion of the fluorescent emission monitored vs an applied magnetic
field decoupling the nuclear and electronic angular momenta, as
presented in van Wijngaarden and Sagle (1991b).

2.2.14. Microwave spectroscopy (MWS)
The population modifications induced by transitions between

hyperfine levels, mainly in the microwaves, are detected. In order to
increase the signal-to-noise ratio, MWS is combined to other tech-
niques, such as HOPF, LIF, or selective electric field ionization for
Rydberg states as in Goy et al. (1982). The FOUNT+MWS combi-
nation applied to optical clocks leads to an extremely high precision,
as in Guéna et al. (2014) and Ovchinnikov et al. (2015). A Ram-
sey optical interferometer is used for the potassium ground state
measurement of Arias et al. (2019) and Peper et al. (2019).

2.2.15. Optical radio frequency or microwave
double resonance (ORFDR)

The radio frequency induced transitions between excited states
are detected through the modification of the LIF, either in its
spectrum or in its polarization, as in Farley et al. (1977) and
Lam et al. (1980). Optical pumping is applied to modify the
population distribution and increase the detected signal.

2.2.16. Optical–optical double-resonance (OODR)
A two-color excitation via an intermediate step produces the

population of excited states. The sub-Doppler resolution is obtained
by operating in a MOT in Fort et al. (1995a), by applying the lasers in
a counterpropagating geometry in Stalnaker et al. (2010), by a coun-
terpropagating laser geometry selecting a single class of velocities
different from zero in Lee and Moon (2015), or by using saturated
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absorption to lock on the first transition and excite only the atoms
at zero velocity in Yang et al. (2016). Detection is based mainly on
the spontaneous emission from the intermediate or final state. In
the presence of an optical pumping process, the population distri-
bution perturbed by the second step excitation is monitored, as in
Wang et al. (2014b).

2.2.17. Optical spectroscopy (OS)
Doppler limited high optical resolution spectroscopy from an

alkali cell as in Truong et al. (2015) or Doppler-free in a MOT as in
Antoni-Micollier et al. (2017) and Arias et al. (2019).

2.2.18. Resonant ionization spectroscopy (RIS)
Atoms in specific states are ionized by multistep laser

absorption, and the ions are detected. It was introduced by
Andreev et al. (1987) for measuring of the ground state hyperfine
structure in francium. The resonant tuning of the intermediate step
provides the spectroscopic resolution of its hyperfine structure. High
resolution and sensitivity due to ion detection are associated with
this technique as in the MOT experiment by Gabbanini et al. (1999)
or for exotic isotopes in an atomic beam of exotic isotopes using
the collinear laser spectroscopy as in Lynch et al. (2014). These last
authors directed the ion to an alpha-decay detection station for clear
identification in order to reduce isobaric and ground state contam-
ination in their francium isotopes studies. In order to increase the
frequency resolution, in recent francium accelerated atomic beam
experiments [Neugart et al. (2017)], the excitation laser is split into
two beams, copropagating and counterpropagating, with the atoms
in order to increase the frequency resolution.

2.2.19. Saturated absorption spectroscopy (SAS)
This technique is based on a pump and probe laser applied to

the same transition. It produces spectra with a natural linewidth
resolution. The counterpropagating geometry compensates for
the Doppler broadening. Main limitations are imposed by the
laser stability, as analyzed in Das and Natarajan (2008) and
Glaser et al. (2020).

2.2.20. Stark spectroscopy (SS)
Stark spectroscopy is based on the electric field shift of

atomic level energies. It is used mainly for Rydberg states as in
Stevens et al. (1995). Information on lower energy states may be
derived by the difference in level Stark shifts.

2.2.21. Two-photon sub-Doppler spectroscopy
(TPSDS)

A single-color two photon not-resonant excitation explores
highly excited states. The sub-Doppler resolution is obtained by
operating with counterpropagating beams in a VC as described by
Herrmann et al. (1985) and Hagel et al. (1999) or in a MOT as in
Georgiades et al. (1994).

3. Hyperfine Theory
The hyperfine structure Hamiltonian Hhyp of an atom having a

single valence electron outside the closed shells consists of the mag-
netic dipole Hdip, the electric quadrupole Hquadr and the octupole
Hoctup terms

Hhyp = Hdip +Hquadr +Hoctup. (1)

Hdip describes the interaction of the nuclear magnetic moment
with the magnetic field generated by the electrons. For the electron
angular momentum J and the nuclear angular momentum I, it is
given by

Hdip = hAI ⋅ J, (2)

where A is the magnetic dipole constant and h is the Planck constant.
The electric quadrupole term originates from the Coulomb

interaction between the electron and a nonspherically symmetric
nucleus. It is given by

Hquadr = hB
3(I ⋅ J)2

+ 3
2 I ⋅ J − I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1)
, (3)

where B is the electric quadrupole moment coupling constant. This
expression is valid for nuclear spins I ≥ 1 and is zero otherwise.

The octupole Hamiltonian Hoctup presented in
Armstrong (1971) depends on the electron and nuclear tensor
operators of rank 3, requires an electron angular momentum at least
equal to 3/2, and is characterized by the hyperfine C constant. The
explicit dependence on the atomic quantum numbers is detailed in
Gerginov et al. (2003).

Hyperfine interactions decrease rapidly for higher-lying states.
Kopfermann (1958) showed that the hyperfine constants are
proportional to the expectation value of 1/r3, where r is the distance
between the nucleus and valence electron. For highly excited
electrons, the valence electron is far from the core electrons and
⟨1/r3

⟩ is well approximated by the hydrogenic result

⟨1/r3
⟩∝

1
(n∗)3 (1 −

∂σ
∂n
), (4)

where n∗ is the effective principal quantum number, n is the prin-
cipal quantum number, and the difference σ(n) = n − n∗ is the
quantum defect. In a more refined treatment, by expressing the
Schrödinger wavefunction at the nucleus position through the effec-
tive nuclear charge ZI in the inner region where the orbit penetrates,
and setting Z0 = 1 for the net charge of the ion around which the
single electron moves, the modified Fermi–Segre formula for the
dipolar constant of the state with angular momentum l is derived
in Kopfermann (1958)

A =
8
3

R∞α2gI
ZiZ2

0

(n∗)3 Fr,J(n, l, Z)(1 − ϵ)(1 − δ), (5)

with R∞ being the Rydberg constant, α the fine structure constant,
and gI the gyromagnetic ratio of the nuclear magnetic moment. The
relativistic effects are expressed by the factor Fr,J(n, l, Z) near unity
for light atoms and different from unity for large Z numbers. The
1 − ϵ factor is the change in the electronic wave function for distri-
butions of the nuclear charge over its volume. The 1 − δ factor is the
change in the electron–nuclear interaction by the distribution of the
magnetic moment, which is called the Breit–Weisskopf effect.

For the quadrupole coupling constant B, the following expres-
sion is derived in Kopfermann (1958):

B =
1
h

e2

4πϵ0

2J − 1
2J + 2

Q⟨
1
r3 ⟩Rr,J(n, l, Z), (6)

with e the charge of the electron, ϵ0 the vacuum permittivity,
Q the quadrupole nuclear moment, and Rr,J(n, l, Z) a relativistic
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correction factor. From Eq. (4) for 1/r3, it follows that the B constant
is also proportional to 1/(n∗)3.

On the basis of the above expressions, where the nucleus is
represented by a point charge, the following scaling is derived
in Kopfermann (1958) for the magnetic dipole and magnetic
quadrupole constants A and B associated with two different
isotopes

Ai

A j =
gi

I

g j
I

, (7)

Bi

B j =
Qi

Q j , (8)

where gi
I and Qi represent the nuclear gyromagnetic factor g and

the quadrupole moment of the isotope i, respectively. Deviations
from these isotopic scaling laws represent the hyperfine anomalies
presented in Subsection 5.2.

The dipolar and quadrupolar hfs Hamiltonians, involving
the interaction of spin and orbital angular momenta with the
nuclear moments, have matrix elements diagonal over the hyperfine
quantum numbers, but also off-diagonal ones (AJ,J−1) connect-
ing fine-structure states with different J values as presented in
Arimondo et al. (1977). These off-diagonal couplings produce a
mixing of the eigenstates and a shift of the energies. For fine
structure states far apart in energy, a perturbation of the hyperfine
constants includes the influence of the off-diagonal matrix elements,
as for the 62P Cs doublet in Johnson et al. (2004). In the opposite
case, such as the 22P 7Li doublet, the hyperfine splittings are
expressed through the ai, (i = c, d, o) parameters of an effective
hyperfine-splitting Hamiltonian: contact, dipolar, and orbital,
respectively, as derived in Lyons and Das (1970). In the first
perturbation order and using the one-electron theory, the different
hyperfine constants are written as

A(2P1/2) = −ac − 10ad + 2ao,

A(2P3/2) = ac + ad + ao,

A(2P3/2, 2P1/2) = −ac +
5
4

ad +
1
2

ao.

(9)

These relations have been used by experimentalists for their data
analysis. Higher perturbation order corrections to the Li constants
were derived in Beloy and Derevianko (2008) and Puchalski and
Pachucki (2009). The mixing produced by off-diagonal hyperfine
interactions plays an important role in the cesium measurements for
parity nonconservation, as in the experiments of Gilbert et al. (1986)
and Bouchiat and Guéna (1988) and in the theoretical analysis
of Dzuba and Flambaum (2000). It is expected to be even more
important in francium.

Equation (5) predicts the following scaling law:

A∝
1
(n∗)3 . (10)

A similar one applies to B on the basis of Eqs. (4) and (6).
For the 87Rb low-n states, the A dependence on n∗ was tested in

1976 by Belin et al. (1976b) using the 1/(n∗)2 dependence of the fine
structure data. The A scaling law was later verified for 85Rb high D
states within 2% by van Wijngaarden et al. (1993). More recently,
with the very high-n∗ values having been precisely derived from

laser spectroscopy, the scaling was tested for the 85Rb Rydberg states
between n = 27 and n = 33 in Li et al. (2003) and Ramos et al. (2019).
The 87Rb data obtained by Li et al. (2003) were reexamined for the
scaling in Mack et al. (2011). In Saßmannshausen et al. (2013) the
scaling law was verified for the Cs 2S1/2 and 2P1/2 Rydberg states in
the n = 10–80 range.

The theoretical determination of the hyperfine constants has
greatly evolved within the last few years. Instead of focusing on a few
atomic states, the more recent calculations target a very large num-
ber of states. While in 1999 a few hyperfine constants of different
alkalis were calculated, e.g., in Safronova et al. (1999), more recently
Safronova and coworkers in [Johnson et al. (2008); Safronova and
Safronova (2008, 2011) and Auzinsh et al. (2007)] have produced
a global derivation of the constants for 7Li, 39K, 87Rb, and 133Cs.
Later, the hyperfine data for all the K isotopes were carefully exam-
ined by Singh et al. (2012), for Rb and Cs by Grunefeld et al. (2019),
for Cs by Tang et al. (2019), and for Fr by Sahoo et al. (2015),
Lou et al. (2019), and Grunefeld et al. (2019). The global analy-
sis by Singh et al. (2012) has derived precise values for the nuclear
quadrupole moments of the potassium isotopes demonstrating a
good internal consistency of the hyperfine data. The development
led by Marianna Safronova to provide both experimental and the-
oretical energy level information for a large variety of atoms is a
welcome addition to the data compilation. It is currently available
online [see Barakhshan et al. (2022)].

The hyperfine interaction and the weak interaction that gives
rise to parity-nonconservation (PNC) in atoms both happen because
the electron density overlaps with the nucleus. From a particle
physics point of view, the exchange of the Z0 boson carries the
weak interaction with its PNC. Atomic PNC interest comes from
its unique possibility to test the standard model at low energy.
The structure of the nucleus is key to the details of nuclear-
spin-independent PNC, where the electron axial–vector–current
interacts with the nucleon vector–current. The nuclear-spin-
dependent PNC, where the nucleon axial–vector–current interacts
with the electron vector–current also depends on nuclear structure
and is primarily due to the nuclear anapole moment. As
noted by Flambaum and Khriplovich (1985) and confirmed by
Bouchiat and Piketty (1991) and Johnson et al. (2003), the hyperfine
interaction leads to the nuclear spin dependence of the matrix
element in the atomic PNC. Cs measurements by Wood et al. (1997)
reached enough sensitivity to measure the anapole moment in
the nuclear-spin-dependent part of the PNC interaction. A new
generation of atomic parity violation experiments is under way,
e.g., see Gwinner and Orozco (2022). These experiments are
made with francium atoms. The PNC effects in Fr with respect
to Cs are estimated to be 18 times larger for the nuclear-spin-
independent and 11 times larger for the nuclear-spin-dependent
part.

The determination of the parity-conserving quantities in both
high precision experiments and ab initio calculations, such as tran-
sition matrix elements, lifetimes, polarizabilities, and hyperfine con-
stants, is essential for PNC studies. The hyperfine constants test in
quantitative ways the quality of the electronic wavefunction near the
nucleus. This unique combination between theory and experiment
has greatly favored the heaviest alkali atoms and has stimulated a
large search effort for the hyperfine structures in their isotopes as
presented in Safronova et al. (2018).
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4. Measured Hyperfine Constants
In the following, we present several tables for the measured

A and B constants of the alkali atoms. In a few cases, we derive
the A constant from the measured hyperfine splitting reported by
the authors using the formula for the hyperfine energies given by
Kopfermann (1958). In each Table, the atomic states are listed in
order of increasing n, then of increasing L, increasing J, and finally
chronologically. Two columns report the acronyms determining the
atomic sample and the spectroscopic technique applied in the mea-
surement. The reference to the original publication is in the last
column. The spectroscopic technique column reports the “From”
notation for the data taken from Arimondo et al. (1977), for which
a critical examination or a weighted averaging over several mea-
surements was performed, leading to a recommended value. When
the hyperfine value reported in that reference remains the only one
available, or its error bar is smaller than later measurements, the
original work is directly quoted in the table. Within the table’s B
column, the entry “0.” denotes that the authors have assumed the
quadrupole constant equal to zero.

A few techniques, such as the HQB, are not able to resolve the
sign of the constants for the explored state. On the basis of the above
scaling laws applied to different atoms within Sec. 5.1, we have pro-
duced a dependable sign assignment for most states. If the sign was
not identified, the absolute value is reported.

The measurement uncertainties are reported in the text and
tables in parentheses after the value, in units of the last decimal place
of the value. For example, 153.3(11) means 153.3 ± 1.1. Most authors
specify their uncertainty on the level of one standard deviation. If a
different convention is used, it is mentioned in the text.

For each atomic species, we mention in the text the states
where a very high precision is obtained or where a disagreement
between the measured values exists. When several (n) measure-
ments are associated with a single state, the tables include a weighted
average, w.a., representing a reference for further work. We follow
the procedure of the Particle Data Group in Zyla et al. (2020) in
the Introduction, Sec. 5.2.2, Unconstrained averaging, to find the
weighted error (w.e.). We calculate it first based on the n individ-
ual errors (ei), w.e. = (1/∑ 1/ei

2
)

1/2. We also calculate the reduced
χ-squared (χ2

red) with n − 1 degrees of freedom to test the size of
the w.e. If (χ2

red) is greater than unity by more than one standard
deviation (2/(n − 1))1/2, then we increase the w.e. of the w.a. by
the factor (χ2

red)
1/2 so that the weighted enhanced error (w.e.e.)

is w.e.e. = (χ2
red)

1/2
× w.e. We report in the table either the w.a.

with its w.e. or the w.e.e., which we explicitly state. Such averaging
is not performed when the precision of one measurement is
greater than all the remaining ones, which is then denoted by
“Recommended” in the table’s last column. The last column con-
tains a “See text” statement, if one or more values are not included
into the w.a.

A different way of averaging developed by Rukhin (2009, 2019)
evaluates the clustering of the data and assigns individual hidden
uncertainties to the measurements from different groups. These
uncertainties are then added in quadrature to the stated uncertain-
ties. w.a.s and w.e.s calculated by this cluster maximum likelihood
estimator (CMLE) are not always identical to the values reported in
our tables. For completeness, whenever a table recommended value
includes a w.e.e. derived from the (χ2

red)
1/2 analysis, we have used

the CMLE method to calculate the corresponding w.a.CMLE weighted
average and w.e.e.CMLE weighted enhanced error. The comparison
between the recommended values obtained by these two approaches
shows that, in almost all the 28 cases, the w.a. of the two analyses
agrees within two times the w.e.e. There are only two cases with a
greater difference, associated with a large (χ2

red)
1/2 value as an indi-

cator of an anomalous scatter of the data. The interested reader
can find results and plots in the supplementary material of this
review.

4.1. Lithium
Data for this atom are reported in Table 1. As for all alkalis,

several spectroscopic investigations are stimulated by the interest
in laser cooling, but only a few experiments are performed in
a MOT. The recent 6Li MOT experiments by Wu et al. (2018),
Li et al. (2020), and Rui et al. (2021) at Shanghai may open a new
trend. For the ground state of both lithium isotopes, the “old”
atomic beam measurements based on MWS report the highest
precision, not reached by the several ones based on laser
spectroscopy. Otto et al. (2002) performed measure-
ments for a few high-n states of 7Li, as well as for other
alkalis.

For the 6,7Li 22P1/2,3/2 state measurements by Umfer et al.
(1992), the error bar is derived on the basis of Eq. (9) from the off-
diagonal constants presented in the following. For the A value of
the 32S1/2 state of both isotopes measured by Lien et al. (2011), we
estimated the error bar not reported by the authors.

A wide experimental effort concentrates on the 22P1/2 state
of both isotopes. Instead, the 22P3/2 state of 6Li remains with
the data obtained before laser spectroscopy. For 7Li, three exper-
imental investigations of this doublet, by Orth et al. (1975),
Nagourney et al. (1978), and Umfer et al. (1992), consider the con-
tribution of the off-diagonal hyperfine couplings linked to the small
fine-structure splitting. Orth et al. (1975) include in their analysis
the previous level crossing data by Brog et al. (1967). The analysis
by Nagourney et al. (1978) combines their own data and the previ-
ous ones. Umfer et al. (1992), acquired enough data for their own
analysis. Orth et al. (1975) using Eq. (9) and their measured A3/2,1/2
= 11.85(35) MHz found ac = −9.838(48), ad = −1.876(12), and
ao = 8.659(37). Nagourney et al. (1978) reported ac = −9.838(48),
ad = −1.975(22), and ao = 8.659(37), and Umfer et al. (1992)
obtained ac = −9.93(37), ad = −1.72(20), ao = 8.69(31) (all in
MHz). For the same doublet, Beloy and Derevianko (2008)
performed an accurate evaluation of the off-diagonal hyper-
fine couplings. They produced corrections to the measured
dipole constant in the A(2P1/2) accurately measured by Orth
et al. (1975), Walls et al. (2003), and Das and Natarajan
(2008). For this last one, the 27.0 kHz correction should
be compared to the author’s original 3 kHz experimental
uncertainty.

A disagreement exceeding the error bars exists for the 32S1/2
7Li

hyperfine constant A measured in Stevens et al. (1995), compared
to those of Bushaw et al. (2003) and Lien et al. (2011). We do not
include that measurement in the w.a.

The discrepancy for the 32P3/2
7Li constants between the

previous values by Budick et al. (1966), Isler et al. (1969), and
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TABLE 1. Measured A and B values for Li isotopes

State A (MHz) B (MHz) Sample Technique References

6Li

22S1/2

152.136 840 7(20) ⋅ ⋅ ⋅ AB MWS From Arimondo et al. (1977)
151.(3) ⋅ ⋅ ⋅ VC ION Lorenzen and Niemax (1982)
153.3(11) ⋅ ⋅ ⋅ AB LIF Windholz et al. (1990)
152.109(43) ⋅ ⋅ ⋅ AB LIF Walls et al. (2003)
152.121(57) ⋅ ⋅ ⋅ AB FML Noble et al. (2006)
152.143(11) ⋅ ⋅ ⋅ AB LIF+FC Sansonetti et al. (2011)
152.134 3(9) ⋅ ⋅ ⋅ MOT LIF Wu et al. (2018) and Li et al. (2020)
152.136 840 7(20) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

22P1/2

17.375(18) ⋅ ⋅ ⋅ VC ORFDR Orth et al. (1974)
17.8(3) ⋅ ⋅ ⋅ VC MLC Nagourney et al. (1978)
16.81(70) ⋅ ⋅ ⋅ AB LIF Windholz et al. (1990)
17.386(31) ⋅ ⋅ ⋅ AB LIF Walls et al. (2003)
17.407(37) ⋅ ⋅ ⋅ AB FML Noble et al. (2006)
17.394(4) ⋅ ⋅ ⋅ AB LIF Das and Natarajan (2008)
17.407(10) ⋅ ⋅ ⋅ AB LIF+FC Sansonetti et al. (2011)
17.402 1(9) ⋅ ⋅ ⋅ MOT LIF Li et al. (2020) and Rui et al. (2021)
17.408(13) ⋅ ⋅ ⋅ MOT LIF+DD Li et al. (2021)
17.401 7(9) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

22P3/2 −1.155(8) −0.10(14) AB ORFDR Orth et al. (1974)

32S1/2

34.(13) ⋅ ⋅ ⋅ VC ION Vadla et al. (1987)
35.263(15) ⋅ ⋅ ⋅ AB TPSDS+RIS Bushaw et al. (2003)
35.283(10) ⋅ ⋅ ⋅ AB RIS Ewald et al. (2004)
35.20(20) ⋅ ⋅ ⋅ AB LIF Lien et al. (2011)
35.267(14) ⋅ ⋅ ⋅ AB RIS Nörtershäuser et al. (2011)
35.274(7) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

32P1/2 5.3(4) ⋅ ⋅ ⋅ VC MLC Nagourney et al. (1978)
32P3/2 −0.40(2) 0 VC MLC Isler et al. (1969)

42S1/2

13.1(13) ⋅ ⋅ ⋅ AB LIF Kowalski et al. (1978)
15.(3) ⋅ ⋅ ⋅ VC ION Lorenzen and Niemax (1982)
13.5(8) ⋅ ⋅ ⋅ AB LIF DeGraffenreid and Sansonetti (2003)
13.5(7) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

7Li

22S1/2

401.752 043 3(5) ⋅ ⋅ ⋅ AB MWS Beckmann et al. (1974)
401.(5) ⋅ ⋅ ⋅ VC ION Lorenzen and Niemax (1982)
401.81(25) ⋅ ⋅ ⋅ AB LIF Windholz et al. (1990)
401.767(39) ⋅ ⋅ ⋅ AB LIF Walls et al. (2003)
401.772(33) ⋅ ⋅ ⋅ AB MFL Noble et al. (2006)
401.747(7) ⋅ ⋅ ⋅ AB LIF+FCS Sansonetti et al. (2011)
401.755(8) ⋅ ⋅ ⋅ AB LIF Huang et al. (2013)
401.752 043 3(5) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

22P1/2

45.914(25) ⋅ ⋅ ⋅ AB ORFDR Orth et al. (1974)
46.05(30) ⋅ ⋅ ⋅ AB LIF Windholz et al. (1990)
46.175(2980) ⋅ ⋅ ⋅ AB MLC Umfer et al. (1992)
46.010(25) ⋅ ⋅ ⋅ AB LIF Walls et al. (2003)
45.893(26) ⋅ ⋅ ⋅ AB FML Noble et al. (2006)
46.024(3) ⋅ ⋅ ⋅ AB LIF Das and Natarajan (2008)
46.047(3) ⋅ ⋅ ⋅ VC SAS Singh et al. (2010)
45.938(5) ⋅ ⋅ ⋅ AB LIF+FCS Sansonetti et al. (2011)
45.946(4) ⋅ ⋅ ⋅ AB LIF Huang et al. (2013)
46.005(16) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a. (w.e.e.)
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TABLE 1. (Continued)

State A (MHz) B (MHz) Sample Technique References

22P3/2

−3.055(14) −0.221(29) AB ORFDR Orth et al. (1975)
−2.95(4) 0 VC MLC Nagourney et al. (1978)
−3.08(4) −0.16(10) AB LIF+DD Shimizu et al. (1987)
−3.18(10) −0.8(7) AB LIF Windholz et al. (1990)
−3.08(8) −0.20(27) AB HQB Carlsson and Sturesson (1989)
−2.96(88) −0.1(5) AB MLC Umfer et al. (1992)
−3.050(16) −0.22(3) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

32S1/2

95.(10) ⋅ ⋅ ⋅ VC ION Vadla et al. (1987)
94.68(22) ⋅ ⋅ ⋅ AB SS Stevens et al. (1995)
93.106(11) ⋅ ⋅ ⋅ AB TPSDS+RIS Bushaw et al. (2003)
93.117(25) ⋅ ⋅ ⋅ AB RIS Ewald et al. (2004)
93.13(20) ⋅ ⋅ ⋅ AB LIF Lien et al. (2011)
93.103(11) ⋅ ⋅ ⋅ AB RIS Nörtershäuser et al. (2011)
93.095(52) ⋅ ⋅ ⋅ AB SAS Kumar and Natarajan (2017)
93.105(7) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ See text w.a.

32P1/2
13.5(2) ⋅ ⋅ ⋅ VC MLC Budick et al. (1966)
13.7(12) ⋅ ⋅ ⋅ VC MLC Nagourney et al. (1978)
13.5(2) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

32P3/2

−0.96(13) 0 VC MLC Budick et al. (1966)
−0.965(20) −0.019(22) VC MLC Isler et al. (1969)
−1.036(16) −0.094(10) VC MLC Nagourney et al. (1978)
−1.01(2) −0.081(28) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a. (w.e.e.)

32D3/2
0.843(41) 0 AB TPSDS Burghardt et al. (1988)
1.14(49) 0 VC TPSDS Otto et al. (2002)
0.843(41) 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

32D5/2
0.343 6(10) 0 AB TPSDS Burghardt et al. (1988)
0.31(13) 0 VC TPSDS Otto et al. (2002)
0.342 6(10) 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

42S1/2

36.4(40) ⋅ ⋅ ⋅ AB LIF Kowalski et al. (1978)
38.(3) ⋅ ⋅ ⋅ VC ION Lorenzen and Niemax (1982)
35.32(72) ⋅ ⋅ ⋅ VC TPSDS Otto et al. (2002)
34.9(4) ⋅ ⋅ ⋅ AB LIF DeGraffenreid and Sansonetti (2003)
35.05(35) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

42P3/2 −0.41(4) 0 VC MLC Isler et al. (1969)
62S1/2 38.0(15) ⋅ ⋅ ⋅ VC TPSDS Otto et al. (2002)
72S1/2 9.2(25) ⋅ ⋅ ⋅

Nagourney et al. (1978) ones remains unexplained as pointed out by
these authors. Therefore, instead of the recommended value from
Arimondo et al. (1977), we consider all the previous measurements.
The χ2

red correction is applied to the statistical error. An analysis of
the off-diagonal elements was performed by Nagourney et al. (1978)
for the 32P 7Li doublet, leading to ac = −3.10(67), ad = −0.54(27),
and ao = 2.61(40).

4.2. Sodium
The sodium results of Table 2 are emblematic of the progress

achieved in hyperfine constant measurements. In chronological
order, the two-photon sub-Doppler spectroscopy was applied in
1978 to probe the 42D excited states, by Biraben and Beroff (1978)
and Burghardt et al. (1978), extended by this last research

group to the 32D states in Burghardt et al. (1988). In 1989,
Kasevich et al. (1989) published the first hyperfine ground state
determination in an atomic fountain with 1 mHz precision, close
to the previous best atomic beam value of Table 2, opening the
road to further amazing improvements in fountain atomic clocks.
Zhu et al. (1993) performed the first hyperfine constant measure-
ment in a MOT exploring the 52P states with a relative precision
≈1 × 10−4 among the best ones for excited states. In the same
year, Yei et al. (1993) performed subnatural linewidth measure-
ments of hyperfine coupling constants using the delayed detection
in polarization quantum beat spectroscopy. In 2003, the excitation
of ultracold atoms in a MOT on the 32P–42P electric quadrupole
transition allowed Bhattacharya et al. (2003) to perform high
resolution spectroscopy of the 42P1/2 level. Das and Natarajan
(2006b) introduced the CCS approach for the first excited state,
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TABLE 2. Measured A and B values for 23Na

State A (MHz) B (MHz) Sample Technique References

32S1/2

885.813 064 4(5) ⋅ ⋅ ⋅ AB MWS From Arimondo et al. (1977)
885.70(25) ⋅ ⋅ ⋅ VC SAS Pescht et al. (1977)
885.813 065(1) ⋅ ⋅ ⋅ FOUNT RIS Kasevich et al. (1989)
885.813 064 4(5) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

32P1/2

94.25(15) ⋅ ⋅ ⋅ VC SAS Pescht et al. (1977)
94.47(1) ⋅ ⋅ ⋅ AB LIF Griffith et al. (1977)
94.05(20) ⋅ ⋅ ⋅ AB LIF Umfer et al. (1992)
94.42(19) ⋅ ⋅ ⋅ AB HQB Carlsson et al. (1992)
94.44(13) ⋅ ⋅ ⋅ AB LIF van Wijngaarden and Li (1994)
94.7(2) ⋅ ⋅ ⋅ AB LIF Scherf et al. (1996)
94.349(7) ⋅ ⋅ ⋅ VC SAS Das and Natarajan (2008)
94.39(2) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a. (w.e.e.)

32P3/2

18.64(6) 2.77(6) AB HQB Krist et al. (1977)
18.69(6) 2.83(10) AB HQB Carlsson and Sturesson (1989)
18.78(8) 2.60(41) AB LIF Umfer et al. (1992)
18.534(15) 2.724(30) VC HQB+DD Yei et al. (1993)
18.62(21) 2.11(52) AB LIF van Wijngaarden and Li (1994)
18.8(1) 2.7(2) AB LIF Scherf et al. (1996)
18.79(12) 2.75(12) AB HQB Volz et al. (1996)
18.572(24) 2.723(55) AB LIF Gangrsky et al. (1998)
18.530(3) 2.721(8) VC CCS Das et al. (2006b)
18.532(6) 2.722(7) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a. (w.e.e); w.a.

32D3/2 0.527(25) 0 AB TPSDS Burghardt et al. (1988)
32D5/2 0.108 5(24) 0
42S1/2 203.6(2) ⋅ ⋅ ⋅ VC TPSDS+LIF Arqueros (1988)

42P1/2
30.4(5) ⋅ ⋅ ⋅ VC ORFDR Grundevik and Lundberg (1978)
30.6(1) ⋅ ⋅ ⋅ MOT OODR+RIS Bhattacharya et al. (2003)
30.6(1) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

42P3/2 6.022(61) 0.97(6) VC LC+ORFDR From Arimondo et al. (1977)

42D3/2
0.23(12) 0 VC TPSDS Biraben and Beroff (1978)
0.215(15) 0 AB TPSDS Burghardt et al. (1978)
0.215(15) 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

42D5/2

<∣0.28∣ 0 VC TPSDS Biraben and Beroff (1978)
0.029(6) 0 AB TPSDS Burghardt et al. (1978)
0.029(6) 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

52S1/2
77.6(2) ⋅ ⋅ ⋅ VC ORFDR Tsekeris et al. (1976)
77.2(2) ⋅ ⋅ ⋅ MOT TPSDS+RIS Marcassa et al. (1998)
77.40(14) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

52P1/2
13.3(2) ⋅ ⋅ ⋅ VC ORFDR Grundevik and Lundberg (1978)
13.468 7(42) ⋅ ⋅ ⋅ MOT SAS Zhu et al. (1993)
13.468 7(42) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

52P3/2
2.64(1) 0.38(3) AB HQB Grundevik et al. (1979)
2.636 0(23) 0.370 4(77) MOT SAS Zhu et al. (1993)
2.636 0(23) 0.370 4(77) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

62S1/2
37.5(2) ⋅ ⋅ ⋅ VC ORFDR Lundberg et al. (1977)
34.5(45) ⋅ ⋅ ⋅ AB SS Hawkins et al. (1977)
37.5(2) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

62P3/2 1.39(1) 0.21(2) AB HQB Grundevik et al. (1979)

72S1/2
20.9(1) ⋅ ⋅ ⋅ AB ORFDR Lundberg et al. (1977)
23.3(65) ⋅ ⋅ ⋅ AB SS Hawkins et al. (1977)
20.9(1) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

72P3/2 0.82(1) 0.13(3) VC QBS Jiang et al. (1982)
82S1/2 12.85(10) ⋅ ⋅ ⋅ VC ORFDR Lundberg et al. (1977)
82P3/2 0.535(15) 0.070(25) VC QBS Jiang et al. (1982)
92P3/2 0.36(1) 0.045(15)
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32P3/2. However, no competitive new data for the ground state are
available.

The 32P1/2,3/2 states have been examined by several authors,
with an increasing precision and a good agreement among the dif-
ferent results. For the 42D states of Biraben and Beroff (1978) and
for the 7, 8, and 92P3/2 ones of Jiang et al. (1982), the sign has been
determined here from the scaling law. In sodium, there is not enough
data for a global analysis. For the large majority of excited states
above the 52P ones, no new data have been published after 1982.

4.3. Potassium

Our previous Li and Na remarks on the ground state values do
not apply to the 39K ground state, as shown in Table 3. For this atom,
several recent measurements exist, with the frequency comb spectral
resolution applied to determine the absolute transition frequencies,
and from them, the fine and hyperfine splittings. A high preci-
sion is achieved, usually with a good agreement among data from
different research groups, e.g., for several n = 5–82S1/2 states with

TABLE 3. Measured A and B values for K isotopes

State A (MHz) B (MHz) Sample Technique Referernces

39K

32D3/2
<∣1.8∣ 0 VC ORFDR Lam et al. (1980)
0.96(4) 0.37(8) VC HQB+DD Sieradzan et al. (1997)
0.96(4) 0.37(8) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

32D5/2
<∣2.2∣ 0 VC ORFDR Lam et al. (1980)
−0.62(4) ⟨∣0.3∣ VC HQB+DD Sieradzan et al. (1997)
−0.62(4) 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

42S1/2

230.859 860 1(3) ⋅ ⋅ ⋅ AB MWS From Arimondo et al. (1977)
231.0(3) ⋅ ⋅ ⋅ AB LIF Touchard (1982)
230.859 9(1) ⋅ ⋅ ⋅ AB MWS Duong et al. (1993)
213.0(3) ⋅ ⋅ ⋅ AB LIF Papuga et al. (2014)
230.859 858(6) ⋅ ⋅ ⋅ MOT MWS Arias et al. (2019)
230.859 850(3) ⋅ ⋅ ⋅ MOT MWS Peper et al. (2019)
231.1(3) ⋅ ⋅ ⋅ AB RIS Koszorús et al. (2019)
230.859 860 1(3) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

42P1/2

28.85(30) ⋅ ⋅ ⋅ AB MWS Buck and Rabi (1957)
27.80(15) ⋅ ⋅ ⋅ AB FML Bendali et al. (1981) and Duong (1982)
27.5(4) ⋅ ⋅ ⋅ AB LIF Touchard et al. (1982)
28.859(15) ⋅ ⋅ ⋅ VC SAS Banerjee et al. (2004)
27.775(42) ⋅ ⋅ ⋅ AB LIF+FC Falke et al. (2006)
28.848(5) ⋅ ⋅ ⋅ VC CCS Das and Natarajan (2008)
27.8 (2) ⋅ ⋅ ⋅ AB LIF Papuga et al. (2014)
27.793(71) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ See text w.a. (w.e.e.)

42P3/2
6.093(25) 2.786(71) AB LIF+FC Falke et al. (2006)
6.077(23) 2.875(55) VC CCS Das and Natarajan (2008)
6.084(17) 2.842(43) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

52S1/2 55.50(60) ⋅ ⋅ ⋅ VC ORFDR Gupta et al. (1973)

52P1/2
9.02(17) ⋅ ⋅ ⋅ VC ORFDR From Arimondo et al. (1977)
8.93(69) ⋅ ⋅ ⋅ VC SAS Halloran et al. (2009)
9.01(17) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

52P3/2 1.969(13) 0.870(22) VC MLC From Arimondo et al. (1977)
52D3/2 0.44(10) 0 VC ORFDR Belin et al. (1975b)
52D5/2 −0.24(7) 0

62S1/2

21.81(18) ⋅ ⋅ ⋅ VC ORFDR Gupta et al. (1973)
20.4(23) ⋅ ⋅ ⋅ TD TPSDS Thompson et al. (1983)
21.8(5) ⋅ ⋅ ⋅ VC TPSDS Kiran Kumar and Suryanarayana (2011)
21.93(11) ⋅ ⋅ ⋅ VC OODR+FC Stalnaker et al. (2017)
21.89(9) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

62P1/2 4.05(7) ⋅ ⋅ ⋅ VC ORFDR Belin et al. (1975b)
62P3/2 0.886(8) 0.370(15) VC MLC From Arimondo et al. (1977)
62D3/2 0.25(1) 0.05(2) VC HQB+MFD Głódó and Kraińska-Miszczak (1985a)
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TABLE 3. (Continued)

State A (MHz) B (MHz) Sample Technique Referernces

62D5/2 −0.12(4) 0

72S1/2

10.79(5) ⋅ ⋅ ⋅ VC ORFDR+MLC From Arimondo et al. (1977)
12.7(24) ⋅ ⋅ ⋅ TD TPSDS Thompson et al. (1983)
10.41(93) ⋅ ⋅ ⋅ VC TPSDS Otto et al. (2002)
10.79(5) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

72P1/2 2.18(5) ⋅ ⋅ ⋅

VC ORFDR Belin et al. (1975b)72P3/2 0.49(4) 0

82S1/2

5.99(8) ⋅ ⋅ ⋅

6.8(12) ⋅ ⋅ ⋅ VC TPSDS Thompson et al. (1983)
6.2(12) ⋅ ⋅ ⋅ VC TPSDS Otto et al. (2002)
5.99(8) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

92S1/2 4.0(11) ⋅ ⋅ ⋅ TPSDS ⋅ ⋅ ⋅ Otto et al. (2002)

102S1/2

2.41(5) ⋅ ⋅ ⋅ VC MLC Belin et al. (1975a) also in
Arimondo et al. (1977)

2.6(12) ⋅ ⋅ ⋅ VC TPSDS Otto et al. (2002)
2.41(5) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

112S1/2 2.1(9) ⋅ ⋅ ⋅

VC TPSDS Otto et al. (2002)122S1/2 1.5(12) ⋅ ⋅ ⋅

132S1/2 1.9(14) ⋅ ⋅ ⋅

142S1/2 1.0(16) ⋅ ⋅ ⋅

40K

32D3/2 ∣1.07(2)∣ ∣0.4(1)∣ VC HQB+DD Sieradzan et al. (1997)
32D5/2 ∣0.71(4)∣ ∣0.8(8)∣
42S1/2 −285.730 8(24) ⋅ ⋅ ⋅ AB MWS From Arimondo et al. (1977)

42P1/2
−34.49(11) ⋅ ⋅ ⋅ AB FML Bendali et al. (1981)
−34.523(25) ⋅ ⋅ ⋅ AB LIF+FC Falke et al. (2006)
−34.523(25) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

42P3/2

−7.59(6) −3.5(5) VC MLC Ney et al. (1968)
−7.48(6) −3.23(50) AB FML Bendali et al. (1981)
−7.585(10) −3.445(90) AB LIF+FC Falke et al. (2006)
−7.585(10) −3.445(90) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

52P1/2 −12.0(9) ⋅ ⋅ ⋅ VC SAS Behrle et al. (2011)
52P3/2 −2.45(2) −1.16(22) VC MLC From Arimondo et al. (1977)

41K

32D3/2 ∣0.55(3)∣ ∣0.51(8)∣ VC HQB+DD Sieradzan et al. (1997)
32D5/2 ∣0.40(2)∣ <∣0.2∣

42S1/2
127.006 935 2(6) ⋅ ⋅ ⋅ AB MWS From Arimondo et al. (1977)
126.9(8) ⋅ ⋅ ⋅ AB LIF Touchard et al. (1982)
127.006 935 2(6) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

42P1/2

15.19(21) ⋅ ⋅ ⋅ VC FML Bendali et al. (1981)
15.1(8) ⋅ ⋅ ⋅ AB LIF Touchard et al. (1982)
15.245(42) ⋅ ⋅ ⋅ AB LIF+FC Falke et al. (2006)
15.245(42) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

42P3/2

3.40(8) 3.34(24) VC MFD Ney (1969)
3.43(5) 0 VC MFD Kraińska-Miszczak (1981)
3.325(15) 3.230(23) VC HQB Sieradzan et al. (1995)
3.363(25) 3.351(71) AB LIF+FC Falke et al. (2006)
3.342(12) 3.242(22) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

52S1/2 30.75(75) ⋅ ⋅ ⋅ VC ORFDR Gupta et al. (1973)
52P1/2 4.96(17) ⋅ ⋅ ⋅ VC MLC Ney (1969)
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TABLE 3. (Continued)

State A (MHz) B (MHz) Sample Technique Referernces

52P3/2 1.08(2) 1.06(4) VC MLC Ney (1969)

62S1/2

12.03(40) ⋅ ⋅ ⋅ VC ORFDR Gupta et al. (1973)
11.8(13) ⋅ ⋅ ⋅ VC TPSDS Kiran Kumar and Suryanarayana (2011),

also in Kiran Kumar et al. (2014)
12.03(40) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

62D3/2 ∣0.14(2)∣ ∣0.05(2)∣ VC HQB Głódó and Kraińska-Miszczak (1985b)

72S1/2
9.0(9) ⋅ ⋅ ⋅ TD TPSDS Thompson et al. (1983)
6.5(10) ⋅ ⋅ ⋅ VC TPSDS Otto et al. (2002)
7.9(12) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a. (w.e.e.)

82S1/2
2.9(8) ⋅ ⋅ ⋅ TD TPSDS Thompson et al. (1983)
3.5(13) ⋅ ⋅ ⋅ VC TPSDS Otto et al. (2002)
3.1(7) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

92S1/2 2.6(13) ⋅ ⋅ ⋅

VC TPSDS Otto et al. (2002)102S1/2 2.0(24) ⋅ ⋅ ⋅

112S1/2 2.0(11) ⋅ ⋅ ⋅

measurements performed over a long time span. Otto et al. (2002)
explored the 2S states of the 39 and 41 isotopes up to n = 14 using
two-photon sub-Doppler spectroscopy.

The spatial dependence of the HQB polarized fluorescence
intensity in a given magnetic field was used by Głódó and Kraińska-
Miszczak (1985a) to derive for the first time the signs of the A
constants in the 62D states of 39K. For other 2D states, the investi-
gations by Belin et al. (1975b), Sieradzan et al. (1997), and Głódó
and Kraińska-Miszczak (1985b) produced only the absolute sign of
the A and B constants. Their signs are determined here on the basis
of the scaling laws.

4.3.1. 39K
The ground 42S1/2 state was measured in three MOT exper-

iments by Antoni-Micollier et al. (2017), Arias et al. (2019), and
Peper et al. (2019). Peper et al. (2019) obtained a value close to
the old atomic beam experiments with a difference in the 10 Hz
range. Arias et al. (2019) claimed that their small discrepancy with
the previous AB measurement can be accounted for by the 16(6)
Hz quadratic Zeeman shift of the bias field and by the differential
ac Stark shift in the optical dipole trap. Table 3 value takes into
account such shift. Antoni-Micollier et al. (2017) reported an all-
optical measurement of the hyperfine splitting with a low statistical
uncertainty, but there were uncontrolled systematical errors in their
work, according to Peper et al. (2019).

A large disagreement exists between the measured A values of
the 42P1/2 states, some of them having been reported with high pre-
cision. The data are centered on two separate values 27.78(4) and
28.849(5) MHz with a separation larger than the reported precision.
The lower values are by Bendali et al. (1981), Touchard et al. (1982),
Duong (1982), and Papuga et al. (2014), (all of them with low pre-
cision) and by Falke et al. (2006) with higher precision. The greater
values were obtained in an AB magnetic resonance experiment by
Buck and Rabi (1957) with a low precision and in two recent mea-
surements by the Bangalore research group Banerjee et al. (2004)
and Das and Natarajan (2008) used the accurate CCS technique.

The χ2
red for the full dataset leads to a very large error bar. Light

shifts corrections, an important issue for several recent publications,
were taken into account by the Bangalore group. They stated, “we
do not have a satisfactory explanation for such a large discrepancy.”
Such a discrepancy does not exist for the 42P3/2 values determined at
the same time by Falke et al. (2006) and Das and Natarajan (2008).
Falke et al. (2006) compared their 6,7Li D optical transition values
to those by Banerjee et al. (2004) and attributed the discrepan-
cies to systematic errors in the laser calibration, more precisely to
phase shifts in the wavelength (not frequency) comparison of the
atomic excitation lasers. In Das and Natarajan (2008), the driving
frequency of an acousto-optical modulator gives a direct measure-
ment of the hyperfine interval and the calibration issue should have
been resolved. For the discrepancies in those optical frequencies,
Brown et al. (2013) pointed out the important role of quantum inter-
ference and light polarization effects. For the 42P1/2 state Table 3
reports a w.a. excluding the Banerjee et al. (2004) and Das and
Natarajan (2008) values.

For the 62S1/2 state, the A value referred to Thompson
et al. (1983) in Table 3 was derived from their hyperfine splitting
in Stalnaker et al. (2017).

4.3.2. 41K
The 72S1/2 values by Thompson et al. (1983) and by

Otto et al. (2002) have a large disagreement. The first value is not
consistent with the 1/(n∗)3 scaling law applied to the n2S1/2 states of
this isotope. The Otto et al. (2002) value is the “Recommended” one.

4.4. Rubidium
The long list of recent spectroscopic data for this atom is the

result of the laser cooling research in worldwide spread laboratories.
For both the 85 and 87 isotopes, the ultracold atomic samples have
produced very precise measurements of several hyperfine splittings,
in particular, for the ground state and the Rydberg ones from n = 26
to n = 46. Note that 87Rb has 50 neutrons, the exact magic number
that makes it a closed shell.
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Entries with very high precision and good agreement are
presented in Tables 4 and 5 for 85Rb and 87Rb, respectively. The
tables report the w.a. of the two published measured values for the
87Rb 62P1/2 state by Nyakang’o et al. (2020), while for the 85,87Rb

52S1/2, and 62P1/2 states, the reported average was communicated
by Shiner et al. (2007). The error bars of the 62S1/2 hyperfine con-
stants for both isotopes measured by Orson et al. (2021) and the
measurements with a 30 kHz precision of McLaughlin et al. (2022)

TABLE 4. Measured A and B values for 85Rb isotope

State A (MHz) B (MHz) Sample Technique References

42D3/2
7.3(5) 0 VC ORFDR Lam et al. (1980)
7.329(35) 4.52(23) VC OODR Moon et al. (2009)
7.329(35) 4.52(23) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

42D5/2

−5.2(3) 0 VC ORFDR Lam et al. (1980)
−5.06(10) 7.42(15) MOT OODR Sinclair et al. (1994)
−4.978(4) 6.560(52) VC OODR+EIT Wang et al. (2014b)
−5.008(9) 7.15(15) VC OODR+FC Lee and Moon (2015)
−4.983(7) 6.70(21) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a. (w.e.e.)

52S1/2

1 011.910 813(2) ⋅ ⋅ ⋅ AB MA Tetu et al. (1976)
1 011.894(9) ⋅ ⋅ ⋅ VC SAS Barwood et al. (1991)
1 011.910 8(3) ⋅ ⋅ ⋅ AB LIF Duong et al. (1993)
1 011.914(12) ⋅ ⋅ ⋅ VC SAS+FC Shiner et al. (2007)
1 011.910 814 940 6(1) ⋅ ⋅ ⋅ FOUNT MWS Wang et al. (2019)
1 011.910 814 940 6(1) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

52P1/2

120.72(25) ⋅ ⋅ ⋅ VC OS Beacham and Andrew (1971)
120.499(10) ⋅ ⋅ ⋅ VC SAS Barwood et al. (1991)
120.64(2) ⋅ ⋅ ⋅ VC SAS Banerjee et al. (2004)
120.645(5) ⋅ ⋅ ⋅ VC SAS Das and Natarajan (2006a)
120.500(13) ⋅ ⋅ ⋅ MOT LIF+FC Maric et al. (2008)
120.79(29) ⋅ ⋅ ⋅ VC SAS Rupasinghe et al. (2022)
120.605(29) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a. (w.e.e.)

52P3/2

25.009(22) 25.88(3) VC ORFDR From Arimondo et al. (1977)
25.3 (4) 21.4 (40) AB LIF Thibault et al. (1981b)
24.988 (31) 25.693 (31) VC SAS Barwood et al. (1991)
25.038(5) 26.011(22) VC SAS Rapol et al. (2003)
25.041(6) 26.013(25) VC SAS Banerjee et al. (2003)
25.040 3(11) 26.008 4(49) VC SAS Das and Natarajan (2008)
25.040 1(11) 26.000(22) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.; w.a. (w.e.e).

52D3/2
4.269 9(2) 1.910 6(8) VC TPSDS Nez et al. (1993, 1994)
4.43(28) 1.7(24) MOT OODR+RIS Gabbanini et al. (1999)
4.269 9(2) 1.910 6(8) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

52D5/2

−2.211 2(12) 2.680 4(200) VC TPSDS Nez et al. (1993, 1994)
−2.196(52) 2.51(53) VC TPSDS Grove et al. (1995)
−2.31(23) 2.7(27) MOT OODR+RIS Gabbanini et al. (1999)
−2.222 (19) 2.664(130) VC EIT Yang et al. (2017)
−2.211 2(12) 2.680 4(200) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

62S1/2

239.18(3) ⋅ ⋅ ⋅ VC FML Pérez Galván et al. (2007) also in
Pérez Galván et al. (2008)

234.(30) ⋅ ⋅ ⋅ VC TPSDS Orson et al. (2021)
239.057(10) ⋅ ⋅ ⋅ VC TPSDS McLaughlin et al. (2022)
239.069(26) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a. (w.e.e.)

62P1/2

39.11(3) ⋅ ⋅ ⋅ VC ORFDR Feiertag and zu Putlitz (1973)
39.123(9) ⋅ ⋅ ⋅ VC SAS+FC Shiner et al. (2007)
39.470(32) ⋅ ⋅ ⋅ VC SAS+FC Glaser et al. (2020)
39.122(9) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ See text w.a.

62P3/2

8.179(12) 8.190(49) VC ORFDR+MLC From Arimondo et al. (1977)
8.220(3) 5.148(3) VC SAS Zhang et al. (2017)
8.166 7(94) 8.126(54) VC SAS+FC Glaser et al. (2020)
8.171(7) 8.161(36) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ See text w.a.
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TABLE 4. (Continued)

State A (MHz) B (MHz) Sample Technique References

62D3/2
2.28(6) 0 VC MLC Hogervorst and Svanberg (1975)
2.32(6) 1.62(6) VC HQB van Wijngaarden et al. (1986)
2.30(4) 1.62(6) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

62D5/2 −1.069(18) −0.41(41) VC OODR Brandenberger and Lindley (2015)

72S1/2

94.7(1) ⋅ ⋅ ⋅ MOT TPSDS Snadden et al. (1996)
94.2(6) ⋅ ⋅ ⋅ MOT OODR Gomez et al. (2004)
94.085(18) ⋅ ⋅ ⋅ VC EIT Krishna et al. (2005)
94.658(19) ⋅ ⋅ ⋅

VC TPSDS+FC

Chui et al. (2005)
94.680 7(37) ⋅ ⋅ ⋅ Barmes et al. (2013)
94.678 4(23) ⋅ ⋅ ⋅ Morzyński et al. (2013) and

Morzyński et al. (2014)
94.684(2) ⋅ ⋅ ⋅ Morgenweg et al. (2014)
94.681 3(15) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ See text w.a.

72P1/2 17.68(8) ⋅ ⋅ ⋅ VC ORFDR Feiertag and zu Putlitz (1973)
72P3/2 3.71(1) 3.68(8) Bucka et al. (1961)

72D3/2

1.34(1) 0 VC MLC Hogervorst and Svanberg (1975)
1.415(30) 0.31(6) VC HQB van Wijngaarden and Sagle (1991a)
1.40(10) 0 VC TPSDS Otto et al. (2002)
1.35(2) 0.31(6) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a. (w.e.e.)

72D5/2 −0.55(10) 0 VC MLC Hogervorst and Svanberg (1975)

82S1/2
45.2(20) ⋅ ⋅ ⋅ VC ORFDR Gupta et al. (1973)
47.1(20) ⋅ ⋅ ⋅ VC TPSDS Otto et al. (2002)
46.1(14) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

82P3/2 1.99(2) 1.98(12) VC ORFDR zu Putlitz and Venkataramu (1968)

82D3/2
0.84(1) 0 VC MLC Hogervorst and Svanberg (1975)
0.879(8) 0.15(2) VC HQB van Wijngaarden et al. (1993)
0.864(19) 0.15(2) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a. (w.e.e); w.a.

82D5/2 −0.35(7) 0 VC MLC Hogervorst and Svanberg (1975)

92S1/2
30.(2) ⋅ ⋅ ⋅ TD TPSDS Stoicheff and Weinberger (1979)
33.5(15) ⋅ ⋅ ⋅ VC TPSDS Otto et al. (2002)
32.2(12) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

92D3/2 0.561(11) 0.20(3) VC HQB Kraińska-Miszczak (1994)

102S1/2
23.(3) ⋅ ⋅ ⋅ TD TPSDS Stoicheff and Weinberger (1979)
22.2(16) ⋅ ⋅ ⋅ VC TPSDS Otto et al. (2002)
22.4(14) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

102D3/2 0.393(8) 0.141(13) VC HQB Głódó and Kraińska-Miszczak (1993)

112S1/2
13.(6) ⋅ ⋅ ⋅ TD TPSDS Stoicheff and Weinberger (1979)
17.1(19) ⋅ ⋅ ⋅ VC TPSDS Otto et al. (2002)
16.7(18) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

112D3/2 0.283(6) 0.100(11) VC HQB Głódó and Kraińska-Miszczak (1993)
122S1/2 7.3(2) ⋅ ⋅ ⋅ TD TPSDS Stoicheff and Weinberger (1979)
132S1/2 8.3(4) ⋅ ⋅ ⋅

282S1/2 0.322(26) ⋅ ⋅ ⋅

MOT MWS Li et al. (2003)

292S1/2 0.280(26) ⋅ ⋅ ⋅

302S1/2 0.224(20) ⋅ ⋅ ⋅

312S1/2 0.252(31) ⋅ ⋅ ⋅

322S1/2 0.209(22) ⋅ ⋅ ⋅

332S1/2 0.182(21) ⋅ ⋅ ⋅

432S1/2 0.080 4(2) ⋅ ⋅ ⋅

MOT MWS Ramos et al. (2019)442S1/2 0.074 3(3) ⋅ ⋅ ⋅

452S1/2 0.070 3(7) ⋅ ⋅ ⋅

462S1/2 0.065 3(1) ⋅ ⋅ ⋅
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TABLE 4. (Continued)

State A (MHz) B (MHz) Sample Technique References

502S1/2 0.057(13) ⋅ ⋅ ⋅

AB MWS Meschede (1987)

512S1/2 0.057(12) ⋅ ⋅ ⋅

522S1/2 0.053(10) ⋅ ⋅ ⋅

532S1/2 0.050(10) ⋅ ⋅ ⋅

542S1/2 0.050(10) ⋅ ⋅ ⋅

552S1/2 0.047(10) ⋅ ⋅ ⋅

562S1/2 0.041(8) ⋅ ⋅ ⋅

572S1/2 0.040(7) ⋅ ⋅ ⋅

582S1/2 0.036(7) ⋅ ⋅ ⋅

592S1/2 0.036(3) ⋅ ⋅ ⋅

TABLE 5. Measured A and B values for 87Rb isotope

State A (MHz) B (MHz) Sample Technique References

42D3/2
25.1(9) 0 VC ORFDR Otto et al. (2002)
24.75(12) 2.19(11) VC OODR Moon et al. (2009)
24.75(12) 2.19(11) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

42D5/2

−16.9(6) 0 VC ORFDR Otto et al. (2002)
−16.747(10) 4.149(59) VC SAS+FC Lee et al. (2007, 2015)
−16.801(5) 3.645(30) VC OODR+EIT Wang et al. (2014b)
−16.779(6) 4.112(52) VC OODR+FC Lee and Moon (2015)
−16.786(10) 3.82(16) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a. (w.e.e.)

52S1/2

3 417.330 (7) ⋅ ⋅ ⋅ VC SAS Barwood et al. (1991)
3 417.341 5(5) ⋅ ⋅ ⋅ AB LIF Duong et al. (1993)
3 417.341 305 452 156(4) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ CCTF (2012)
3 417.353(19) ⋅ ⋅ ⋅ VC SAS+FC Shiner et al. (2007)
3 417.341 305 452 156(3) ⋅ ⋅ ⋅ MOT FOUNT Guéna et al. (2014)
3 417.341 305 452 154(2) ⋅ ⋅ ⋅ MOT FOUNT Ovchinnikov et al. (2015)
3 417.341 305 452 154 8(15) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

52P1/2

406.2(8) ⋅ ⋅ ⋅ VC OS Beacham and Andrew (1971)
408.328(15) ⋅ ⋅ ⋅ VC SAS Barwood et al. (1991)
406.147(15) ⋅ ⋅ ⋅ VC SAS Banerjee et al. (2004)
406.119(7) ⋅ ⋅ ⋅ VC SAS Das and Natarajan (2006a)
408.330(56) ⋅ ⋅ ⋅ MOT LIF+FC Maric et al. (2008)
408.3(1) ⋅ ⋅ ⋅ ODT OS Neuzner et al. (2015)
407.75(50) ⋅ ⋅ ⋅ VC SAS Rupasinghe et al. (2022)
406.48(33) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a. (w.e.e.)

52P3/2

84.29(50) 12.2(20) VC SAS Thibault et al. (1981b)
84.676(28) 12.475(28) VC SAS Barwood et al. (1991)
84.718 5(20) 12.496 5(37) MOT SAS Ye et al. (1996)
84.718 9(22) 12.494 2(43) MOT SAS Gerginov et al. (2009)
84.720 0(16) 12.497 0(35) VC SAS Das and Natarajan (2008)
84.745(6) 12.528(10) VC SAS Chang et al. (2017)
84.720(3) 12.497(2) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a. (w.e.e.)

52D3/2
14.430 3(5) 0.932 0(17) VC TPSDS Nez et al. (1993, 1994)
14.64(30) 0.8(8) MOT OODR+RIS Gabbanini et al. (1999)
14.430 3(5) 0.932 0(17) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended
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TABLE 5. (Continued)

State A (MHz) B (MHz) Sample Technique References

52D5/2

−7.460 5(3) 1.271 3(20) VC TPSDS Nez et al. (1993, 1994)
−7.45(21) 0.462(1088) MOT OODR Grove et al. (1995)
−7.51(28) 2.7(24) MOT OODR+RIS Gabbanini et al. (1999)
−7.460 5(3) 1.271 3(20) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

62S1/2

807.66(8) ⋅ ⋅ ⋅ VC FML Pérez Galván et al. (2007) also in
Pérez Galván et al. (2008)

797.(30) ⋅ ⋅ ⋅ VC TPSDS Orson et al. (2021)
807.341(15) ⋅ ⋅ ⋅ McLaughlin et al. (2022)
807.35(4) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.(w.e.e.)

62P1/2

132.56(3) ⋅ ⋅ ⋅ VC ORFDR Feiertag and zu Putlitz (1973)
132.559(13) ⋅ ⋅ ⋅ VC SAS+FC Shiner et al. (2007)
132.583(141) ⋅ ⋅ ⋅ VC OODR+EIT Nyakang’o et al. (2020)
133.24(28) ⋅ ⋅ ⋅ VC SAS+FC Glaser et al. (2020)
132.569(9) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ See text w.a.

62P3/2
27.700(17) 3.953(24) VC ORFDR From Arimondo et al. (1977)
27.710(15) 4.030(42) VC SAS+FC Glaser et al. (2020)
27.706(11) 3.972(33) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a. (w.e.e. for B)

62D3/2 7.84(5) 0.53(6) VC MLC Svanberg and Tsekeris (1975)

62D5/2
−3.4(5) 0 VC ORFDR+MLC Hogervorst and Svanberg (1975)
−3.61(6) −0.20(20) VC OODR Brandenberger and Lindley (2015)
−3.61(6) −0.20(20) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

72S1/2

319.7(1) ⋅ ⋅ ⋅ MOT TPSDS Snadden et al. (1996)
319.174(45) ⋅ ⋅ ⋅ VC EIT Krishna et al. (2005)
319.702(65) ⋅ ⋅ ⋅ MOT

TPSDS+FC

Marian et al. (2005)
319.759(28) ⋅ ⋅ ⋅ VC Chui et al. (2005)
319.751 8(51) ⋅ ⋅ ⋅ VC Barmes et al. (2013)
319.747 9(23) ⋅ ⋅ ⋅ VC Morzyński et al. (2013) also in

Morzyński et al. (2014)
319.762(6) ⋅ ⋅ ⋅ VC Morgenweg et al. (2014)
319.750 0(20) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ See text w.a.

72P1/2 59.92(9) ⋅ ⋅ ⋅ VC ORFDR Feiertag and zu Putlitz (1973)
72P3/2 12.57(1) 1.762(16) VC ORFDR+MLC From Arimondo et al. (1977)

72D3/2
4.53(3) 0.26(4) VC MLC Svanberg and Tsekeris (1975)
4.69(23) 0 VC TPSDS Otto et al. (2002)
4.53(3) 0.26(4) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

72D5/2
−2.0(3) 0 VC ORFDR+MLC Hogervorst and Svanberg (1975)
−1.85(80) 0 VC TPSDS Otto et al. (2002)
−1.98(28) 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

82S1/2
159.2(15) ⋅ ⋅ ⋅ VC ORFDR Tsekeris and Gupta (1975)
159.3(30) ⋅ ⋅ ⋅ VC TPSDS Otto et al. (2002)
159.2(13) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

82P1/2 32.12(11) ⋅ ⋅ ⋅ VC ORFDR Tsekeris et al. (1975)
82P3/2 6.739(15) 0.935(22) VC ORFDR+MLC From Arimondo et al. (1977)
82D3/2 2.840(15) 0.17(2) VC MLC+ORFDR Belin et al. (1976b)

82D5/2

−1.20(15) 0 VC ORFDR+MLC Hogervorst and Svanberg (1975)
−1.00(13) 0 VC TPSDS Otto et al. (2002)
−1.09(10) 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

92S1/2

90.9(8) ⋅ ⋅ ⋅ VC ORFDR Tsekeris and Gupta (1975)
106.(3) ⋅ ⋅ ⋅ TD TPSDS Stoicheff and Weinberger (1979)
91.6(47) ⋅ ⋅ ⋅ VC TPSDS Belin et al. (1976b)
90.9(8) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

92P3/2 4.05(3) 0.55(3) VC ORFDR Belin et al. (1976b)
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TABLE 5. (Continued)

State A (MHz) B (MHz) Sample Technique References

92D3/2
1.90(1) 0.11(3) VC MLC+ORFDR Belin et al. (1976b)
2.01(17) 0 VC TPSDS Otto et al. (2002)
1.90(1) 0.11(3) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

92D5/2
−0.80(15) 0 VC MLC+ORFDR Otto et al. (2002)
−0.740(12) 0.160(15) VC HQB Głódó and Kraińska-Miszczak (1990)
−0.740(12) 0.160(15) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

102S1/2

56.3(2) ⋅ ⋅ ⋅ VC ORFDR Farley et al. (1977)
70.(3) ⋅ ⋅ ⋅ TD TPSDS Stoicheff and Weinberger (1979)
56.1(23) VC TPSDS Otto et al. (2002)
56.3(2) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

102P3/2 2.60(8) 0 VC ORFDR Belin et al. (1976b)
102D3/2 1.315(17) 0.070(11) VC HQB Głódó and Kraińska-Miszczak (1991)
102D5/2 −0.510(10) 0.098(11) Głódó and Kraińska-Miszczak (1987)

112S1/2

37.4(3) ⋅ ⋅ ⋅ VC ORFDR Farley et al. (1977)
54.(10) ⋅ ⋅ ⋅ TD TPSDS Stoicheff and Weinberger (1979)
37.2(35) VC TPSDS Otto et al. (2002)
37.4(3) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

112D3/2 0.955(11) 0.049(6) VC HQB Głódó and Kraińska-Miszczak (1991)
112D5/2 −0.361(7) 0.071(11) Głódó and Kraińska-Miszczak (1989)
122S1/2 27.(8) ⋅ ⋅ ⋅ TD TPSDS Stoicheff and Weinberger (1979)
122D3/2 0.715(12) 0.037(8) VC HQB Głódó and Kraińska-Miszczak (1991)
122D5/2 −0.266(9) 0.063(14) Głódó and Kraińska-Miszczak (1989)
132S1/2 23.(8) ⋅ ⋅ ⋅ TD TPSDS Stoicheff and Weinberger (1979)
132D5/2 −0.20(1) 0.05(2) VC HQB Głódó and Kraińska-Miszczak (1989)
202S1/2 3.891(2) ⋅ ⋅ ⋅

VC EIT Tauschinsky et al. (2013)
212S1/2 3.249(2) ⋅ ⋅ ⋅

222S1/2 2.721(3) ⋅ ⋅ ⋅

232S1/2 2.390(4) ⋅ ⋅ ⋅

242S1/2 2.115(5) ⋅ ⋅ ⋅

282S1/2 1.07(5) ⋅ ⋅ ⋅

MOT MWS Li et al. (2003)

292S1/2 0.97(5) ⋅ ⋅ ⋅

302S1/2 0.78(4) ⋅ ⋅ ⋅

312S1/2 0.81(7) ⋅ ⋅ ⋅

322S1/2 0.71(5) ⋅ ⋅ ⋅

332S1/2 0.63(4) ⋅ ⋅ ⋅

502S1/2 0.185(20) ⋅ ⋅ ⋅

AB MWS Meschede (1987)

512S1/2 0.170(18) ⋅ ⋅ ⋅

522S1/2 0.165(18) ⋅ ⋅ ⋅

532S1/2 0.160(10) ⋅ ⋅ ⋅

542S1/2 0.145(18) ⋅ ⋅ ⋅

552S1/2 0.145(15) ⋅ ⋅ ⋅

562S1/2 0.142(13) ⋅ ⋅ ⋅

572S1/2 0.135(13) ⋅ ⋅ ⋅

582S1/2 0.111(13) ⋅ ⋅ ⋅

592S1/2 0.105(10) ⋅ ⋅ ⋅

J. Phys. Chem. Ref. Data 51, 043102 (2022); doi: 10.1063/5.0098061 51, 043102-18

U.S. Secretary of Commerce

https://scitation.org/journal/jpr


Journal of Physical and
Chemical Reference Data ARTICLE scitation.org/journal/jpr

were communicated privately by Lindsay. For the A constants of the
57 and 58 2S1/2 states measured by Meschede (1987) for the 87Rb the
missing error bar is assumed equal to the 85Rb ones.

For n2D (n ≥ 6) states the investigations by Svanberg and
Tsekeris (1975) and van Wijngaarden et al. (1993) and by
Głódó and Kraińska-Miszczak (1987, 1990, 1991) and Kraińska-
Miszczak (1994) produced only the relative signs of the A and B
constants. Their signs are determined here on the basis of the scaling
laws presented in Fig. 3 of Sec. 5.1.

For the 85 isotope in Table 4, the ground state hyperfine mea-
surement in a maser by Tetu et al. (1976) agrees with and supersedes
the atomic beam MWS results reported in Arimondo et al. (1977).
The following table entries based on saturated absorption spec-
troscopy by Barwood et al. (1991) and Shiner et al. (2007) or atomic
beam laser spectroscopy by Duong et al. (1993) have a lower preci-
sion. They are superseded by the clock measurements in an optical
fountain by Wang et al. (2019). The 87Rb fountain progress was sum-
marized in 2012 by the International Committee for Weights and
Measures with their recommended Table 5 value. Later observations
by Guéna et al. (2014) and Ovchinnikov et al. (2015) improved its
precision.

Data for the 52P1/2 level of both isotopes are classified in
two groups. The first one includes Barwood et al. (1991) and
Maric et al. (2008), while the second one includes the optical
spectroscopy determination by Beacham and Andrew (1971) rec-
ommended in Arimondo et al. (1977), Banerjee et al. (2004), Das
and Natarajan (2006a) data from the Bangalore research team, and
the Rupasinghe et al. (2022) value. The agreement of the results
within each group is good. However, the first group compared to
the second one derives the 85Rb A constant lower by 0.146(13) MHz,
and the 87Rb A value higher by 2 202(33) MHz. The data of both
groups lead to peculiar values for the hyperfine anomaly. The higher
measured values for 87Rb are closer to the theoretical predictions
by Safronova and Safronova (2011) of 408.53 MHz and by Grune-
feld et al. (2019) of 410.06 MHz. The only theoretical prediction for
85Rb by Pal et al. (2007) of 119.192 MHz is off by a few MHz above
both group results. The search for similar systematic errors as dis-
cussed for the case of the 39K 42P1/2 state combined with the present
restricted dataset does not resolve the discrepancy. For this state, the
w.a. entry in both Tables 4 and 5 is reported with a large error bar
determined from the χ2

red approach.
For the 85Rb 52P3/2 state, excellent agreement exists for the A

value. This is not the case for the B constant, where the SAS mea-
surement by Barwood et al. (1991) considered as a reference point
increases greatly the χ2 and as a consequence the error bar. An agree-
ment within less than 30 kHz is reached for most data of the 87Rb
52P3/2 state. An excellent relative precision of 2 × 10−5 was reached
by two separate measurements on the 87Rb isotope by Ye et al. (1996)
and Das and Natarajan (2008). In Table 6, the Ye et al. (1996) data
reexamined by Gerginov et al. (2009) bring evidence of the octupole
contribution to the Rb hyperfine interactions.

Another example of large discrepancies is found for the
85Rb 62P1/2 state. The 39.470(32) MHz SAS+FC measurement by
Glaser et al. (2020) presents a difference exceeding the error bar,
compared to the values reported by Shiner et al. (2007) based on
the same SAS+FC technique, and also the ORFDR measurement
by Feiertag and zu Putlitz (1973) and the OODR-EIT measurement

TABLE 6. Measured C values for 87Rb and 133Cs

State C (kHz) Sample Technique References

87Rb

52P3/2 −0.12(9) MOT SAS Gerginov et al. (2009)

133Cs

62P3/2
0.56(7) AB LIF Gerginov et al. (2003)

0.87(32) VC CCS Das and Natarajan (2005)
62D3/2 4.3(10) VC TPSDS Chen et al. (2018)

by Nyakang’o et al. (2020). Our derivation of the hyperfine split-
ting from the measured optical frequencies of Glaser et al. (2020)
leads to the 39.11(22) MHz value in good agreement with other ones.
Therefore, the Glaser et al. (2020) entry is not included in the w.a.

In contrast, the 62P3/2 Glaser et al. (2020) data for both iso-
topes are in very good agreement with the earlier radio frequency
and level-crossing data. For that state in 85Rb, the A value derived
by Zhang et al. (2017) on the basis of saturated absorption and EIT
measurements is close to those of other references. However, that
experiment produced a B constant with a large deviation from other
values, probably because the hyperfine lines were not well resolved.
Both their A and B values are not included into the w.a.

The 72S1/2 state of both isotopes has received a wide attention
because of the large probability for the two-photon excitation from
the ground state. Precision at the 1 × 10−6 level is reached in the
87 isotope and at the 2 × 10−5 level in the 85 one, limited by the
2 kHz resolution of the frequency comb in Krishna et al. (2005),
Chui et al. (2005), Barmes et al. (2013), and Morzyński et al. (2013).
However, in both isotopes the EIT results by Krishna et al. (2005)
are lower than the other ones by ≈400 kHz, while their claimed pre-
cision is ≈20 kHz precision. The presence of light shifts originated
by the intense control laser producing the EIT signal was not tested.
The w.a. are performed excluding the Krishna et al. (2005) values.

For the n = (9–13) 2S1/2 states, the optical spectra recorded by
Stoicheff and Weinberger (1979) produce hyperfine constants in
good agreement with more recent ones, but only for the 85 isotope.
Their n = (9–11) data for the 87 isotope are very far off and not
included in the w.a.

4.5. Cesium
Considering the large set of measured values that cover up

Rydberg states with high n numbers, cesium is a favorite atom for
hyperfine spectroscopy. In addition, there is a good (or very good)
agreement for the large majority of states.

The use of frequency combs in order to perform absolute opti-
cal frequency measurements produces very precise values for the
explored states. For instance, the 62P1/2 A constant was reported
with a ≈3 × 10−4 precision in Arimondo et al. (1977), while it
reached ≈3 × 10−6 in Gerginov et al. (2006). A similar spectacular
improvement is associated with the 82S1/2 state, object of several
investigations owing to its large two-photon excitation probability.

The nuclear magnetic octupole dipole moment was measured
for the first time in the 62P3/2 state by Gerginov et al. (2003) with
the value of C = 0.56(7) kHz, and remeasured as C = 0.87(32) kHz
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by Das and Natarajan (2008), as shown in Table 6. The first refer-
ence reaches a higher precision, but leads to a B constant in poor
agreement with the values by the second reference and by Tanner
and Wieman (1988). For the 62D3/2 state, the octupole moment
was recently measured by Chen et al. (2018) with the value of
C = 4.3(10) kHz, much larger than the above value for the 62P3/2
state.

Off-diagonal elements between 6P1/2 and 6P3/2 levels derived
theoretically in Johnson et al. (2004) at the level of ≈40 Hz are neg-
ligible even at the high precision level of the 6P3/2 state hyperfine
data.

For several high nD, with n ≥ 10, states, the investigations by
Svanberg and Belin (1974), Belin et al. (1976a), Deech et al. (1977),
Nakayama et al. (1981), Sagle and van Wijngaarden (1991), and
Głódó and Kraińska-Miszczak (1987, 1990, 1991) produced only the
absolute value of the A constant. Their signs are determined here

on the basis of the scaling laws. All B values for those states were
assumed equal zero.

The inversion of the 2D5/2 hyperfine states is basically due to
core-polarization and electron-correlation effects induced by the
valence electron, as initially pointed out by Fredriksson et al. (1980)
and carefully examined recently in Auzinsh et al. (2007), Grunefeld
et al. (2019), and Tang et al. (2019).

The 62S1/2 A coefficient corresponding to the ground state
hyperfine splitting is not listed in Table 7 because it is related, as the
2 298.157 943 MHz frequency, to the Bureau International des Poids
et Mesures definition of the second.

For the 62D3/2 state, Table 7 reports the value by Kortyna
et al. (2006) because the remeasured value in Kortyna et al. (2011)
using a different method is less precise. The A and B values
measured by Cheng et al. (2017) are not included into the cal-
culation of the w.a. because their fit does not reproduce all

TABLE 7. Measured A and B values for 133Cs

State A (MHz) B (MHz) Sample Technique References

52D3/2

48.6(2) 0.0(8) AB LIF Fredriksson et al. (1980)
48.8(3) 0 VC HQB Ryschka and Marek (1981)
48.78(7) 0.1(7) VC HQB+DD Yei et al. (1998)
48.78(7) 0.(7) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

52D5/2

−21.2(2) 0.0(10) AB LIF Fredriksson et al. (1980)
−22.1(5) 0 VC ORFDR Lam et al. (1980)
−21.24(5) 0.2(5) VC HQB+DD Yei et al. (1998)
−21.24(5) 0.2(5) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

52F5/2 <∣0.7∣ 0 VC ORFDR Svanberg et al. (1973)
52F7/2 <∣1.0∣

62P1/2

291.90(12) ⋅ ⋅ ⋅ VC ORFDR Abele (1975a)
291.3(7) ⋅ ⋅ ⋅ AB ORFDR Coc et al. (1987)
291.885(80) ⋅ ⋅ ⋅ AB LIF Rafac and Tanner (1997)
291.922(20) ⋅ ⋅ ⋅ VC SAS+FCS Udem et al. (1999)
291.918(8) ⋅ ⋅ ⋅ VC SAS Das et al. (2006a)
291.913 5(15) ⋅ ⋅ ⋅ VC SAS Das and Natarajan (2006b)
291.930 9(12) ⋅ ⋅ ⋅ AB LIF +FC Gerginov et al. (2006)
291.929(1) ⋅ ⋅ ⋅ VC OS Truong et al. (2015)
291.926 3(25) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a. (w.e.e.)

62P3/2

50.15(8) −1.35(80) AB HOPF Thibault et al. (1981a)
50.275(3) −0.53(2) AB LIF Tanner and Wieman (1988)
50.288 27(23) −0.493 4(17) AB LIF Gerginov et al. (2003)
50.281 63(86) −0.526 6(57) VC CCS Das and Natarajan (2005)
50.287 8(11) −0.496(6) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a .(w.e.e.)

62D3/2

16.30(15) 0 VC TPSDS Tai et al. (1975)
16.17(17) 0.11(127) VC TPSDS Ohtsuka et al. (2005)
16.34(3) −0.1(2) VC OODR Kortyna et al. (2006)
16.333 1(80) −0.36(1) VC OODR Cheng et al. (2017)
16.338(3) −0.136(24) VC TPSDS Chen et al. (2018)
16.338(3) −0.136(24) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ See text recommended

62D5/2

−4.69(4) 0.18(73) MOT TPSDS Georgiades et al. (1994)
−4.56(9) −0.35(183) VC TPSDS Ohtsuka et al. (2005)
−4.66(4) 0.9(8) VC OODR Kortyna et al. (2006)
−4.59(6) −0.78(66) VC OODR Wang et al. (2020a)
−4.629(14) −0.10(15) VC TPSDS Herd et al. (2021)
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TABLE 7. (Continued)

State A (MHz) B (MHz) Sample Technique References

−4.629(11) −0.10(15) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

72S1/2

545.90(9) ⋅ ⋅ ⋅ AB LIF Gilbert et al. (1983)
545.818(16) ⋅ ⋅ ⋅ VC OODR Yang et al. (2016) and Ren et al. (2016)
545.90(32) ⋅ ⋅ ⋅ MOT TPSDS Tian et al. (2019)
545.87(1) ⋅ ⋅ ⋅ VC OODR+EIT He et al. (2020)
545.856(14) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a. (w.e.e.)

72P1/2

94.35(4) ⋅ ⋅ ⋅ VC ORFDR Feiertag et al. (1972)
94.2(5) ⋅ ⋅ ⋅ VC SAS Gerhardt et al. (1978)
94.40(5) ⋅ ⋅ ⋅ VC SAS Williams et al. (2018)
94.37(3) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

72P3/2

16.605(6) −0.15(3) VC VR From Arimondo et al. (1977)
16.6(3) 0 VC HQB Deech et al. (1977)
16.605(6) −0.19(5) VC SAS Williams et al. (2018)
16.605(4) −0.16(3) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

72D3/2

7.36(3) −0.1(2) AB OODR Kortyna et al. (2008)
7.386(15) −0.18(16) VC OODR+FC Stalnaker et al. (2010)
7.36(7) −0.88(87) VC TPSDS Lee et al. (2011)
7.38(1) −0.18(10) VC TPSDS Kiran Kumar et al. (2013)
7.38(19) −0.15(21) VC OODR+FC Jin et al. (2013)
7.39(6) −0.19(18) VC TPSDS Wang et al. (2021)
7.380(8) −0.17(7) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

72D5/2

−1.56(9) 0 VC ELC Auzinsh et al. (2007)
−1.717(15) −0.18(52) VC OODR+FC Stalnaker et al. (2010)
−1.81(5) 1.01(106) VC TPSDS Lee et al. (2011)
−1.70(3) −0.77(58) VC OODR+EIT Wang et al. (2020b)
−1.79(5) 1.05(29) VC. TPSDS Wang et al. (2021)
−1.717(15) −0.18(52) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ See text recommended

82S1/2

225.(15) ⋅ ⋅ ⋅ VC LOF Campani et al. (1978)
219.3(2) ⋅ ⋅ ⋅ TD TPSDS Herrmann et al. (1985)
219.(1) ⋅ ⋅ ⋅ MOT OODR Fort et al. (1995a)
220.(1) ⋅ ⋅ ⋅ VC TPSDS Fort et al. (1995b)
205.(15) ⋅ ⋅ ⋅ VC FC+QBS Bellini et al. (1997)
219.12(1) ⋅ ⋅ ⋅ VC TPSDS Hagel et al. (1999)
219.125(4) ⋅ ⋅ ⋅ VC TPSDS+FC Fendel et al. (2007)
219.14(11) ⋅ ⋅ ⋅ VC OODR+FC Stalnaker et al. (2010)
219.124(7) ⋅ ⋅ ⋅ VC SAS Wu et al. (2013)
219.08(12) ⋅ ⋅ ⋅ VC OODR+EIT Wang et al. (2013, 2014a)
219.137(11) ⋅ ⋅ ⋅ VC OODR+FC Jin et al. (2013)
219.125(3) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

8P1/2 42.95 (15) ⋅ ⋅ ⋅ AB SAS Liu and Baird (2000)

82P1/2
42.97(10) ⋅ ⋅ ⋅ VC ORFDR+MFD Tai et al. (1973)
42.9(3) ⋅ ⋅ ⋅ VC SAS Cataliotti et al. (1996)
42.96(9) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

82P3/2

7.55(5) 0.63(35) VC ORFDR Barbey and Geneux (1962)
7.626(5) −0.049(42) VC ORFDR Bucka and von Oppen (1962)
7.58(1) −0.14(5) VC ORFDR Faist et al. (1964)
7.644(25) 0 VC ORFDR Abele (1975b)
7.42(6) 0.14(29) VC HQB+DD Bayram et al. (2014)
7.58(3) −0.14(5) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ See text w.a. (w.e.e); recommended

82D3/2

3.94(8) 0 VC MLC+HQB From Arimondo et al. (1977)
3.92(7) 0 VC HQB Deech et al. (1977)
3.92(10) 0 VC MFD van Wijngaarden and Sagle (1991b)
3.95(1) 0 VC HQB Sagle and van Wijngaarden (1991)
3.95(1) 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended
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TABLE 7. (Continued)

State A (MHz) B (MHz) Sample Technique References

82D5/2 −0.85(20) 0 VC ORFDR+MLC From Arimondo et al. (1977)

92S1/2

110.1(5) ⋅ ⋅ ⋅ VC ORFDR Farley et al. (1977)
109.93(9) ⋅ ⋅ ⋅ VC OODR+FC Stalnaker et al. (2010)
109.7(3) ⋅ ⋅ ⋅ VC TPSDS Kiran Kumar and Suryanarayana (2012)
110.150(13) ⋅ ⋅ ⋅ VC OODR+FC Jin et al. (2013)
109.999(3) ⋅ ⋅ ⋅ VC TPSDS+FC Morgenweg et al. (2014)
110.999(3) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

92P1/2 23.19(15) ⋅ ⋅ ⋅ VC ORFDR Tsekeris et al. (1975)
92P3/2 4.123(3) −0.051(25) VC MLC Rydberg and Svanberg (1972)

92D3/2

2.35(4) 0 VC MLC+HQB From Arimondo et al. (1977)
2.32(4) 0 VC HQB Deech et al. (1977)
2.38(1) 0 VC HQB Sagle and van Wijngaarden (1991)
2.375(10) 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

92D5/2 −0.43(4) 0 VC ELC Auzinsh et al. (2007)
102S1/2 63.2(3) ⋅ ⋅ ⋅ VC ORFDR Tsekeris et al. (1974)
102P1/2 13.9(2) ⋅ ⋅ ⋅ VC ORFDR Farley et al. (1977)
102P3/2 2.481(9) −0.025(8) VC MLC Rydberg and Svanberg (1972)

102D3/2

1.52(3) 0 VC MLC Svanberg and Tsekeris (1975)
1.51(2) 0 VC HQB Deech et al. (1977)
1.54(2) 0 VC HQB Sagle and van Wijngaarden (1991)
1.503(91) 0 VC TPSDS Otto et al. (2002)
1.524(13) 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

102D5/2 −0.34(3) 0 VC ELC Auzinsh et al. (2007)

112S1/2

39.4(2) ⋅ ⋅ ⋅ VC ORFDR Tsekeris et al. (1974)
39.4(17) ⋅ ⋅ ⋅ VC TPSDS Otto et al. (2002)
38.81(23) ⋅ ⋅ ⋅ VC OODR+EIT He et al. (2012)
39.15(15) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a. (w.e.e.)

112P3/2 1.600(15) 0 VC ORFDR Belin and Svanberg (1974)

112D3/2

1.055(15) 0 VC MLC Svanberg and Belin (1974)
1.05(4) 0 VC HQB Deech et al. (1977)
1.11(11) 0 VC TPSDS Otto et al. (2002)
1.053 0(69) 0 VC TPSDS+FC Quirk et al. (2022a)
1.053 0(69) 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

112D5/2
−0.24(6) 0 VC ORFDR Svanberg and Belin (1974)
−0.21(6) 0 VC TPSDS+FC Quirk et al. (2022a)
−0.225(41) 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

122S1/2

26.31(10) ⋅ ⋅ ⋅ VC ORFDR Tsekeris and Gupta (1975)
26.4(16) ⋅ ⋅ ⋅ VC TPSDS Otto et al. (2002)
26.318(15) ⋅ ⋅ ⋅ VC TPSDS+FC Quirk et al. (2022a)
26.318(15) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommemded

122P3/2 1.10(3) 0 VC ORFDR Belin et al. (1976a)

122D3/2
0.758(12) 0 VC MLC Svanberg and Belin (1974)
0.75(2) 0 VC HQB Deech et al. (1977)
0.758(12) 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

122D5/2 −0.19(5) 0 VC ORFDR Svanberg and Belin (1974)

132S1/2

18.4(1) ⋅ ⋅ ⋅ VC ORFDR Farley et al. (1977)
18.6(18) ⋅ ⋅ ⋅ VC TPSDS Otto et al. (2002)
18.431(10) ⋅ ⋅ ⋅ VC TPSDS+FC Quirk et al. (2022a)
18.431(10) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended
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TABLE 7. (Continued)

State A (MHz) B (MHz) Sample Technique References

132P3/2 0.77(5) 0 VC ORFDR Belin et al. (1976a)

132D3/2
0.556(8) 0 VC MLC Svanberg and Belin (1974)
0.55(4) 0 VC HQB Deech et al. (1977)
0.556(8) 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommemded

132D5/2 −0.14(4) 0 VC ORFDR Svanberg and Belin (1974)

142S1/2
13.4(1) ⋅ ⋅ ⋅ VC ORFDR Farley et al. (1977)
13.9(15) ⋅ ⋅ ⋅ VC TPSDS Otto et al. (2002)
13.4(1) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

142D3/2
0.425(7) 0 VC MLC Belin et al. (1976a)
0.40(5) 0 VC HQB Deech et al. (1977)
0.425(7) 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

152S1/2 10.1(1) ⋅ ⋅ ⋅ VC ORFDR Farley et al. (1977)

152D3/2
0.325(8) 0 VC MLC Belin et al. (1976a)
0.31(2) 0 VC HQB Nakayama et al. (1981)
0.325(8) 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

162S1/2 7.73(5) ⋅ ⋅ ⋅ VC ORFDR Farley et al. (1977)

162D3/2
0.255(12) 0 VC MLC Belin et al. (1976a)
0.24(2) 0 VC HQB Nakayama et al. (1981)
0.255(12) 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

172S1/2 6.06(10) ⋅ ⋅ ⋅ VC ORFDR Farley et al. (1977)
172D3/2 0.190(12) 0 VC MLC Belin et al. (1976a)
182D3/2 0.160(10) 0
232S1/2 2.3(2) ⋅ ⋅ ⋅

AB OODR+MWS Raimond et al. (1981), also in

232P1/2 0.56(5) ⋅ ⋅ ⋅

Goy et al. (1982)

252S1/2 1.5(2) ⋅ ⋅ ⋅

252P1/2 0.40(5) ⋅ ⋅ ⋅

262S1/2 1.4(2) ⋅ ⋅ ⋅

262P1/2 0.31(5) ⋅ ⋅ ⋅

282S1/2 1.2(2) ⋅ ⋅ ⋅

282P1/2 0.28(5) ⋅ ⋅ ⋅

452P3/2 0.010 3(27) 0

MOT MWS Saßmannshausen et al. (2013)

492S1/2 0.147(4) ⋅ ⋅ ⋅

592P3/2 0.004 7(10) 0
672P3/2 0.003 0(17)
682S1/2 0.052 0(13) ⋅ ⋅ ⋅

722P3/2 0.002 1(36) 0
812S1/2 0.031 8(19) ⋅ ⋅ ⋅

902S1/2 0.022 7(28) ⋅ ⋅ ⋅

662D3/2 0.002 6(5) 0
662D5/2 0.000 10(45) 0

the measured hyperfine frequencies within the reported error
bar.

For the 72D5/2 state, several A values were measured with good
overall agreement. This is not the case for the B values, where
large discrepancies are reported. The small values of the hyper-
fine constants limit the frequency resolution. Three experiments
[Lee et al. (2011) and Wang et al. (2020b, 2021)] measured a

restricted number of hyperfine splittings with a limited agreement
of their frequency. Stalnaker et al. (2010) reported a full high-
resolution spectrum and a careful study of systematic errors. Having
observed a dependence of the B value on the applied magnetic field,
they increase the error bar of their B measurement in order to
cover both negative and positive values. Their A and B values are
recommended in Table 7.
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For the 82P3/2 state, the A and B values examined by
Arimondo et al. (1977) were based on early ORFDR investigations
by Barbey and Geneux (1962), Bucka and von Oppen (1962), and
Faist et al. (1964), all suffering from radio frequency shifts as dis-
cussed in this last reference. All of them are reported in Table 7.
Arimondo et al. (1977) recommended the Faist et al. (1964) values,
where the shift corrections were included. That A value and the one
by Bayram et al. (2014) agree at 0.15 MHz level. Table 7 reports the
w.a. of Faist et al. (1964) and Bayram et al. (2014) with χ2

red correc-
tion. The B values by Faist et al. (1964) and Bayram et al. (2014) are
identical except for their sign. Bayram et al. (2014) defended their
positive value on the basis of their earlier Na 3P3/2 hyperfine con-
stants by Yei et al. (1993) using a similar technique and agreeing
with the best other measurements as in Table 2. A negative B value
is confirmed by the scaling law of Fig. 1. Despite w.a. being −0.12(5),
Table 7 recommends the value of Faist et al. (1964).

For the measured constant of 92S1/2, the high reported preci-
sion of Jin et al. (2013) leads to an anomalously large contribution
to χ2

red. When that value is excluded from the w.a., the error bar is
greatly reduced. It is worth noting that the 82S1/2 and 72D3/2 values
presented by the same authors with a similar precision match very
well those by other authors. The 92S1/2 recommended value is the
Morgenweg et al. (2014) measurement having a 2 × 10−5 precision.

The 9 and 10 2P3/2 values by Rydberg and Svanberg (1972)
are corrected for the g j value in Arimondo et al. (1977). Rydberg
and Svanberg (1972) derive the 102P3/2 B value on the basis of the
average measured ratio B/A = −0.010(3) in the lower n 2P3/2 levels.

We have received privately from Deiglmayr the A values for
the 2S1/2, 2P1/2 states with n between 43 and 81 measured by
Saßmannshausen et al. (2013).

4.6. Francium
In the 1980–1987 years, the Orsay group at the ISOLDE atomic

beam facility in CERN measured several hyperfine constants of dif-
ferent Fr isotopes reported in Liberman et al. (1980), Coc et al. (1985,
1987), and Duong et al. (1987). Francium spectroscopy has reached

FIG. 1. For Cs 2P3/2B(n∗)3 scaling test, with B in MHz, vs the n number in log-
arithmic scale states. For the n = 8 state, one negative and one positive value
are reported here from Table 7. The quantum defect parameters are derived from
Lorenzen and Niemax (1984). The continuous horizontal line represents a fit of the
negative values based on the 1/(n∗)3 scaling.

a higher precision level with the preparation of a cold atom MOT
in 1996–1997 by Simsarian et al. (1996) and Lu et al. (1997).
Two years later, the important information on the nuclear struc-
ture associated with the 2P1/2 hyperfine structure pointed out by
Grossman et al. (1999) has triggered a new interest leading to several
more recent experimental investigations.

Table 8 reports all results for the Fr nuclear ground state con-
figuration, avoiding duplicates when the same value was published
more than once. The table does not include the francium data
published by Voss et al. (2013), where systematic errors are unac-
counted, since updates and corrections of these measurements were
presented by Voss et al. (2015); see Table 1 of that paper. Table 8
evidences that a very large set of isotopes was investigated, all of
them targeted at the nuclear structure exploration. The agreement
between different hyperfine values is not exceptional, in several
cases, the differences being greater than the error bars. Because for
most isotopes the explored energy levels are limited in number, usu-
ally only the lower levels for each L series, global analyses are not
efficient. A partial spectroscopic information is associated with the S
series in the 210 and 212 isotopes composed by three explored states,
with both n = 8 and n = 9 hyperfine values missed out in the sec-
ond isotope. The inconsistency in Gomez et al. (2008) between the
number in Table 1 and that reported in the text and the abstract is
resolved by using the number reported in the text and the abstract as
checked against the original data by one of us (LAO).

5. Data Analysis
5.1. Quantum number scaling law

The present level of high precision for the theoretical computa-
tions leads to agreement with selected experimental results up to 0.1
percent, also for high quantum numbers. Even at that precision level,
semi-empirical laws, such as the scaling ones, remain useful for veri-
fying or predicting data, or confirming the presence of perturbations
for specific atomic states.

We have tested the scaling laws of Eq. (10) for A and similar
one of B, for the overall S, P, and D states of potassium, rubid-
ium, cesium, and francium using the quantum defect parameters
from Lorenzen and Niemax (1983), Li et al. (2003), Lorenzen and
Niemax (1984), Simsarian et al. (1999), and Peper et al. (2019). As
examples, we report in Fig. 2 the A dipole constant results for both
Rb isotopes, in (a) for 2S states, and in (b), (c) for the 2D ones. Panel
(d) of that figure reports the data for the 2S and 2P states of Cs
and for the 2D ones. The 2Sn = (12–13) 87Rb data by Stoicheff and
Weinberger (1979) with large error bars are not plotted. Note that
the A(n∗)3 values are plotted vs n enhancing the deviations from
the scaling law. The validity of the scaling law is tested by the hor-
izontal lines derived from data fits. For the 2D states in (b) and (c),
the 85Rb data have been scaled to the 87Rb ones by supposing the
validity of the gJ scaling of Eq. (7), leading to a precise superposition
of the two isotope values. Similar results are obtained for all the 39K
states and the 2S states of 41K.

For the 2S states, the 87Rb theoretical results by Grune-
feld et al. (2019) reproduce very closely the experimental A val-
ues for all quantum numbers, as shown by the black dots in the
(a) panel of the figure. The A scaling law was tested theoreti-
cally for the 2S, 2P, and 2D Rb states in the log/log plot of
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TABLE 8. Measured A and B values for Fr isotopes with g next to the isotope to indicate the nucleus ground state

State A (MHz) B (MHz) Sample Technique References

202g Fr

72S1/2 12 800.(50) ⋅ ⋅ ⋅ AB LIF Flanagan et al. (2013), also in
Lynch et al. (2014)

203g Fr

72S1/2
8 180.(30) ⋅ ⋅ ⋅ AB RIS Lynch et al. (2014)
8 187.(2) ⋅ ⋅ ⋅ AB LIF Wilkins et al. (2017)
8 187.(2) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

82P3/2 29.5(2) −39.1(20) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Wilkins et al. (2017)

204g Fr

72S1/2
12 990.(30) ⋅ ⋅ ⋅ AB RIS Lynch et al. (2014)
13 146.7(7) ⋅ ⋅ ⋅ AB LIF Voss et al. (2015)
13 146.6(36) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a. (w.e.e)

72P3/2 141.7(3) −37.1(19) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Voss et al. (2015)

205g Fr

72S1/2
8 355.0(11) ⋅ ⋅ ⋅ AB LIF Voss et al. (2013, 2015)
8 400.(30) ⋅ ⋅ ⋅ AB RIS Lynch et al. (2014)
8 355.0(11) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

72P3/2 89.7(4) −81.0(48) AB LIF Voss et al. (2015)

206g Fr

72S1/2
13 052.2(18) ⋅ ⋅ ⋅ Voss et al. (2015)
13 057.8(10) ⋅ ⋅ ⋅ AB RIS Lynch et al. (2016)
13 056.5(24) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a. (w.e.e.)

72P1/2 1 716.90(16) ⋅ ⋅ ⋅ MOT FML Zhang et al. (2015)
72P3/2 139.1(8) −66.8(50) AB LIF Voss et al. (2015)
82P3/2 47.5(10) −29.8(10) AB LIF Lynch et al. (2016)

207g Fr

72S1/2

8 484.(1) ⋅ ⋅ ⋅ AB HOPF Coc et al. (1985)
8 480.(30) ⋅ ⋅ ⋅ AB LIF Lynch et al. (2014)
8 482.(2) ⋅ ⋅ ⋅ AB LIF Wilkins et al. (2017)
8 483.6(9) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

72P1/2 1 111.81(11) ⋅ ⋅ ⋅ MOT FML Zhang et al. (2015)
72P3/2 90.7(6) −42.(13) AB HOPF Coc et al. (1985)
82P3/2 30.4(2) −20.0(16) AB LIF Wilkins et al. (2017)

208g Fr

72S1/2

6 639.7(70) ⋅ ⋅ ⋅ AB HOPF Liberman et al. (1980)
6 650.7(8) ⋅ ⋅ ⋅ AB HOPF Coc et al. (1985)
6 653.7(4) ⋅ ⋅ ⋅ AB LIF Voss et al. (2015)
6 653.1(10) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.(w.e.e.)

72P1/2 874.8(3) ⋅ ⋅ ⋅ MOT FML Grossman et al. (1999)

72P3/2

72.8(5) 8.9(75) AB HOPF Liberman et al. (1980)
72.4(5) 1.(10) AB HOPF Coc et al. (1985)
71.9(2) 13.6(29) AB LIF Voss et al. (2015)
72.1(2) 6.9(59) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.
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TABLE 8. (Continued)

State A (MHz) B (MHz) Sample Technique References

209g Fr

72S1/2
8 590.5(105) ⋅ ⋅ ⋅ AB HOPF Liberman et al. (1980)
8 606.7(9) ⋅ ⋅ ⋅ AB HOPF Coc et al. (1985)
8 606.6(9) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

72P1/2
1 127.9(2) ⋅ ⋅ ⋅ MOT FML Grossman et al. (1999)
1 127.67(11) ⋅ ⋅ ⋅ MOT FML Zhang et al. (2015)
1 127.72(10) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

72P3/2
93.1(6) −61.0(58) AB HOPF Liberman et al. (1980)
93.3(5) −62.(5) AB HOPF Coc et al. (1985)
93.2(4)) −62.(4) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

72D5/2 −21.(1) −81.(22) MOT LIF Agustsson et al. (2017)

210g Fr

72S1/2
7 182.4(81) ⋅ ⋅ ⋅ AB HOPF Liberman et al. (1980)
7 195.1(4) ⋅ ⋅ ⋅ AB HOPF Coc et al. (1985)
7 195.1(6) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

72P1/2
945.6(58) ⋅ ⋅ ⋅ AB HOPF Coc et al. (1987)
946.3(2) ⋅ ⋅ ⋅ MOT FML Grossman et al. (1999)
946.3(2) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

72P3/2
77.9(2) 47.6(22) AB HOPF Liberman et al. (1980)
78.0(2) 51.(4) AB HOPF Coc et al. (1985)
77.95(14) 48.4(19) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

72D3/2 22.3(5) 0 MOT OODR Grossman et al. (2000)
72D5/2 −17.8(8) 64.(17)
82S1/2 1 577.8(11) ⋅ ⋅ ⋅ MOT TCSDS Simsarian et al. (1999)
92S1/2 622.25(36) ⋅ ⋅ ⋅ MOT TCSDS Gomez et al. (2008)

211g Fr

72S1/2

8 698.2(105) ⋅ ⋅ ⋅ AB HOPF Liberman et al. (1980)
8 713.9(8) ⋅ ⋅ ⋅ AB HOPF Coc et al. (1985)
8 700.(60) ⋅ ⋅ ⋅ AB RIS Lynch et al. (2014)
8 713.8(8) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

72P1/2 1 142.1(2) ⋅ ⋅ ⋅ MOT FML Grossman et al. (1999)

72P3/2
94.7(2) −55.3(34) AB HOPF Liberman et al. (1980)
94.9(3) −51.(7) AB HOPF Coc et al. (1985)
94.8(2) −54.5(31) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

212gFr

72S1/2

9 051.3(95) ⋅ ⋅ ⋅ AB HOPF Liberman et al. (1980)
9 064.2(2) ⋅ ⋅ ⋅ AB HOPF Coc et al. (1985)
9 064.4(15) ⋅ ⋅ ⋅ AB LIF Duong et al. (1987)
9 064.2(2) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

72P1/2

1 189.1(46) ⋅ ⋅ ⋅ AB HOPF Coc et al. (1987)
1 187.1(68) ⋅ ⋅ ⋅ AB LIF Duong et al. (1987)
1 192.0(2) ⋅ ⋅ ⋅ MOT FML Grossman et al. (1999)
1 192.0(2) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

72P3/2

99.1(9) −35.3(155) AB HOPF Liberman et al. (1980)
97.2(1) −26.(2) AB LIF Coc et al. (1985)
97.2(1) −26.0(2) AB LIF Duong et al. (1987)
97.21(10) −26.0(2) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a. (w.e.e); w.a.
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TABLE 8. (Continued)

State A (MHz) B (MHz) Sample Technique References

82P1/2 373.0(1) ⋅ ⋅ ⋅ AB LIF Duong et al. (1987)
82P3/2 32.8(1) −7.7(9) AB
82D3/2 13.0(6) 0 AB LIF Arnold et al. (1990)
82D5/2 −7.2(6) 0 AB
92D3/2 7.1(7) 0 AB
92D5/2 −3.6(4) 0 AB
102S1/2 401.(5) ⋅ ⋅ ⋅ AB
112S1/2 225.(3) ⋅ ⋅ ⋅ AB

213gFr

72S1/2

8 744.9(105) ⋅ ⋅ ⋅ AB HOPF Liberman et al. (1980)
8 759.9(6) ⋅ ⋅ ⋅ AB HOPF Coc et al. (1985)
8 757.4(19) ⋅ ⋅ ⋅ AB LIF Duong et al. (1987)
8 759.6(6) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

72P1/2
1 150.5(75) ⋅ ⋅ ⋅ AB HOPF Coc et al. (1987)
1 147.89(11) ⋅ ⋅ ⋅ MOT FML Zhang et al. (2015)
1 147.89(11) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

72P3/2

94.5(16) −20.7(170) AB HOPF Liberman et al. (1980)
95.3(3) −36.(5) AB HOPF Coc et al. (1985)
95.3(3) −36.0(5) AB LIF Duong et al. (1987)
95.3(2) −36.0(5) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

82P3/2 31.6(1) −7.0(25) AB LIF Duong et al. (1987)

214gFr

72S1/2 2 370.(150) ⋅ ⋅ ⋅ AB RIS Farooq-Smith et al. (2016a; 2016b)

219gFr

72S1/2
6 820.(30) ⋅ ⋅ ⋅ AB RIS Budinčević et al. (2014)
6 851.(1) ⋅ ⋅ ⋅ AB RIS de Groote et al. (2015)
6 851.(1) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

82P3/2 24.7(5) −104.(1) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ de Groote et al. (2015)

220gFr

72S1/2

−6 549.4(9) ⋅ ⋅ ⋅ AB HOPF Coc et al. (1985)
−6 549.2(12) ⋅ ⋅ ⋅ AB LIF Duong et al. (1987)
−6 500.(40) ⋅ ⋅ ⋅ AB RIS Lynch et al. (2014)
−6 549.3(7) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

72P3/2
−73.2(5) 126.8(5) AB HOPF Coc et al. (1985)
−68.5(62) 123.(9) AB HOPF Coc et al. (1987)
−73.2(5) 125.9(44) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

82P3/2 −23.3(1) 41.4(14) AB LIF Duong et al. (1987)

221gFr

72S1/2

6 204.6(8) ⋅ ⋅ ⋅ AB HOPF Coc et al. (1985)
6 100.(200) ⋅ ⋅ ⋅ AB HOPF Andreev et al. (1986)
6 205.6(17) ⋅ ⋅ ⋅ AB HOPF Coc et al. (1987)
6 209.9(10) ⋅ ⋅ ⋅ AB LIF Duong et al. (1987)
6 200.(30) ⋅ ⋅ ⋅ AB RIS Lynch et al. (2014)
6 209.(1) ⋅ ⋅ ⋅ AB RIS de Groote et al. (2015)
6 207.2(11) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a. (w.e.e.)
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TABLE 8. (Continued)

State A (MHz) B (MHz) Sample Technique References

72P1/2

808.(12) ⋅ ⋅ ⋅ AB HOPF Coc et al. (1987)
811.0(13) ⋅ ⋅ ⋅ MOT LIF Lu et al. (1997)
810.3(18) ⋅ ⋅ ⋅ MOT FML Zhang et al. (2015)
810.7(10) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

72P3/2

65.5(6) −264.(3) AB HOPF Coc et al. (1985)
65.4(29) −259.(16) AB HOPF Coc et al. (1987)
66.5(9) −260.(48) MOT LIF Lu et al. (1997)
65.8(49) −264.(3) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

82P3/2
22.4(1) −85.7(8) AB LIF Duong et al. (1987)
22.3(5) −87.(2) AB RIS de Groote et al. (2015)
22.40(10) −86.9(3) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.; w.a. (w.e.e.)

222gFr

72S1/2 3 070.(3) ⋅ ⋅ ⋅ AB HOPF Coc et al. (1985)
72P3/2 33.(1) 133.(9)

223gFr

72S1/2 7 654.(2) ⋅ ⋅ ⋅ AB HOPF Coc et al. (1985)
72P3/2 83.3(9) 308.(3)

224gFr

72S1/2 3 876.(1) ⋅ ⋅ ⋅ AB HOPF Coc et al. (1985)
72P3/2 42.1(7) 136.(1)

225gFr

72S1/2
6 980.(1) ⋅ ⋅ ⋅ AB HOPF Coc et al. (1985)
6 980.1(75) ⋅ ⋅ ⋅ AB HOPF Coc et al. (1987)
6 980.(1) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Recommended

72P3/2
77.1(5) 347.(2) AB HOPF Coc et al. (1985)
77.2(30) 346.(13) AB HOPF Coc et al. (1987)
77.1(5) 347.(2) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

226gFr

72S1/2
699.4 ⋅ ⋅ ⋅ AB HOPF Coc et al. (1985)
698.107 1(20) ⋅ ⋅ ⋅ Duong et al. (1986)
698.107(2) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ w.a.

72P3/2 7.(1) −356.(4) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Coc et al. (1985)

227gFr

72S1/2 29 458.(4) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Coc et al. (1985)
72P3/2 316.(2) 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

228gFr

72S1/2 −3 731.(4) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Coc et al. (1985)
72P3/2 −41.(2) 627.(12) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

229gFr

72S1/2 30 080.(110) ⋅ ⋅ ⋅ AB RIS Budinčević et al. (2014)

231gFr

72S1/2 30 770.(130) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
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FIG. 2. A(n∗)3 scaling test, with A in MHz, vs n number. Experimental result
with their error bars are shown in colors, while black dots represent the theoretical
predictions. Experimental and theoretical data: (a) data for Rb 2S1/2 states, and (b)

and (c) for 2D3/2,5/2 ones, with red open squares for 85Rb and blue circles for 87Rb;
(d) data for Cs 2S1/2 and 2P1/2,3/2, (e) and (f) for Cs 2D3/2 and 2D5/2, respectively.
Panel (f) plot does not include the n = 66 value of Table 7 owing to its very large
error bar. 85Rb 2D states data are scaled to the 87Rb ones by assuming the validity
of the isotope gI scaling of Eq. (10). Note the logarithmic horizontal scale in (a),
(d), and (e). The continuous horizontal lines represent fits based on the 1/(n∗)3

scaling. Theoretical predictions are for 87Rb 2S1/2 by Grunefeld et al. (2019) and
2D3/2,5/2 by Safronova and Safronova (2011); for Cs 2S1/2 and 2P1/2 states by

Grunefeld et al. (2019), 2P3/2 and 2D3/2,5/2 by Tang et al. (2019); for the Cs 2D5/2
states, the data by Auzinsh et al. (2007) appear superimposed.

Safronova and Safronova (2011). In panels (b) and (c) of Fig. 2, the
black dots depict those theoretical predictions for the 2D3/2 states.
For the values up to n ≈ 9, the differences between theoretical and
experimental results are small. For higher n values, the differences
are significant because of the limitation in the computer codes at
that time. A good agreement with experimental data exists for the
Grunefeld et al. (2019) predictions of the Cs 2S1/2 and 2P1/2 states, as
shown in (d). For Cs, there are additional theoretical results for the
2P3/2 states by Tang et al. (2019) for 2D3/2 by Auzinsh et al. (2007)

and for 2D5/2 by Tang et al. (2019). For the 2D states, the data by
Auzinsh et al. (2007) cannot be distinguished on the figure scale. In
addition, they cover a short range of n values.

In most cases, the A scaling law is verified in both experimen-
tal and theoretical data, and its validity is used to assign the sign of
the A values reported in the tables of the previous section. For the Cs
2P1/2,3/2 and 2D3/2,5/2 states in a large range of n values, the horizontal
fits are good. The scaling validity applies to the high-n states, as for
the (n = 40, 90) 2S1/2 and 2P3/2 data of Saßmannshausen et al. (2013)
as seen in panel (d). For the 87Rb and Cs 2S states, the scaling does
not apply precisely to low-n values because of additional contribu-
tions to A in Eq. (5). In contrast, the 85Rb values satisfy the 1/(n∗)3

scaling. The low-n difference between the two isotopes produces
the deviation from the gJ scaling, linked to the hyperfine anoma-
lies discussed in the following subsection. For the low-n2D states,
large deviations from the scaling lead to lower A values in Rb and
higher A ones in Cs for both experimental and theoretical data.
These deviations are equivalent for the two Rb isotopes. They origi-
nate from the pair-correlation and core-polarization, as explained in
Auzinsh et al. (2007) and Tang et al. (2019).

We have verified the validity of the 1/(n∗)3 scaling law also for
the B constants. Figure 3 reports the B(n∗)3 constants of both Rb
isotopes for the 2P3/2 and 2D3/2 states. The continuous horizontal
lines indicate that the scaling law is valid for the 87Rb B constants
of both states. For the 85Rb isotope, deviations appear in Fig. 3(b)
for the 2D3/2 states at intermediate n values. The B theoretical pre-
dictions by Safronova and Safronova (2011) denoted by black dots
indicate a good agreement between the theory and experiments. The
B scaling applies also to the Cs 2P3/2 states. For the Rb 2D5/2 and
Cs 2D states, a definitive conclusion cannot be reached owing to
the limited number of data. For the 2P3/2 states, the 85Rb B data
are precisely scaled to the 87Rb ones by assuming the validity of
the quadrupole moment dependence of Eq. (8), with the Q values

FIG. 3. B(n∗)3 scaling, with B in MHz, for Rb isotopes versus n, with open blue
circles for the 87Rb data, and open red squares for the 85Rb data, with error bars
for the experiments. (a) 2P3/2 data; (b) 2D3/2 data. The continuous horizontal lines

represent fits based on the (n∗)−3 scaling law. For the 85Rb 2D3/2 data, the fit
does not include the n = 6, 7 states. The black dots joined by a line represent the
theoretical predictions by Safronova and Safronova (2011) for 87Rb.
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of Raghavan (1989). This Q proportionality applies also to the 2D3/2
data, where the n∗ scaling is valid.

Since the data for each Fr isotope are very limited in number,
the application of the quantum number scaling law is not very effi-
cient. Nevertheless, its validity test is useful to verify the present level
of knowledge. The law is also useful for the experimental determi-
nation of the hyperfine constants in states not yet explored. While
the francium effective quantum numbers may be derived from the
quantum defects of Arnold et al. (1990), Simsarian et al. (1999), and
Huang and Sun (2010), we rely on those of Simsarian et al. (1999)
based on the full spectrum of the francium absorption lines compiled
by Sansonetti (2007). The francium table evidences that hyperfine
sequences are available only for the 2S states of the 210 and 212 iso-
topes, each sequence limited to three entries. Figure 4 presents those
experimental results in a A(n∗)3 plot. The dipole constant for the
211 isotope 72S state is also plotted. The dots joined by continuous
lines represent the theoretical data for 210Fr by Sahoo et al. (2015),
211Fr by Grunefeld et al. (2019), and 212Fr by Lou et al. (2019). On
the figure scale, equivalent results are obtained using the quantum
defect numbers of all the above references. For the experimental
and theoretical data on the 210,212Fr isotopes, the deviations from
the scaling law for the lowest n = 7 number are similar to those
presented for the Rb and Cs low-n2S and 2D states in Fig. 2. Such
deviation from the scaling law does not appear in the 211Fr theoret-
ical data by Grunefeld et al. (2019), while their prediction for the 2S
Cs and Rb states match very closely the experimental data as shown
in Fig. 2. An acquisition of more experimental data is required in
order to progress with this exploration. The program highlighted by
Grunefeld et al. (2019) and Roberts and Ginges (2020) focuses on
the importance of having more hyperfine splitting information for
higher excited levels to better understand not only the Fr atom but
also the properties of the different nuclear isotopes.

5.2. Anomalies
The hyperfine anomalies, first introduced by Bohr and Weis-

skopf (1950), are defined as the A deviations from Eq. (7) produced
by the finite size of the nucleus. As a measure of the finite structure

FIG. 4. A(n∗)3 scaling, with A in MHz, vs n for the 210, 211, and 212 Fr isotopes.
Experimental data: red open squares for 210Fr, black diamond for the 211Fr single
value, and blue open triangles for 212Fr, joined by a dashed line. Theoretical predic-
tions with colored dots joined by a continuous line for 210Fr by Sahoo et al. (2015),
211Fr by Grunefeld et al. (2019), and 212Fr by Lou et al. (2019). Error bars for exper-
iment and theory are too small to be visible. The effective quantum numbers are
derived from the quantum defects of Simsarian et al. (1999). The 211Fr theoretical
data follow closely a horizontal line of the 1/(n∗)3 scaling law.

influence on the dipole constants of isotopes 1 and 2, following
Persson (2013) the expression for the 1Δ2 hyperfine anomaly is

1Δ2
=

A1

A2
g2

I

g1
I
− 1, (11)

where (Ai, gi
I) are the hyperfine magnetic dipole constant and the

nuclear gyromagnetic ratio, respectively, of the i = (1, 2) isotopes.
For a point-like nucleus, the hyperfine anomaly is null. The arti-
cle of Persson (2013) represents the most recent review of the
atomic anomalies. Those of the 62S1/2 Fr states are examined in
Zhang et al. (2015). Recent theoretical studies of Fr anomalies can
be found in Konovalova et al. (2018), Konovalova et al. (2020), and
Roberts and Ginges (2020).

Anomalies can be derived from measured A constants and
accurate values of the nuclear g-ratio. This is the case for light alkali
atoms with their precise values in the gas phase determined in the
1960s and 1970s, as discussed in Arimondo et al. (1977). Anomalies
for those atoms are reported in Table 9, derived from the weighted
mean values and variances of the dipole constants reported in the
tables of the previous section. Only anomalies with a value signifi-
cantly different from zero are presented in Table 9. For the 52P1/2
state of the Rb isotopes, where a very large discrepancy between
the measured values was noted in Subsection 4, the value is missed
because none reasonable anomaly is associated to the different set
of data. The Rb values of Table 9 are in good agreement with those
derived by Pérez Galván et al. (2007), Pérez Galván et al. (2008), and
Wang et al. (2014b) for 2S and 2D states. For the Rydberg S states,
enormous anomalies are obtained, ≈ − 50(5) percent, a quite sur-
prising result, because the interaction of a Rydberg electron with the
nucleus should be comparable to that of low orbitals. The fairly con-
stant anomaly for all the 2S states of the Rb isotopes was pointed out
by Pérez Galván et al. (2007). For Rb 2P states, the situation is not
well defined, with the 52P1/2 value reflecting the discording results
associated with this state, and for the 2P3/2 states the quadrupole
interaction playing an important role. The constant value of the
42P1/2 anomaly applies also to the K isotopes.

The francium case is different because the list of isotope data is
quite long, and therefore, interesting information about the nuclear
structures could be derived from the anomaly determinations. How-
ever, for francium, an important element is missing in Eq. (11)
because a direct measurement of the nuclear gyromagnetic ratio is
available only for 211Fr in Stone (2005). For the remaining isotopes,
the gI ratios are derived by assuming a zero anomaly [see Raghavan
(1989)]. In the recent theoretical studies of Fr anomalies by
Konovalova et al. (2018), Roberts and Ginges (2020), and
Konovalova et al. (2020), the information on the nuclear struc-
ture is replaced by derivations of the radial nuclear structure and
of the nuclear radius. In order to obtain the anomalies without
relying on such theoretical analyses, Grossman et al. (1999), fol-
lowing Persson (1998), concentrated their attention to the 72S1/2
and 72P1/2 states. The 2P1/2 electron probes the nucleus with a
more uniform radial dependence of the interaction than does the
2S1/2 electron. They introduced the following R(S/P) ratio of their
hyperfine constants:

R(S/P) =
A(S1/2)
A(P1/2)

(12)
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TABLE 9. Light alkali hyperfine anomalies 1Δ2 with states listed in order of increasing
L, then of increasing n and finally of increasing J

Element Isotope 1 Isotope 2 State 1Δ2(%)

Li 6 7
2S1/2 0.006 806 7(8)
2P1/2 −0.173 4(2)
2P3/2 −0.155(8)

K 39 40 4S1/2 0.467(2)
4P1/2 3.90(13)

K 39 41 4S1/2 −0.229 37(13)
4P1/2 3.9(3)

Rb 85 87

5S1/2 0.351 41(2)
6S1/2 0.361(19)
7S1/2 0.342(3)
5P1/2 0.55(8)
5P3/2 0.168(5)
6P1/2 0.31(7)
6P3/2 0.46(5)
4D5/2 0.60(15)
5D3/2 0.279(6)
5D5/2 0.44(5)

as a probe of the nuclear magnetization distribution. Since both
states are spin-1/2, these ratios are independent of quadrupole
effects that complicate the extraction of the nuclear structure infor-
mation. For several francium isotopes, the ratio is presented in Fig. 5.
Notice the staggered isotope behavior of R(S/P) vs the even/odd
isotope number. Such behavior evidences the different radial dis-
tributions of the nuclear magnetization for the even/odd number
of neutrons. The ratios of the hyperfine constants of the 72S1/2 and
72P3/2 states, as well as those of the 72P1/2 and 72P3/2 ones, do not
exhibit such a clear staggered dependence as the R(S/P) ratio plot-
ted in the figure. We have tested the presence of a R(S/P) staggered
dependence also for the Rb isotopes using the 85 and 87 data in
Tables 4 and 5, and the 82 isotope ones from Zhao et al. (1999). This
limited dataset appears to confirm the R(S/P) staggered behavior.

The ratio of the hyperfine constants of the 2P1/2 and 2P3/2 states
has been proposed in Konovalova et al. (2020) as an additional test
of the nuclear structure, even if the nuclear quadrupole coupling is

FIG. 5. R(S/P1/2) ratio for the 72S1/2 and 72P1/2 states of francium isotopes vs the
isotope number. Mean values and error bars are derived from the francium Table 8.
Notice the staggered dependence of R(S/P1/2) on the even/odd isotope number.
The 221Fr isotope value with a large error bar agrees with that dependence.

important for the latter state. This ratio calculated from the fran-
cium Table 8 data does not exhibit a clear dependence on the isotope
number.

6. Conclusions
The previously published experimental values for the stable

isotopes of the light alkali atoms and for all the nuclear-ground-
configuration francium isotopes have been compiled. The tables
report the most accurate data obtained before 1977 and all those
published after that time. For each measured hyperfine constant, we
present a recommended value. A critical examination of the most
interesting cases, or of the most discording ones, is presented. For
the discording cases we have calculated a w.e.e. following the proce-
dure of the Particle Data Group in Zyla et al. (2020). For those cases,
a comparison of our data analysis to the cluster maximum likelihood
estimator introduced by Rukhin (2009, 2019), is presented in the
supplementary material of this review. We encourage future review-
ers of larges sets of data to look into these more recent methods that
are currently gaining adepts in the community, but are not followed
by those in charge of the recent redefinition of the fundamental
constants of physics and chemistry Tiesinga et al. (2018).

The experimental interest in measuring hyperfine constants
is renewed in recent years. Today, the laser sources required to
excite energy levels not easily assessed at the optical pumping
time are available on the market. Those sources and the asso-
ciated atomic species can be important for quantum simulation
and computational investigations. As in the past, the quest for
higher precision spectroscopic measurement could represent an
additional step for refining the experimental tools required in those
areas.

Instead of concentrating the attention to a specific atomic state,
the recent global theoretical analyses cover all the atomic states of a
single species, possibly of all the isotopes. For this global approach,
precise experimental data are required for a large set of states,
stimulating the hyperfine data search in several directions.

Spectroscopic investigations of alkali atoms are also associ-
ated with the theoretical progress on the electron–nucleus hyperfine
coupling. The hyperfine coupling being an important probe of the
nuclear structure, the francium research by Grossman et al. (1999)
has introduced the ratio of the S and P state hyperfine couplings
as a new tool for studying nuclear properties. This has stimulated a
large theoretical effort, but it has pointed out the need for more pre-
cise experimental data. The application of this ratio to lighter alkalis
could be an interesting exploration direction.

The electron–nucleus interaction contains a term characterized
by the nuclear magnetic octupole moment. In recent years, three
different measures of that moment are reported for 133Cs 62P3/2
by Gerginov et al. (2003), 87Rb 52P3/2 in the experimental data of
Ye et al. (1996) reexamined by Gerginov et al. (2009), and more
recently for the 133Cs 62D3/2 state by Chen et al. (2018). The par-
ity violation search in alkali atoms may also find new life. Up until
now, the most accurate data on the atomic parity-non-conserving
interaction was derived from the 62S1/2 → 72S1/2 transition in cesium
by Wood et al. (1997). To obtain a more accurate value of the
nuclear weak charge producing the parity-violating Hamiltonian,
it would be desirable to consider other candidates. Gwinner and
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Orozco (2022) with their collaborators are pursuing its measure-
ment in the 72S1/2 → 82S1/2 transition in a variety of Fr isotopes,
while Aoki et al. (2017) have proposed to search for that violation
operating on the 7S1/2 → 62D3/2 electric quadrupole transition in
210Fr. It is expected that advances in the understanding of hyperfine
interactions will continue to illuminate atomic parity nonconversion
and vice versa.

As a final expectation, in the near future, a few totally new
entries will be added to the above tables, counterbalanced by several
refined entries.

7. Note added in proof.
The 133Cs 72D3/2,5/2 hyperfine structures were measured using

Doppler-free two-photon spectroscopy in a vapor cell in recent
publications by Rahaman and Dutta (2022a, 2022b). The follow-
ing hyperfine values were derived: A = 7.3509(9), B = –0.041(8),
and C = –0.027(530) for the 72D3/2 state, and A = –1.708 67(62),
B = 0.050(14), and C = 0.4(14) for the 72D5/2 one. The 133Cs 82P1/2,3/2
hyperfine structures were measured by optical spectroscopy experi-
ment in an atomic beam (Quirk et al. 2022b). The following hyper-
fine values were derived: A = 42.933(8) for the 82P1/2 state, and
A = 7.609(8), B = –0.005(40), and C = 0.016(4) for the 82P3/2 one.

Supplementary Material

See the supplementary material for comparison of the weighted
averages and weighted enhanced errors using the unconstrained
averaging of Zyla et al. (2020) and the clustering maximum
likelihood estimator method of Rukhin (2009, 2019).
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