

A Framework for Understanding the Role of Mathematics in Physics

Jonathan Tuminaro
Edward F. Redish
Physics Education Research Group
University of Maryland

Motivations

- Detailed description of how students use mathematics in physics would help in diagnosis and instruction.
- There exist different models of student thinking in terms of resources, can they be used to understand student thinking about mathematics in physics?

Goals of this talk

- 1. Outline a theoretical framework that attempts to understand the role of mathematical thinking in physics.
- 2. Show how this framework ties together other research that views student thinking in terms of resources.
- 3. Hint at how to use this framework to understand students' "errors" in mathematics.
- → Note: I do not claim that this framework represents actual student thinking, rather I present it as a tool for thinking about mathematical thinking in physics.

Previous Research

Facets

Minstrell, J. (1992) Facets of students' knowledge and relevant instruction, in Duit, R, Goldberg, F., and Niedderer, H. (Eds.) Proceedings of the International Workshop: Research in Physics Learning—Theoretical Issues and Empirical Studies. The Institute for Science Education at the University of Kiel (IPN), Kiel, Germany.

Symbolic forms

Sherin, B. (2001) How Students Understand Physics Equations. *Cognition and Instruction*; **19**, p479-541.

Phenomenological Primitives

DiSessa, A. A. (1993) Toward an epistemology of physics. *Cognition and Instruction*, 10 (2-3), 105-225.

Example: Homework Problem

Example: An Ideal Answer

Step 1: Determine how much hot water it takes to melt all the ice.

The heat gained to melt the ice
$$M_{\rm ice}L_F=Mc\Delta T$$
 The heat lost by the hot water $=20~{\rm grams}$

Mass of hot water needed to melt all the ice.

Example: An Ideal Answer

Step 2: Find the final temperature

of the mixture.

Mass of hot water left over to heat the mixture 50 - 20 = 30

of the cold water.

The heat gained by the mixture at 0 °C
$$m_1 c(T-0) = m_2 c(100-T)$$

 $T = 18 \, {}^{\circ}\text{C}$

hot water

The final temperature Change in temperature of the hot water. of the entire mixture.

Example: Student's Response

Student's Equation

 $mL_F = mc\Delta T$

"It's M L F...the heat gained by the ice.

And then I took M C delta T...

which is the energy that is lost by the hot water.

And then I found...the final temperature,

knowing that...the initial temperature is 100 degrees."

Student's Story

- 1. "I separated that—I put just the ice by itself."
- 2. "And, add the hot water poured into it to melt it first."
- 3. "And, then find out the temperature that it was after...thermal equilibrium,"
- 4. "and then pour that water into the other water."

The Framework: Intro

Different resources serve different functions

 Knowledge elements bits of information

Both resources can exist at different levels of abstraction

Reasoning strategies
 cognitive mappings giving meaning to
 knowledge elements

Student's Equation

$$mL_F = mc\Delta T$$

"It's M L F...the heat gained by the ice.

And then I took M C delta

which is the energy that is lost by the hot water.

And then I found...the final temperature,

knowing that...the initial temperature is 100 degrees."

Student's Story

- 1. "I separated that—I put just the ice by itself."
- 2. "And, add the hot water poured into it to melt it first."
- 3. "And, then find out the temperature that it was after...thermal equilibrium,"
- 4. "and then pour that water into the other water."

Specific Knowledge Element

The heat gained by the ice [equals]...the energy that is lost by the hot water.

Student's Story

- 1. "I separated that—I put just the ice by itself."
- 2. "And, add the hot water poured into it to melt it first."
- 3. "And, then find out the temperature that it was after...thermal equilibrium,"
- 4. "and then pour that water into the other water."

Specific Knowledge Element

Specific Reasoning
Strategy

Facets

The heat gained by the ice [equals]...the energy that is lost by the hot water. I...add the hot water...to melt it first. And, then find out the temperature that it was after...thermal equilibrium.

Facets (Minstrell)

Knowledge elements and reasoning strategies that are applied in *particular* problem situations.

Note: A relationship between specified entities that is used in particular problem situations.

e.g. "more force means more motion"

The Framework: Abstract knowledge elements

- Conceptual component: A whole entity can be comprised of different parts.
- 2. <u>Symbolic component</u>: The symbolic representation of which falls into the pattern □*□.

The Framework: Abstract knowledge elements

Symbolic Forms (Sherin)

- Symbol Template: elements of knowledge that give structure to a mathematical expression; e.g.
 □=□ or □*□*□...
- Conceptual Schema: elements of knowledge that offer a conceptualization of the symbol template.

e.g. "more is more"

The Framework: Abstract Reasoning Strategies

Conservation

Entities mapped into each side of the equation is associated with a different moment in the process.

Interpretive Mapping

The Framework: Abstract Reasoning Strategies

Interpretive mappings
Cognitive mappings from abstract
knowledge elements in general situations
to specific knowledge elements
in particular situations.

Note: A cognitive mechanisms connecting the abstract to the specific.

The Framework: Summary

Analysis of Errors

Conclusions

- Builds coherence between different models of knowledge that appear in the literature.
- Views students' mathematical errors in physics as inappropriate mappings between abstract and specific knowledge.

Future Work

- Development of instructional practices.
- Build an understanding of how coherent knowledge structures are created.