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Although much is known about the difference between expert and novice problem solvers, knowledge of those dif-
ferences typically does not provide enough detail to help instructors understand why some students seem to learn 
while solving problems and others do not. A critical issue appears to be how students use the knowledge they have 
in the context of solving a particular problem. In this paper we outline a theoretical cognitive model for making 
sense of how students use mathematics in the context of physics problems. The model is developed within the theo-
retical framework of resources. We identify four classes of fundamental mathematical resources and six organiza-
tional structures or epistemic games. Each game is a locally coherent associational pattern of control structures (ex-
pectations) activating resources and processes (moves) within the specific example. The hypothesis that students 
tend to function within the narrow confines of a fairly limited set of games provides a good description of most of 
our data. We demonstrate the use of these resources and games in examples taken from videoclips of students solv-
ing problems in a two-semester reformed algebra-based physics course at the University of Maryland. Implications 
for instruction are discussed. 
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1. Introduction 
Students learning physics at the college level often have 
considerable difficulty with the mathematical problem 
solving that is an integral part of most physics classes. 
Instructors may assume that these difficulties arise from 
a lack of mathematical skills, but little evidence has 
been presented to determine whether or not this is the 
case. As part of a project to reform introductory algebra-
based physics,2 we have collected extensive data of stu-
dents learning physics and solving physics problems in 
a variety of classroom environments. This data includes 
some remarkable student behavior, such as  
• students failing to apply the same reasoning with 

complicated numbers that they can easily do with 
small numbers; 

• students rejecting their correct mathematical rea-
soning in favor of incorrect intuitive reasoning;  

• students using incorrect qualitative (p-prim) argu-
ments to rebut a qualitative argument even when 
they know the correct formal argument; 

• students failing to use personal knowledge they 
know very well in favor of misinterpretations of au-
thority-based knowledge when reasoning in a for-
mal context. 

These behaviors are often quite robust, with students 
dramatically ignoring — appearing not even to hear — 
explicit suggestions from an instructor. As a result, 
these behaviors look like what one might crudely de-
scribe as “misconceptions of expectations” about to how 
to solve problems.  

In order to make sense of this data, we construct a 
theoretical model that allows us to describe the cogni-
tive processes that students use – correct and incorrect – 
in the context of applying mathematics in physics. 
Building on and extending ideas developed by diSessa 
and Sherin,3,4,5,6 and by Collins and Ferguson,7 we iden-
tify cognitive tools that students bring to bear on 
mathematical problem-solving tasks in the context of 
physics. Our theoretical model fits into the more general 
theoretical superstructure we refer to as the resource 
model.8,9,10,11 In this broad model of student thinking, 
knowledge elements combine dynamically in associa-
tive structures activated by control structures in re-
sponse to inputs from each other and from the environ-
ment. 

Our theoretical framework offers researchers and 
educators a vocabulary (an ontological classification of 
cognitive structures) and grammar (a description of the 
relationship between the cognitive structures) to de-
scribe students’ understanding and use of mathematics 
in the context of physics.12  Viewing student activity 
through the lens created by this framework can help re-
searchers and educators (i) make sense of the dramatic 
context dependence in students’ use of mathematics in 
the context of physics and (ii) understand how teacher-
student interactions can more effectively help students 
develop their own problem solving skills. 

In the next section, we give a brief overview of our 
theoretical framework, that is, a structure of assump-
tions and mechanisms that provide a framework for the 
construction of specific cognitive models of student 
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thinking. In section three, we describe the setting of the 
study: the student population, the modified instructional 
environment, and the methodology used to collect and 
analyze our data. In section four, we present a cognitive 
model for mathematical problem solving in physics: 
mathematical resources and epistemic games. In section 
five, we use our theoretical model to analyze a one-hour 
student problem-solving session. In the final section, we 
discuss some instructional implications, and present 
some conclusions. Much of the work described here is 
taken from the dissertation of Jonathan Tuminaro and 
more detail can be found there.13 

2. The Theoretical Framework 
Constructivism — the idea that a student constructs 

new knowledge based largely on what that student al-
ready knows — is the dominant paradigm in modern 
educational theories.  The teacher’s role in the construc-
tivist paradigm is to create environments that help stu-
dents undertake this construction accurately and effec-
tively. In order to do this, it helps the teacher to know (i) 
the content and structure of the students’ existing 
knowledge and (ii) how the students use this knowledge 
to construct new knowledge. There has been consider-
able direct observational research on the difficulties stu-
dents have with various items of physics content,14,15 but 
to understand how students organize, access, and use 
their existing knowledge requires a finer-grained under-
standing of how students think and respond. We need 
some theoretical understanding of the basic elements of 
fundamental cognitive activities and how they are or-
ganized.  

Previous Research 
Research on students’ naïve knowledge and on ex-

pert/novice differences in problem-solving are two top-
ics that are particularly relevant to the current study. In 
this subsection, we give a brief review of these two ar-
eas of research. 

Students’ Naïve Knowledge 
The fact that students bring prior naïve knowledge 

into a physics class has been well documented in the re-
search literature.14,15 The level of abstraction at which 
the students’ naïve knowledge is described, however, 
varies considerably. Some researchers describe student 
knowledge that does not align well with the scientific 
knowledge we are trying to teach as “misconceptions,” 
“alternative conceptions,” or “naïve theories.”  These 
researchers assume that students have internally consis-
tent models of how aspects of the world work.16,17,18,19 
Others describe the knowledge of beginning students in 
physics as fragmented and spontaneous.3,20,  

Expert/Novice Differences in Problem-Solving 
Researchers have studied problem-solving in differ-

ent contexts: problem solving associated with games 

such as chess, 21 problem solving in mathematics, 22,23,24  
and mathematical problem solving in the context of 
physics. 25,26,27,28,29,30,31 There is agreement that there are 
substantial differences between experts and novices; ex-
perts have more knowledge and organize it better. But 
most attempts to model the differences at a finer scale 
have focused on creating computer models that would 
solve problems effectively. Sometimes these models are 
algorithmic;32 sometimes they are based on heuristics 
extracted from expert informants.33 While these ap-
proaches can produce computer software that can carry 
out some tasks that human experts do, it is not at all 
clear that they correctly model how a human being 
learns and functions. (A good summary of the successes 
and limitations of this approach is given in 
d’Andrade.34) Nor do they help us understand how to 
help students make the transition from novice to expert. 

If our goal is to teach a human being effectively, it is 
appropriate to build a theoretical model based on our 
knowledge of the functioning of that system and not 
some other. The resource model is based on a combina-
tion of three kinds of knowledge about the functioning 
human: from neuroscience, cognitive science, and be-
havioral science. It permits us to begin to create a finer-
grained understanding of student behavior that can 
bridge the alternative and fragmented conception mod-
els and can help us develop a more detailed understand-
ing of the novice-to-expert transition. 

Researchers in neuroscience, cognitive science, and 
behavioral science attempt to model human thought at a 
variety of grain sizes. The resource model attempts to 
build a synthesis of principles, extracted from neuro-, 
cognitive, and behavioral science, that offer a mecha-
nism that can help us understand student thinking. Much 
has been learned, though one has to be cautious in ap-
plying research results at a fine-grained level from neu-
roscience or cognitive science to real-world situations. 
Nevertheless, results from neuroscience give some 
guidance as to the kind of structures that might be rele-
vant for the coarser-grained models needed to deal with 
real students in real situations. Note that in constructing 
this synthesis we are not attempting to create a funda-
mental theory of human behavior. Rather, we are devel-
oping a theoretical framework or superstructure9 within 
which plausible phenomenological models can be cre-
ated that can help us understand what we see in our 
classroom, but that are also consistent with what is 
known about the fundamental mechanisms and opera-
tion of the brain.  

The Neural Basis of Cognition 
A model of cognition that is consistent with and is 

supported by results from neuroscience and cognitive 
science is synthesized and documented in many 
books.35,36,37,38 In this model, cognitive elements of 
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knowledge and memory are represented by networks of 
connected neurons. When someone recalls or uses the 
knowledge represented by a particular network, the neu-
rons of the network are activated (increase their firing 
rate).39  Particular knowledge elements tend to be multi-
modal (i.e., to involve activation and interpretation of 
multiple sensory and interpretive structures) and involve 
neurons in many parts of the brain.40  Cognitive net-
works arise from the building of associations among 
neurons through synapse growth.41 The association of 
neurons can vary in strength and increases with repeated 
associational activations.42  

Neural connections can be excitatory or inhibitory.41 
This creates the possibility of executive processes that 
result in the selective activation of some networks and 
the suppression of others.43 fMRI studies and neuro-
physiological studies with patients who have brain le-
sions suggest that the pre-frontal cortex is a primary site 
of a large number of control structures (though they are 
expected to occur in other parts of the brain as 
well).44,45,46 

A Model of Cognition for Education: Resources 
We work within the framework described that at-

tempts to create a model that is consistent with the 
neuro-cognitive model described above: the resource 
model.9,10,47 We want the model to be sufficiently 
coarse-grained that it allows us to describe observed 
student behavior and sufficiently fine-grained that it 
gives us insight into the mechanisms responsible for 
those behaviors. The critical elements of the model are 
the basic knowledge elements, the way those elements 
are linked, and the way those linked structures are acti-
vated in different circumstances. Knowledge elements 
include both declarative and procedural knowledge. We 
refer to the linking patterns of association as knowledge 
structures and to the executive function that determines 
when those structures are activated as control struc-
tures. We broadly refer to all the elements of this model 
— basic knowledge elements, associational patterns, 
and control structures available to students thinking 
about a physics problem — as resources. 

Basic Knowledge Elements: Compilation 
A network corresponding to an element of knowledge 

becomes robust through practice and experience. For 
example, one can quickly and easily identify the combi-
nation of sensations associated with holding a cup of hot 
coffee. We effortlessly combine the perception of the 
pixels (activation of rods and cones) on our retina with 
the touch, smell, and taste of the coffee into a perception 
of what appears to be a single object. Neuroscientists 
call this binding, but we prefer to say that it is com-
piled.48 Compiled knowledge structures are seen as irre-
ducible by the individual and can be used as a single 

chunk in working memory49 and are referred to as 
knowledge elements.  

Note that a knowledge element may have a structure 
and that for some purposes it might be useful to decom-
pose them into finer-grained knowledge elements even 
when the user sees them as irreducible. This is like con-
sidering molecules consisting of atoms. For some tightly 
bound molecules in some situations (e.g., molecules in a 
gas in kinetic theory) it suffices to consider the mole-
cule as a single functioning unit without substructure. In 
other circumstances (e.g., situations in which chemical 
reactions occur) or for more weakly bound molecules, it 
is essential to keep the molecule’s structure in terms of 
atoms in mind. 

Our model has knowledge elements of four types: in-
tuitive mathematics knowledge, reasoning primitives, 
symbolic forms, and interpretive devices. These are dis-
cussed in detail in section 4. 

Patterns of Association: Knowledge Structures  
Because cognitive networks are extended and be-

cause neurons have large numbers of synapses with 
other neurons, an individual neuron may be a part of 
multiple mutually linked knowledge structures. As a re-
sult, activation of one network may result in the associ-
ated activation of other networks. Patterns of association 
develop, linking different resources in different situa-
tions. The patterns of association individuals develop 
may help or hinder them in solving physics problems.11 
Learning occurs as the result of the growth of new syn-
apses that result in changing the topology of existing 
networks.50  

Executive Function: Control Structures 
Neural executive processes make possible extensive 

structures of selection and control that occur at all levels 
of neural networking from the shutting off of a reflex 
arc41 to conscious decision making.24 A classic example 
of a control structure is exhibited in the Stroop task.51  
In this classic cognitive experiment, subjects are pre-
sented with a series of words printed in different color 
inks and asked to name the colors of the ink for each 
word. For example, if the word “house” is printed in 
blue ink, the subject has to say “blue.”  The time is re-
corded for the subject to read the colors of 25 words. 
The task is then repeated, but in the second pass, the 
words are themselves color words. Thus, the word “red” 
might be printed in blue ink and the subject has to say 
“blue.”  When the words and the colors conflict, the task 
is much more difficult and the time to complete it in-
creases dramatically. The explanation is that the subject 
is receiving two different kinds of conflicting color 
cues: the meaning of the word and the observed color of 
the ink. These twp pieces of information enter the brain 
in distinct places and have to be reconciled with a deci-
sion as to which color signal to select before making a 
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motor response (speech). An fMRI study of a subject 
performing the conflicting-information part of Stroop 
task shows strong activation of sites in the pre-frontal 
cortex, in contrast with what happens in the non-
conflicting information part of the task.52  

Control structures play a powerful role in implement-
ing students’ expectations of what resources and knowl-
edge structures are appropriate to activate in particular 
circumstances. They may be organized a variety of 
ways. Specific knowledge resources may be organized 
into various locally coherent patterns of association and 
these patterns have implications for student responses. 
For example, a student given a physics problem may ac-
tivate related information about force and motion or, al-
ternatively, about work and energy. The student may be 
able to use each of these sets of information coherently 
but not put them together in an integrated fashion.11 An-
other proposed organization of knowledge structures is 
the coordination class.5  

In this paper, as part of our model of students’ 
mathematics use in physics, we propose that a useful 
way to analyze the control structures of expectations is 
to describe them in terms of locally coherent, goal-
oriented activities. We choose to call these epistemic 
games because of their similarity to the structures pro-
posed by Collins and Ferguson (C&F).7 Note that the 
activities described by C&F were normative — activi-
ties carried out by experts to solve problems. We extend 
the idea to one that is descriptive of observed student 
behavior. (Note that some other researchers have also 
extended their use of the term in this way.53,54)  

A critical component in the construction of the 
coarse-grained theory is the detailed observation of stu-
dent behavior in real-world situations. In this paper, we 
report on a research study of authentic in-class (ecologi-
cal) student behavior. These observations allow us to 
identify knowledge elements, knowledge structures, and 
control structures that have considerable power to ex-
plain how students in introductory physics classes use 
mathematics to solve physics problems. How the control 
structures respond to the socio-cultural environment is 
also of considerable importance and interest. It will be 
discussed in another paper.55  

3. The setting of the study 
This study was done as a part of a research study carried 
out at the University of Maryland2 to determine whether 
an introductory physics course could serve as a venue to 
help biology students learn to see science as a coherent 
process and way of thinking, rather than as a collection 
of independent facts; and whether this goal could be 
achieved within the context of a traditional large-lecture 
class without a substantial increase in instructional re-
sources. The project adopted reforms that were well-
documented to produce conceptual gains and adapted 

them to try to create a coherent package that produced 
epistemological and metacognitive gains. The hope was 
that this could be done without sacrificing the concep-
tual gains associated with these reforms. (This turns out 
to be the case with epistemological state measured by 
pre-post MPEX and conceptual state measured by frac-
tional gains on the FCI. Strong gains were obtained in 
both measures. These results will be documented else-
where.) 

Data on the student responses to the modified envi-
ronment were collected in a variety of ways in order to 
provide triangulation on the learning process of individ-
ual students and evaluations of the overall class results. 
The learning environments were constructed to encour-
age students to learn in group discussions taking place 
both in and out of the classroom context. Hundreds of 
hours of these group discussions were recorded by video 
cameras and provide the bulk of the data for this study. 
In addition, all student homework, quizzes, and exams 
were scanned before grading. Finally, we gave pre-post 
conceptual (FCI56 and FMCE57) and epistemological at-
titude surveys (modified MPEX58). 

Student Population 
The students in this study were enrolled in an intro-

ductory, algebra-based physics course. They were ap-
proximately 60% female; more than 70% were juniors 
and seniors, about 50% were biological science majors, 
and about 40% were pre-meds. (There was some year-
to-year fluctuations in these numbers.) A particularly in-
teresting statistic for this study is that more than 95% of 
the students had successfully completed two semesters 
of calculus, yet they chose to enroll in an algebra-based 
introductory physics course despite the availability of a 
calculus-based alternative. Data were collected in 10 
semester-long classes over a four-year period from a to-
tal of more than 1000 students. 

Structure of the modified course 
The introductory, algebra-based physics course at the 

University of Maryland (UMd) was reformed by the 
Physics Education Research Group (PERG) as part of 
the research study. The course had four major structural 
components. The homework, the lecture, the discussion, 
and the laboratory were all modified to be non-
traditional in some fashion. In addition, we attempted to 
make all parts of the course coherent with each other. 
We believe that the overall epistemological orientation 
of the class was responsible, at least in part, for the stu-
dents’ willingness to spend long times working together 
on individual problems and encouraged some of the be-
haviors we observed. Therefore, we discuss our reforms 
in some detail in the following sections. 

Homework problems:  Homework problems are par-
ticularly important for this study, since the observations 
reported here are videotaped sessions of students work-
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ing on homework. Problems were regularly assigned 
and graded. The problems assigned were not traditional 
end-of-chapter textbook exercises. Instead, they in-
cluded a mix of challenging activities including repre-
sentation translation problems, context-based reasoning 
problems, ranking tasks, estimation problems, and essay 
questions with epistemological content. (For more on 
these types of problems see chapter 4 of Redish’s 
Teaching Physics.59) 

The instructor expected that each problem would take 
the students about an hour to complete, and he commu-
nicated this expectation to the class. In accordance with 
his expectation, the instructor only assigned about five 
problems each week. (The specific problems we discuss 
here are given in the Appendix.) Because these prob-
lems were assigned as homework and graded, our ob-
servations of students working on these problems gave 
us an authentic look at how students actually behave in 
real-world classroom problem-solving situations – as 
opposed to watching them solve problems artificially 
posed to them in an interview environment. 

Lecture:  The lecture was given by the instructor 
(Redish) in a large lecture hall to about 100-160 stu-
dents. The class met three times a week for fifty min-
utes. Two modifications to the lectures significantly in-
creased student attendance and participation.  

(1) The Peer Instruction environment60 was adapted 
for this class. Each student was issued a remote answer-
ing device (RAD). The instructor periodically asked a 
multiple-choice question during the lecture to which the 
students responded using these devices. A computer 
automatically displayed a histogram of the results. This 
reform was modified to focus on epistemological issues. 
Discussion before the question often focused on stu-
dents’ intuitions based on their real-world experience. 
Discussion after the question often focused on the 
wrong answers, why they were chosen, and whether 
even they had a “correct” intuitive core. The goal was to 
encourage students to not just “know” the right answers, 
but to perceive them as both plausible and intuitive. 

(2) The Interactive Lecture Demonstration (ILD) en-
vironment61 was adapted for this class. About a half-
dozen times per semester, students received a worksheet 
outlining specific questions that were to be discussed. 
The instructor led the students through the worksheet 
and led a class discussion about the issues raised in the 
worksheet. We modified the standard Sokoloff-
Thornton procedure so that there was only a single 
worksheet that emphasized finding the valid content of a 
student’s intuition and refining it.  

The students were not graded on their answers to ei-
ther the RAD questions or the ILDs, but they were 
given participation points for doing them and were 
given homework and test questions to assess their un-
derstanding of the material discussed during ILDs.  

Discussion and Laboratory:  Each week students at-
tended a discussion and laboratory section taught by a 
teaching assistant. These sections were limited to 20 
students per section and met once a week for three 
hours. In the first hour the students had a discussion ses-
sion and worked in groups of four on tutorial work-
sheets. Some of the worksheets were adapted from the 
tutorial environment developed at the University of 
Washington62 to be more epistemologically explicit, 
while others were adapted from worksheets previously 
created at the University of Maryland.63   

During the second and third hours, the students 
worked on a reformed laboratory environment called 
Scientific Community Labs.64  These laboratories were 
non- traditional. First, instead of a lab manual with de-
tailed instructions, students received a brief description 
of a particular setting and were asked a question whose 
answer was to be determined experimentally. Working 
in groups of four, they were expected to design and 
carry out an experiment to answer the question. Second, 
the laboratories focused on the process of doing science, 
rather than on physics content. Topics were chosen 
whose answers were “not in the book” or were covered 
much later in the course. The goal was to foster experi-
mental exploration and discussions of “how do you 
know and why do you believe your results?”  

Coherence: An important characteristic of the re-
formed class was the attempt to make the various parts 
epistemologically oriented and mutually supportive. The 
instructor and the teaching assistants frequently cross-
referenced among homework, lectures, tutorials, and 
laboratories. Exam questions drew from and mixed in-
formation that the students had worked on in each of the 
class components. 

The Course Center 
Since the traditional discussion sections were con-

verted to tutorials, the students did not have time to dis-
cuss the problems on the homework set with a TA dur-
ing these periods. To close this gap, a room was set up, 
called the course center, where students could gather to 
work on the homework problems together. Most of the 
data for this study comes from videotaped sessions of 
students working on homework problems in the course 
center.  

A teaching assistant or instructor was available in the 
course center approximately twenty hours per week. 
The TA or instructor was present to offer assistance but 
not to explicitly solve the problems for the students, as 
they often do in many traditional recitation sessions. 
The special features of this room were its architecture, 
the white boards, and the audio-video set up. 

Architecture:  Many students expect recitation ses-
sions in which a teaching assistant stands at the front of 
the room and solves problems, while the students fran-
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tically copy down the solutions. It’s another lecture, but 
one that models problem solving. The architecture of 
the course center was altered to modify this expectation 
by removing the front of the room. All the chairs with 
desk arms were removed, and they were replaced with 
five long workbenches and stools. (See figure 1 for a 
schematic lay out.)  This seating arrangement did not di-
rect the attention of the students to any one location in 
the room – as is the case in all lecture halls in which the 
seating is arranged to face the ‘front,’ directing attention 
to the lecturer. The natural focus of attention of a stu-
dent seated at one of these worktables is the work area 
in front of them and the student seated across from 
them. 

 
Fig. 1: Top-view of the lay-out  

of the course center. 

Whiteboards:  As a second alteration to the course 
center, whiteboards were mounted on the walls and the 
students were provided with dry erase markers. The rea-
son for this was threefold. First, the location of the 
whiteboards made them difficult to reach for the TAs 
but easy for the students – an architectural feature that 
encourages the students to go to the whiteboards and 
discourages the TAs from solving the problem for the 
student or “lecturing” at the whiteboards. Second, the 
whiteboards facilitate group problem solving. Research 
on expert and novice problem solving has shown that 
external representations are a helpful and sometimes 
necessary tool in the problem solving process.23,30 The 
whiteboards offered the students a medium to share 
their external representations with each other. Third, the 
whiteboards helped with our research agenda. The stu-
dents’ shared representations on the whiteboards are 
visible to the video camera.  

Audio-video set-up:  The course center was equipped 
with a digital video camera and microphones were 
mounted in the middle of the tables to ensure quality 
audio reception. The video camera was mounted about 

seven feet above the floor on the wall of the closet 
across from the tables that were equipped with micro-
phones. The elevation of the camera meant that students 
and staff members walking by the closet would not be in 
the camera’s field of vision, that students sitting closer 
to the camera did not block the students who sat closer 
to the wall, and it allowed a clear view of what the stu-
dents wrote on the whiteboards. 

Methodology 
The data set. The majority of the data for this study 

comes from about 60 hours of video-taped sessions of 
groups of students solving homework problems in the 
course center. Additional videotaped data comes from a 
tutorial session involving a discussion about conserva-
tion of momentum. In addition to the video data, all the 
homework and exams that the students turned in were 
electronically scanned and stored on compact disc. The 
scanned homework data served to corroborate video 
data collected in the course center.  

Selecting episodes. Sixty hours of video is too much 
to be analyzed in detail, so the full data set was reduced 
by using the following selection criteria:  

1. Episodes rich in student thinking. Since this is an 
ecological study, the students themselves de-
termine how they choose to work on the prob-
lems. Students solving problems in a group 
may go several minutes without speaking. Any 
video containing discussions rich in articulated 
student thinking was flagged for further inves-
tigation.  

2. Episodes rich in mathematics use. Since this is a 
study about the use of mathematics in physics, 
the selection above was further refined to focus 
on segments that contain students using and 
discussing mathematics. 

These selection criteria reduced the full data set to 
about 11 hours of video that were analyzed in detail. 

Transcribing and coding the episodes. These 11 hours 
of video were transcribed and analyzed to identify the 
resources that students activated to solve the problem 
they were working on. Working within the theoretical 
frame described above, we identified several recurring 
patterns of student behavior. In order to describe these 
observations, we created a synthesis bringing together 
and extending theoretical work on the use of mathemat-
ics. 

4. Mathematical Resources:  How students 
understand mathematics in physics 

Students have a wealth of previous knowledge and 
ideas that they bring to bear when using mathematics in 
the context of physics. In order to understand and talk 
about what students are doing, we need to have a de-
scription of the students’ resouces and the way they or-
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ganize them. In this section, we identify four different 
kinds of relevant knowledge and six locally-coherent 
organizational control structures (epistemic games) that 
we have seen students use. 

Mathematical Knowledge Structures 
The mathematics education literature contains many 

discussions of the cognitive processes involved in doing 
math or physics. We select here four broad general re-
sources that were frequently activated in our observa-
tions: intuitive mathematics knowledge, reasoning 
primitives, symbolic forms, and interpretive devices. 

Intuitive Mathematics Knowledge 
The mathematics used in physics is a formal, rigorous 

subject matter that takes years of schooling and practice 
to learn; however, many of the cognitive building 
blocks necessary to understand this subject are present 
in very young children – even infants. We refer to these 
fundamental cognitive building blocks as intuitive 
mathematics knowledge. Research involving human in-
fants demonstrates their ability to differentiate sets of 
one, two, and three objects from each other.65  This abil-
ity has been dubbed subitizing and has also been ob-
served in various species of primates and birds. An-
other, more familiar, cognitive building block that is 
necessary to understand mathematics in physics is 
counting – a cognitive ability that should be familiar to 
all readers. 

The concepts of subitizing and counting are particu-
larly important for understanding students’ use and un-
derstanding of mathematics in physics at the introduc-
tory college level. We examine the episode of Mary66 
discussing her approach to part (c) of the Conversion 
Problem (given in the Appendix, problem #1):  

Mary has difficulty, so she calls the TA over: 

 …alright, if I convert 65 mph to feet per second, 
which is the other thing that's given in feet… So 
then I got 95 feet per second is what you're mov-
ing, so in 500 feet like how long?  So, I was try-
ing to do a proportion, but that doesn't work. I 
was like 95 feet per second...oh wait...yeah in 
500 feet, like, x would be like the time...that 
doesn't—I get like this huge number and that 
doesn't make any sense. 

Mary correctly identifies that using a proportion 
could help her solve this problem, but has trouble im-
plementing this strategy. It appears that she has created 
the proportion: 

second 1
feet 95

500
=

x . When she cross-

multiplies she gets a “huge number” that “doesn’t make 
any sense.”   

The TA attempts to redirect Mary: 

So what if I said something like...if you're travel-
ing 8 feet per second and you go 16 feet, how 
long would that take you?  

The TA changes how Mary approaches this problem 
by replacing 95 feet per second and 500 feet with 8 feet 
per second and 16 feet, respectively. With this replace-
ment, Mary immediately responds “2 seconds.”  Her 
immediate response is an indication that the knowledge 
she uses to arrive at this answer is readily available to 
her, suggesting she is using intuitive mathematics 
knowledge. In particular, she could be counting or 
subitizing. That is, she could be counting up the number 
of seconds needed to make up 16 feet. Alternatively, she 
could be visualizing the number of ‘8 feet per second’ 
blocks in ‘16 feet,’ then using her subitizing ability she 
arrives at the answer of 2 seconds.  

The evidence in this case does not distinguish be-
tween these interpretations. However, the evidence does 
indicate that changing the numbers in the problem cues 
Mary to activate a new set of resources: intuitive 
mathematics knowledge, usable in a direct fashion 
without using any specific chain of reasoning. (This is 
most likely, given the speed of her response.)  In Mary’s 
initial approach she attempts to use a formal, symbolic 
approach involving proportions, but does not set her 
proportion up in a way that matches the physics of the 
problem. By using “easier numbers,” Mary is able to tap 
into intuitive knowledge that she already has to con-
struct a general relationship between distance, speed, 
and time – a relationship she then uses to get the answer 
to the problem as it was originally stated. 

 
Intuitive Mathematics Resources 

Subitizing The ability to distinguish between 
sets of one, two, and three objects. 

Counting The ability to enumerate a series of 
objects. 

Pairing  The ability to group two objects for 
collective consideration. 

Ordering The ability to rank relative magni-
tudes of mathematical objects. 

Table 1: Intuitive mathematics resources 

This episode illustrates that the use of intuitive 
mathematics knowledge can serve as a connection for 
students to the more sophisticated and formal mathe-
matics used in college level physics. We do not offer an 
exhaustive list of intuitive mathematics knowledge. We 
are simply drawing attention to the fact that instructors 
can use this aspect of students’ previous knowledge dur-
ing formal instruction that involves more advanced 
mathematics. Lakoff and Núñez67 offer a more extensive 
list of primitive cognitive capacities, including ordering 
and pairing, that are required for and involved in ad-
vanced and abstract mathematical thought. Table 1 lists 
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some different forms of intuitive mathematics knowl-
edge they identify. 

Reasoning Primitives 
In addition to intuitive mathematics knowledge, stu-

dents use a form of intuitive knowledge about physical 
phenomena and processes that they have learned in their 
everyday life experiences to make sense of the physical 
world. DiSessa3 proposes that students develop an intui-
tive sense of physical mechanism from abstractions of 
everyday experience. This intuitive sense of physical 
mechanism arises from the activation and interaction of 
multiple cognitive resources that he refers to as phe-
nomenological primitives (p-prims).  

The name, phenomenological primitives, is used to 
convey several key aspects of these cognitive structures. 
The word “phenomenological” is used to reflect the idea 
that these resources are abstracted from everyday phe-
nomena. (Closer is stronger could be abstracted from 
the phenomena that the closer one is to a fire the 
warmer it is.)  These resources are “primitive” in the 
sense that they are “irreducible and undetectable” to the 
user – they are often used as if they were self-
explanatory. (Asked why it is warmer closer to a fire, a 
student using closer is stronger may respond, “it just 
is.”68) 

Because of his focus on the irreducibility of p-prims 
with respect to the user, diSessa identifies p-prims at 
differing levels of abstraction: for example, force as 
mover and abstract balancing. Force as mover involves 
the very specific concept of an object moving under the 
influence of a force; whereas, abstract balancing in-
volves the very general notion that two unspecified in-
fluences can be in a state of equilibrium. Because of the 
specific nature of p-prims like force as mover, diSessa 
proposes that there are thousands of p-prims corre-
sponding to the myriad of physical experiences one may 
have in this complex world. 

To reduce the extremely large number of p-prims and 
discuss cognitive structures that exist at the same level 
of abstraction, we follow Redish9 and abstract from p-
prims the notion of intuitive pieces of knowledge called 
reasoning primitives. Reasoning primitives are abstrac-
tions of everyday experiences that involve generaliza-
tions of classes of objects and influences. In this view a 
p-prim like force as mover results from mapping an ab-
stract reasoning primitive like agent causes effect into a 
specific situation that involves forces and motion. We 
refer to a reasoning primitive that is mapped into a spe-
cific situation as a facet. The specific agent, in this case, 
is a force and the effect it causes is movement. Agent 
causes effect could also be mapped into force as spin-
ner, another p-prim identified by diSessa.3 This makes it 
clear how the notion of reasoning primitives reduces the 
total number of resources necessary to describe stu-

dents’ previous knowledge about physical phenomena 
(compared to p-prims). In addition, agent causes effect 
and abstract balancing both reflect relationships be-
tween abstract influences, and therefore exist at the 
same level of abstraction. 

Another reason to consider the reasoning primitives 
underlying facets is to understand process components 
that may be addressable by instruction. If a student is 
using an appropriate reasoning primitive but has 
mapped it inappropriately it may be simple to help the 
student change the mapping. This more fine-grained 
theoretical model activates different instructional re-
sponses than if one considers a particular p-prim to be 
an irreducible and robust “alternate conception.” 

Symbolic Forms 
In the previous section, we saw how students can use 

an intuitive sense of physical mechanism to understand 
various physical situations. Sherin4,6 considers the cog-
nitive mechanisms and processes involved when stu-
dents look at an equation and interpret its meaning. He 
argues that students use an intuitive sense of physical 
mechanism in concert with knowledge of mathematical 
symbolism and protocols to make sense of equations in 
physics. In order to understand and describe how stu-
dents use and understand physics equations, we need 
two cognitive constructs:  a symbol template and con-
ceptual knowledge.  

The symbol template is an element of knowledge that 
gives structure to mathematical expressions; e.g.  =  
or  +  + ... (where the boxes can contain any type 
of mathematical expression). That is, the symbol tem-
plate is a general symbolic relationship pattern into 
which specific quantities can be mapped. The concep-
tual knowledge is a knowledge structure that offers a 
conceptualization of the knowledge contained in the 
mathematical expression. The conceptual knowledge is 
typically, for the simple examples of equations consid-
ered in algebra-based physics, analogous to diSessa’s p-
prims. It is a direct mapping of an interpretive meaning 
onto a symbolic structure. (For more complex equa-
tions, more sophisticated knowledge structures may be 
required.)  A symbolic form is the combination of a 
symbol template and conceptual knowledge. 

An example of a student deriving an equation for air 
drag in the Air Drag Problem (Appendix, problem #2) 
facilitates this discussion about symbolic forms. 
Amy:  So basically what you have to do- 
Monica: So like when you think about it, you can 

think that if you increase density, the air can - 
that - it would have to be directly proportional, 
cause you increase density, the resistance with 
the air has to also increase. 

Amy:  Yeah. So... 
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Monica: And as you increase the radius, that also 
increases. So they're all directly proportional- 

Amy:  Right 
Monica: So you multiply them-  
Amy:  Right, so it's all multiplied- 
Monica: Instead of dividing them. 

Monica has the reasoning primitive more is more ac-
tivated when she states that “if you increase den-
sity…the resistance with the air has to also increase”; 
i.e. more density is more resistance. This conceptual 
idea is associated with the symbol template  = 
[…x…]. The left side of the equation is associated with 
the drag force. The density appears on the right side of 
the equation since it is directly proportional to the drag 
force it. Therefore, the drag force (D) and density (ρ) 
are mapped into the symbol template,  = […x…], re-
sulting in the specific expression, D = […ρ…]. Monica 
goes on to identify that an increase in radius also results 
in an increase in air drag, which is also associated with 
the symbol template  = […x…], i.e. D = […�…]. 
Since an increase in density and radius both result in an 
increase in resistance, Monica realizes that they both 
must appear in the numerator:  “So you multiply them.”  
The association of the conceptual schema of more is 
more with the symbol template  = […x…] occurs of-
ten in students’ interpretive utterances, and is given the 
name proportionality plus (prop+, for short). 

Sherin identifies collections of symbolic forms, 
which he organizes into clusters. The symbolic forms 
within a given cluster tend to involve “entities of the 
same or similar ontological type. For example, “[sym-
bolic] forms in the Competing Terms Cluster are pri-

marily concerned with influences.”69  
That is, symbolic forms in the Com-
peting Terms Cluster do not involve 
specific physics concepts (like force 
or velocity), rather they involve eve-
ryday concepts (like push or motion). 
Table 2 lists the different clusters and 
symbolic forms that Sherin identifies. 
We draw out examples of balancing 
and canceling from our data set and 
discuss them below. 

Interpretive Devices.  
Symbolic forms cannot be the en-

tire story for how students understand 
and interpret equations. Students (and 
experts) appear to have compiled 
strategies for extracting information 
from physics equations. We follow 
Sherin and call these compiled strate-
gies interpretive devices.70  Sherin 
identifies three different classes of in-
terpretive devices – Narrative, Static, 

and Specific Moment – that students in his data corpus 
use to interpret physics equations. In addition to these 
three, we propose a fourth class of interpretive devices: 
intuitive interpretive devices. Table 3 lists the different 
interpretive devices according to class.)  The interpre-
tive devices in the Narrative, Static, and Specific Mo-
ment classes all derive from and rely on the formal 
properties of equations. Therefore, we will lump all of 
these classes into one class, which we call formal inter-
pretive devices. In contrast, intuitive interpretive de-
vices are reasoning strategies that are abstracted from 
everyday reasoning and applied to physics equations. 

The students’ first attempt seems correct: 
 

Narrative Static 
Changing Parameters∗ Specific Moment 

Physical Change Generic Moment 
Changing Situation Steady State 

Special Case Static Forces 
Restricted Value Conservation 
Specific Value Accounting 
Limiting Case Intuitivea 

Relative Values Feature Analysis* 

 Ignoring* 

Table 3. Interpretive devices by class 

Arielle:  So then the Fnet for A, the Fnet for M. This is 
a big mass and this is a little mass and [the ∆t] 

                                                           
∗ Discussed below. 
a Class of interpretive devices not identified by Sherin. 
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are equal, so this has got to be a big, what is it, 
a big velocity and this has got to be a small ve-
locity. So, p for A and p for M – the change in 
velocity here has got to be sort of bigger. Big 
velocity little mass. Big mass little velocity. But 
[the net forces] are equal. 

Tommy:  Right. 
Betty:   Right. 
Arielle:  So the momentums got to be the same, 

right? 
It seems that Arielle is using prop+: the mass and the 
velocity are directly proportional to the net force. In ad-
dition, it appears that she is using a particular strategy 
for extracting meaning from this equation – in this case, 
the formal interpretive device called changing parame-
ters. Changing parameters is an interpretive device in 
which “a quantity, usually corresponding to an individ-
ual symbol in the expression, is imagined to vary while 
other quantities are held fixed.”71  Arielle imagines how 
changing a parameter on the right side of the equation 
(i.e. mass and change in velocity) will affect quantities 
on the left (i.e. the net forces). Since glider A has a 
smaller mass than glider M she imagines changing the 
values of the change in the velocities to maintain the 
equality between the forces. Figure 2 shows this reason-
ing schematically.) 

 

Fig. 2: Interpretation of equations using  
the formal interpretive device changing parameters. 

At first glance Arielle’s reasoning appears to be very 
good. However, she is not satisfied with the conclusion 
that the momenta should be the same, so she continues 
the discussion: 
Arielle:  I don’t know…  No, this is not right. 
Betty:   It’s right. But—I think it’s right, but it’s 

like-- 
Tommy:  No, I think that’s correct. 
Betty:   ...but see you have the subset so you have 

the change—the change in momentum... 
Arielle:  But the change in velocities are not the 

same though. 
Betty:   The change—  

Tommy:  Yeah, the change in velocities aren’t the 
same. And also— 

Arielle:  Yeah, that’s the problem, I was thinking 
they were the same. 

The first line in this set of quotations indicates that 
Arielle is uncertain about the conclusion that the mo-
menta would be the same. However, at first glance it 
appears that the last line in this set of quotations is in di-
rect contradiction with what Arielle had said in the first 
set of quotations. In the first set of quotations she had 
said that the change in velocity for glider A had to be 
large, while the change in velocity for glider M had to 
be small; now, however she’s stating that she was think-
ing the change in velocities were the same. This seems 
like a contradiction; however, what she says later helps 
clear up this apparent contradiction. 
Tommy: Momentum might—could be the same. It 

could be. 
Arielle:  All right...they’re in opposite directions. 
Tommy:  Wait, wait, wait. They’re in opposite di-

rections but they could be the same. 
Arielle:  Opposite directions—how could they be the 

same?  If the masses are different and the 
change in velocities are different, the momen-
tums can’t be the same. 

It appears that Arielle is using a different interpretive 
device than she was before to conclude that the mo-
menta cannot be the same. We suggest that she’s using 
the intuitive interpretive device of feature analysis – a 
form of pattern recognition in which the features of a 
stimulus are evaluated individually. For example, in de-
ciding whether drawings of two faces, observed at two 
different times or in two different places, represent the 
same or different individuals, one might run through a 
variety of comparisons to decide. The more differences 
that are found, the more likely it is that the objects com-
pared are different.  

In Arielle’s analysis of the momenta, she is compar-
ing the features of the individual momenta (the features 
of the momenta are the masses and change in veloci-
ties). The more features that are different between the 
two momenta the easier it is to tell that the two mo-
menta are different. (See figure 3 for a schematic of her 
reasoning.)  

This interpretation of Arielle’s reasoning makes 
sense of her seemingly contradictory statement from the 
second set of quotations: “Yeah, that’s the problem, I 
was thinking they were the same.”  In the first line of 
that set of quotations she indicates that she is uncertain 
about the conclusion that the change in momenta would 
be the same. We propose that at this time she started to 
search through her mind for different reasoning strate-
gies that she could employ to corroborate the conclusion 
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that the change in the momenta would be the same. Fea-
ture analysis could be a possible reasoning strategy that 
was tacitly cued. If one reasons with feature analysis, 
the only way the momenta could be the same is if the 
change in velocities were also the same. This may be 
why she claims “I was thinking they were the same,” 
even though in the first set of quotes she says “the 
change in velocity [for A] has got to be sort of bigger.” 

 

 
Fig. 3: Interpretation of equation using  

the intuitive interpretive device feature analysis. 

In our videotapes we have frequently seen students in 
this population invoking feature analysis to interpret an 
equation and conclude that two quantities are different 
in places where it would be more appropriate to invoke 
compensation or balancing and to conclude that the 
quantities are the same. 

Control Structures: Epistemic Games 
One of the most interesting characteristics of the stu-

dent behaviors we observed on tape was their local co-
herence. Over a period of a few minutes to a half an 
hour, students were observed to reason using a limited 
set of associated reasoning tools. An appropriate set of 
structures for describing these behaviors is the epistemic 
game (or, e-game, for short) introduced by Collins and 
Ferguson.7 They define the epistemic game as the com-
plex “set of rules and strategies that guide inquiry” and 
the epistemic form as the (external) “target structure that 
guides scientific inquiry.”  The difference between these 
two concepts is best articulated by Collins and Fergu-
son: 

The difference between forms and games is like 
the difference between the squares 
that are filled out in tic-tac-toe and 
the game itself. The game consists of 
rules, strategies, and different 
moves that players master over a 
period of time. The squares form a 
target structure that is filled out as 
any particular game is played.72  

Collins and Ferguson introduced 
epistemic games to describe expert sci-
entific inquiry across disciplines. The 
students in introductory physics courses 

are far from experts, so using scientists’ approaches to 
inquiry as a norm by which to describe students’ inquiry 
would not be appropriate. For this reason, we generalize 
the idea of epistemic games to be descriptive rather than 
normative. We define an epistemic game to be9 

a coherent activity that uses particular kinds of 
knowledge and processes associated with that knowl-
edge to create knowledge or solve a problem. 
The activities are ‘epistemic’ in the sense that stu-

dents engage in these activities as a means of construct-
ing new knowledge. We use the word ‘game’ in a very 
real sense; a particular game (like checkers or chess) is a 
coherent activity that has an ontology (players, pieces, 
and a playing board) and a structure (a beginning and an 
end, moves, rules) that makes it distinguishable from 
other activities or games. In the same way, a particular 
e-game has an ontology and structure that makes it dis-
tinguishable from other activities or e-games.  

To clarify the ontology and structure of epistemic 
games, we use the simplest epistemic game identified 
by Collins and Ferguson:  list making. Table 4 summa-
rizes the ontological and structural components of epis-
temic games.)  Every list is implicitly an answer to a 
question. Some examples are: “What do I need from the 
grocery store?”; “What are the fundamental forces of 
nature?”; and, “What are the constituents of all matter?”   

Note that the idea of a “game” here, a locally coher-
ent set of behavioral rules for achieving a particular 
goal, is very general. Some of the behavioral science lit-
erature (especially in the opposite extremes of populari-
zations73 and mathematical economics74) has used the 
term game in this way. When looked at this way, it is 
obvious that people are often “playing games” in this 
sense. We are focusing here on epistemic games: games 
engaged in for the purpose of creating knowledge. 

Ontology of Epistemic Games   
Epistemic games have two ontological components: 

the knowledge base and the epistemic form. An e-game 
is not simply a cognitive structure; it is an activation of 
a pattern of activities that can be associated with a col-
lection of resources. The collection of resources that an 
individual draws on while playing a particular e-game 
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constitutes the knowledge base. To answer a question 
like, “What are the fundamental forces of nature?” one 
needs to have some requisite knowledge to list the 
forces. The knowledge base for the e-games we identify 
below includes the resources that we introduced above: 
intuitive mathematics knowledge, reasoning primitives, 
symbolic forms, and interpretive devices.  

The epistemic form is a target structure that helps 
guide the inquiry during an epistemic game. For exam-
ple, the epistemic form in the list making game is the 
list itself. The list is an external representation that cues 
particular resources and guides the progression of the 
inquiry.  

Structure of Epistemic Games.  
The structural components of epistemic games in-

clude the entry and ending conditions of the game and 
the moves. The entry and ending conditions specify the 
beginning and the ending of the game. As we mentioned 
above, one may enter into the list making game as a 
means to answer a question. When solving physics 
problems, students’ expectations about physics prob-
lems determine the entry and ending conditions. These 
expectations can depend on real-time categorizations of 
physics problems and/or on preconceived notions about 
the nature of problem solving in physics. Research by 
Hinsley and Hayes indicates that students can quickly 
categorize large classes of physics problems very 
shortly after reading the statement of the problem.75  
(Often these categorizations can be made after reading 
the first sentence.)  The students’ ability to very quickly 
categorize physics problems may stem from their ex-
perience with and expectations about physics problem 
solving. These expectations and categorizations of phys-
ics problems affect which epistemic game the students 
(perhaps tacitly) choose to play. In addition, students’ 
preconceived epistemological stances about problem 
solving in physics can affect their expectations. If stu-
dents believe that problem solving in physics involves 
rote memorization of physics equations, it can affect 
what strategy they employ (i.e. which e-game they 
choose to play) and what they believe an answer in 
physics is (i.e. how they know they are done playing a 
particular game).  

The second structural component of an epistemic 
game is the allowed moves: the steps/procedures that 
occur in the game. In the list-making game the moves 
may be to add a new item, combine two (or more) 
items, substitute an item, split an item, and remove an 
item. As we will see, a critical element of an epistemic 
game is that playing the game specifies a certain set of 
allowed moves. What is particularly important about 
this is not just the moves that are included in the game, 
but also the moves that are excluded.  

Epistemic games students played in introductory, alge-
bra-based physics.  

In this section we discuss some of the epistemic 
games that account for the different problem-solving 
strategies seen in our data. The games were determined 
by a semi-phenomenographic approach.76  We observed 
a subset of the data and identified what naturally ap-
peared to be coherent and consistent activities as epis-
temic games. During weekly meetings of the research 
team (the authors plus other members of the University 
of Maryland Physics Education Research Group), the 
transcription and coding of the episodes were scruti-
nized and the descriptions of the proposed e-games re-
fined. Finally, two different coders independently ana-
lyzed a sample episode in terms of epistemic games, 
with an inter-rater reliability of 80%. After discussion, 
the two codings were in complete agreement. 

We identify six epistemic games that span the differ-
ent problem-solving approaches seen within our data. 
(See table 5.)   We do not claim that this list spans all 
possible problem-solving approaches that could be em-
ployed during problem solving in physics and we do not 
claim to identify all possible moves within each game. 
If we had examined a different population of students or 
a different domain, it is possible that the list of epis-
temic games would be different, though we expect some 
of the games identified here to have broad applicability. 
We present them as examples of the type of structure we 
are proposing. In the next section we give a case study 
showing how analyzing student behavior in terms of 
these games helps make sense of what they do and do 
not do in the context of solving a specific problem.  

 
List of epistemic games 
Mapping Meaning to Mathematics 
Mapping Mathematics to Meaning 
Physical Mechanism Game 
Pictorial Analysis 
Recursive Plug-and-Chug 
Transliteration to Mathematics 

Table 5. List of epistemic games identified in our data set 

Each of these games is described in more detail be-
low. For each epistemic game we give a brief introduc-
tion, discuss its ontology and structure, and then we 
give an example of students playing that game. Note 
that some of the games have common moves and one 
game may look like a subset of another. We identify 
them as distinct games because they have different end-
ing conditions; students playing different games decide 
they are “done” when different conditions are met. 

Mapping Meaning to Mathematics:  The most intel-
lectually complex epistemic game that we identify is 
Mapping Meaning to Mathematics. Students begin from 
a conceptual understanding of the physical situation de-
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scribed in the problem statement, and then progress to a 
quantitative solution. We identify five basic moves (see 
Figure 4): (1) develop a story about the physical situa-
tion, (2) translate quantities in the physical story to 
mathematical entities, (3) relate the mathematical enti-
ties in accordance with the physical story, (4) manipu-
late symbols, and (5) evaluate and interpret the solution.  

 

Fig. 4: Schematic diagram of some moves in the epis-
temic game Mapping Meaning to Mathematics 

The knowledge base for this game (as with all the 
games we identify) comes from the set of physics and 
mathematics resources; however, in general, different 
resources can be activated during the different moves of 
the game. During the development of the conceptual 
story (move 1), reasoning primitives are most often ac-
tivated. That is, students often rely on their own concep-
tual understanding to generate this story – not on fun-
damental physics principles. Translating the conceptual 
story into mathematical entities (move 2) is difficult for 
most of the students in our population. Intuitive mathe-
matics knowledge, symbolic forms, and interpretive de-
vices may be activated during this move. Relating the 
mathematical entities to the physical story (move 3), 
again is difficult for students in our population, and re-
lies on intuitive mathematics knowledge, symbolic 
forms, and interpretive devices. Once the physics equa-
tions are written, the symbolic manipulations (move 4) 
often are carried out without a hitch; most of our stu-
dents have had ample practice manipulating symbols. 
The evaluation of the story (move 5) can occur in many 
different ways: checking the solution with a worked ex-
ample (or solution in the back of the book), checking 

their quantitative answer with their conceptual story, or 
checking their solution against an iconic example. 

The epistemic form for Mapping Meaning to Mathe-
matics is typically the collection of mathematical ex-
pressions that the students generate during moves (2) 
and (3). These expressions lead the direction of the in-
quiry. Note, however, that the form is not the entire 
story in this game. The interpretation (story) that goes 
with the series of mathematical expressions generated, 
may or may not be explicitly expressed, depending on 
the instructions for giving a written output and the stu-
dents’ sense of how much “explanation” they are re-
quired to provide. 

Mapping Mathematics to Meaning:  The ontological 
components of Mapping Mathematics to Meaning are 
the same as those in Mapping Meaning to Mathematics. 
Both games involve the same kind of knowledge base 
(mathematical resources) and the same epistemic form 
(physics equations). However, the particular resources 
and physics equation that are used in each game can 
vary from problem to problem. 

In addition, the structural components of the two 
games are different. In Mapping Mathematics to Mean-
ing students begin with a physics equation and then de-
velop a conceptual story.77 In the Mapping Meaning to 
Mathematics, students begin with a conceptual story and 
then translate it into mathematical expressions. The 
structural differences between these two games make 
them distinguishable from each other. 

 

Fig. 5:. Schematic diagram of some moves in the epis-
temic game Mapping Mathematics to Meaning. 

We identify four moves in this game (see figure 5): 
(1) identify target concept(s), (2) find an equation relat-
ing target to other concepts, (3) tell a story using this re-
lationship between concepts, and (4) evaluate story. 

Physical Mechanism Game. In the Physical Mecha-
nism Game students attempt to construct a physically 
coherent and descriptive story based on their intuitive 
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sense of physical mechanism. The knowledge base for 
this game consists of reasoning primitives. In this game 
students do not make explicit reference to physics prin-
ciples or equations.  

The ontology of the Physical Mechanism Game is 
different than in Mapping Meaning to Mathematics and 
Mapping Mathematics to Meaning. The epistemic form 
in the latter two games explicitly involves physics equa-
tions; however the epistemic form in the Physical 
Mechanism Game does not.  Although the epistemic 
form is necessarily different, the same set of resources 
(intuitive mathematics knowledge, reasoning primitives, 
symbolic forms, and interpretive devices) may be active 
in this game as in the previous games.  

The structure of the Physical Mechanism Game is 
similar to the first move in Mapping Meaning to 
Mathematics – both involve the development of a con-
ceptual story. However, we can distinguish the two be-
cause the Physical Mechanism Game represents a sepa-
rate, coherent unit of student activities; it has a different 
endstate. In Mapping Meaning to Mathematics, after 
move (1) students go on to move (2), then move (3), etc. 
After (1) creating and (2) evaluating the conceptual 
story developed in the Physical Mechanism Game (see 
figure 6) students decide they are done. The activities 
that follow this game do not cohere with the conceptual 
story – in direct contrast with the activities that follow 
move (1) in Mapping Meaning to Mathematics.  

 

Fig. 6: Schematic diagram of some moves  
in the epistemic game Physical Mechanism. 

Pictorial Analysis Game. In the Pictorial Analysis 
Game, students generate an external spatial representa-
tion that specifies the relationship between influences in 
the problem statement. Students that make a schematic 
drawing of a physical situation, a free-body diagram, or 
a circuit diagram are all playing the Pictorial Analysis 
Game.  

In this game, as with all the games previously dis-
cussed, the knowledge base consists of all the resources 
listed above (plus some representational translation re-
sources that we do not go into here). The epistemic form 
in this game is the distinguishing characteristic. The 
epistemic form is a schematic or diagram that the stu-
dents generate. For example, if the students draw a cir-
cuit diagram during their inquiry, then that diagram 

serves as an epistemic form which guides their inquiry; 
in the same way, a schematic drawing or free-body dia-
gram could both serve as target structures that guide in-
quiry. 

The moves in this game are largely determined by the 
particular external representation that the students 
choose. For example, if the students choose to draw a 
free-body diagram, then one move is to determine the 
forces that act upon the object in question; whereas, if 
the students choose to draw a circuit diagram, then one 
move is to identify the elements (e.g. resistors, capaci-
tors, batteries, etc.). There are three moves that are 
common to all instantiations of the Pictorial Analysis 
Game (see figure 7): (1) determine the target concept, 
(2) choose an external representation, (3) tell a concep-
tual story about the physical situation based on the spa-
tial relation between the objects, and (4) fill in the slots 
in this representation. An example of students who 
choose to draw a free-body diagram while playing the 
Pictorial Analysis Game is given in our example in sec-
tion 5.78 

 

Fig. 7: Schematic diagram of some moves  
in the epistemic game Pictorial Analysis 

Recursive Plug-and-Chug. In the Recursive Plug-
and-Chug Game students plug quantities into physics 
equations and churn out numeric answers, without con-
ceptually understanding the physical implications of 
their calculations. 

Students do not generally draw on their intuitive 
knowledge base while playing this game; they simply 
identify quantities and plug them into an equation. 
Therefore, students usually just rely on their syntactic 
understanding of physics symbols, without attempting 
to understand these symbols conceptually. That is, their 
other cognitive resources (intuitive mathematics knowl-
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edge, reasoning primitives, symbolic forms, and inter-
pretive devices) are usually not active during this game.  

The epistemic form in Recursive Plug-and-Chug is 
similar to that in Mapping Meaning to Mathematics and 
Mapping Mathematics to Meaning. Each game has 
physics equations as part of the epistemic form, but the 
resources that are active (i.e. knowledge base) in Recur-
sive Plug-and-Chug are different than in these other 
games. Therefore, the rules and strategies that are em-
ployed during this game differ from those in Mapping 
Meaning to Mathematics and Mapping Mathematics to 
Meaning – even though the epistemic form (target struc-
ture that guides inquiry) is the same in all these games. 
A distinguishing feature of Recursive Plug-and-Chug is 
the resources that are not activated during this game. 

Because the epistemic forms are similar, the structure 
of Recursive Plug-and-Chug is superficially similar to 
Mapping Mathematics to Meaning. First, the students 
identify a target quantity. This is similar to the first 
move in Mapping Mathematics to Meaning, but it dif-
fers in that here the students only identify the quantity 
and its corresponding symbol – they do not attempt to 
understand conceptually what the quantity represents 
physically. Second, the students identify an equation 
that relates the target quantity to other quantities, but 
they do not attempt to create a story that justifies the use 
of that equation. Third, the students identify which 
quantities are known and which quantities are unknown. 
If the target quantity is the only unknown, then they can 
proceed to calculate the answer. However, if there are 
additional unknowns, then they must choose a sub-goal 
and start this process over. Herein lies the ‘recursive’ 
nature inherent in this game. Figure 8 shows a sche-
matic depiction of the moves in this game. 

Transliteration to Mathematics. Research on problem 
solving indicates that students often use worked exam-
ples to develop solutions to novel problems.79,80  Trans-
literation to Mathematics is an epistemic game in which 
students use worked examples to generate a solution, 
yet they do so without developing a conceptual under-

standing of the worked example. 
‘Transliterate’ means “to represent (let-
ters or words) in the corresponding 
characters of another alphabet.”81  In the 
Transliteration to Mathematics game 
students simply map the quantities from 
a target problem directly into the solu-
tion pattern of an example problem.  

Because students use the symbolism 
in this game without conceptual mean-
ing, usually only resources associated 
with the syntactic structure of equations 
are active during this game. The solu-
tion pattern of the target example serves 
as the epistemic form for the Translit-

eration to Mathematics game. 
The moves in this game are simple: (1) identify target 

quantity, (2) find a solution pattern that relates to the 
current problem situation, (3) map quantities in current 
problem situation into that solution pattern, and (4) 
evaluate the mapping (see figure 9). Many students find 
moves (2) and (3) very tricky. Many times students may 
find a solution pattern that they think relates to the cur-
rent problem, when in fact it does not. 

Note that these games are generic structures; they do 
not specify explicitly what to do, they specify the kind 
of activity to do. In order for the moves to become ex-
plicit, they have to be mapped onto particular realiza-
tions that depend on the specific content: both the par-
ticular problem involved and the field of knowledge to 
which the problem is perceived as belonging. In a less 
neural-based model, such structures might be seen as 
patterns (“schemas”) with “slots” into which particular 
bits of knowledge are inserted. In our neural-based 
model, a bit of knowledge is not conceived as a “token” 
that can be moved around; rather, it is conceived of as a 
linkage pattern in a neural net that either can be acti-
vated or not.82  As a result, the choice to activate a par-
ticular combination of knowledge elements in a particu-
lar way is a control element and is presumably carried 
out by the activation of a network of control neurons 
that activates the particular knowledge needed. This is 
why we identify epistemic games as a control structure 
rather than as an associational structure of knowledge 
elements. 

5. Analysis of a Specific Case 
We now present a case study that demonstrates how 

an analysis in terms of resources and e-games can help 
make sense of student problem-solving behavior; in par-
ticular, why students often don’t use what seems to the 
instructor to be the appropriate resources in a given con-
text. 
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Fig. 9: Schematic diagram of some moves  
in the epistemic game Transliteration to Mathematics 

 
The episode for this case study involves three female 

students working on an electrostatics problem: The 
Three Charge Problem (Appendix, problem #4).83 This 
episode occurs in the first week of the second semester 
of the two-semester introductory, algebra-based physics 
course. All the students in the group had been in the re-
formed course the first semester and were familiar with 
its innovative features. In particular, they were familiar 
with the interaction style between students and teaching 
assistants in the course center, and the type of home-
work problems that were assigned in this course. Most 
importantly, they were cognizant of the fact that the in-
structor expected the students to spend about an hour on 
each homework problem – during which time they were 
expected to generate solutions to the questions that 
‘made sense to them.’ 

An “instructor’s” solution to problem #5 involves 
straightforward balancing of forces and the use of Cou-
lomb’s Law. The parenthetic comment in the problem 
states there is “no net electrostatic force” acting on 
charge q3. Symbolically, this becomes 

0
3132
=→+→ qqFqqF

rr . Manipulating this equation, 

and defining the positive î direction to be to the right, 
yields: 
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Canceling similar terms on both sides of the equation 
and setting q2 = Q yields the result: Qq 41 −= . 

There are several inferences and steps involved in 
generating this solution. However, in spite of the multi-
ple steps involved, most experienced physics teachers 
solve this problem in less than one minute. Some can 
“see” the answer in a conversational beat and give the 

correct answer immediately. The most interesting aspect 
about the students’ approach is that it takes so long. The 
students work for nearly 60 minutes before arriving at a 
solution – two orders of magnitude longer than the typi-
cal teacher!  Why does it take so long?  According to 
the theoretical framework developed here, the typical 
teacher probably has a broader mathematical knowledge 
base (i.e. a larger collection of compiled mathematical 
resources) and richer collection of problem solving 
strategies (i.e. an assortment of epistemic games for 
solving problems in physics). For the typical teacher, 
the problem statement immediately cues the appropriate 
epistemic game and tightly compiled resources; 
whereas, the students’ mathematical resources do not 
exist in compiled form. The difference in the teacher 
and the students’ knowledge structure could account for 
the difference in the speed of the problem solution and 
demonstrates the power and effectiveness of cognitive 
compilation.84 

The students do not follow a straightforward ap-
proach to solving this problem. However, these stu-
dents’ various problem-solving approaches are easily 
understood in terms of epistemic games. We identify 
five different epistemic games that are played during 
this problem solving session: Physical Mechanism, Pic-
torial Analysis, Mapping Mathematics to Meaning, 
Transliteration to Mathematics, and Mapping Meaning 
to Mathematics. We divide the discussion into segments 
corresponding to different e-games and refer to these 
segments as “clips.” 

Playing the Physical Mechanism Game  
The students’ initial attempt to solve this problem 

follows a less formal path than the instructor’s solution 
outlined above. Throughout this clip the students draw 
on intuitive reasoning primitives to explain and support 
their conclusions. The students do not activate any for-
mal mathematics or physics principles to support their 
claims. The reasoning consists almost entirely of facets. 
This first clip occurs about 7 minutes into the problem-
solving process. 
Darlene: I'm thinking that the charge q1 must have 

it's...negative Q. 
Alisa:  We thought it would be twice as much, be-

cause it can't repel q2, because they're fixed. 
But, it's repelling in such a way that it's keeping 
q3 there. 

Bonnie: Yeah. It has to—  
Darlene: Wait say that. 
Alisa:   Like— q2 is— q2 is pushing this way, or at-

tracting—whichever. There's a certain force be-
tween two Q, or q2 that's attracting.  

Darlene: q3. 
Alisa: But at the same time you have q1 repelling q3.  
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Darlene initiates the conversation by asserting that 
the charge on q1 must be ‘negative Q’; the negative sign 
in this case standing for her realization that q1 and q2 
will have opposite effects on q3. Alisa elaborates on this 
point by articulating that q2 exerts an influence on q3, 
which she identifies as a force, that is either repelling or 
attracting, and that q1 exerts the opposite influence on 
q3. The semantic content contained in Alisa’s explana-
tion can be summarized in the following facet: ‘the at-
tractive effect of q2 on q3 cancels the repulsive effect of 
q1 on q3.’ The abstract reasoning primitive underlying 
this facet is canceling. In this case, canceling is an ap-
propriately mapped primitive, because in fact the two 
forces acting on q3 do cancel, which results in there be-
ing no net electrostatic force on q3. 

From Alisa’s initial cursory comment (“we thought 
[the charge on q1] would be twice as much [as the 
charge on q2]”) it appears that she has the reasoning 
primitives more is more and balancing activated. That 
is, since the two influences acting on q3 balance, then q1 
must have more charge because there is more distance 
between q1 and q3 then there is between q2 and q3.  

It cannot be confirmed whether Alisa has more is 
more and balancing activated, because the direction of 
the conversation changes. Darlene contends with the 
other students, because it appears she has activated a 
different reasoning primitive: blocking. 
 Darlene: How is it repelling when it's got this 

charge in the middle? 
Alisa:   Because it's still acting. Like if it's bigger, 

than q2 it can still, because they're fixed. This 
isn't going to move to its equilibrium point. So, 
it could be being pushed this way.  

Darlene: Oh, I see what you're saying.  
Alisa:   Or, pulled. You know, it could be being 

pulled more, but it's not moving. 
Darlene: Um-huh. 

The orientation of the charges cues the reasoning 
primitive of blocking, because q2 is between q1 and q3. 
From the superposition principle we know the effect of 
q1 on q3 does not get blocked by the presence of q2, so 
the activation of blocking is an unnecessary distraction. 
In contrast to the reasoning primitive of canceling that 
was activated earlier in this clip, blocking does not get 
mapped into a productive facet for solving this problem. 
(This is not to say that blocking is ‘wrong’; rather, in 
this particular instance the activation of blocking does 
not lead to a productive facet.)   

Bonnie continues Alisa’s line of reasoning by ex-
plaining why the value of q1 has to be twice as big as 
that of q2.  
Alisa:   So, we—we were thinking it was like nega-

tive two Q or something like that. 

Bonnie:  Yeah. Cause it has to be like big enough to 
push away. 

Darlene: Push away q3. 
Bonnie:  Yeah, which we—which I figured out nega-

tive two. 
Darlene: Cause it's twice the distance away than q2 

is? 
Bonnie:  Yeah. 
Darlene: I agree with that.  

It appears that Alisa draws on overcoming when she 
explains that ‘Like if it's bigger, than q2 it can still [have 
an effect]’ and Bonnie restates this as ‘[q1] has to be like 
big enough to push away [q3].’  That is, q1 has to have 
enough charge to overcome the influence of q2. The 
tacit conclusion from this assertion is that the charge of 
q1 must have a larger magnitude than that of q2. This is 
particularly interesting since Alisa later shows (see be-
low) that she understands Coulomb’s law and superpo-
sition. But in the context of Physical Mechanism she 
generates an (incorrect) argument in support of her 
sense that the force from both source charges must be 
included using reasoning primitives and facets. 

Bonnie and Darlene quantify this conclusion by using 
the reasoning primitives of more is more and depend-
ence (which has the symbol template  = […x…]) to 
assert that the charge on q1 has to be twice the magni-
tude of q2.  More is more and dependence get mapped 
into the facet twice the distance is twice the charge. 
Bonnie’s argument stays within the rules of the local e-
game. Because physical mechanism does not include 
moves that access formal knowledge, they do not in-
voke the formal knowledge that says blocking is irrele-
vant. We will see later that they (and Alisa in particular) 
indeed do have the relevant formal knowledge. 

The students’ problem solving activities during this 
entire clip have the ontology of Physical Mechanism. 
While playing this game the students draw on their in-
tuitive knowledge base rather than their formal knowl-
edge to support their claims. During this clip the stu-
dents use various reasoning primitives and do not men-
tion any formal mathematics or physics principles. The 
epistemic form in the Physical Mechanism Game in-
volves a coherent, physical description that is either 
verbal or imagistic. These students are actively seeking 
physical causes for the effects that are described in the 
problem. 

Playing this game helps the students become oriented 
to this problem, but the solution to this problem neces-
sarily involves physics equations (in particular Cou-
lomb’s Law). Since Physical Mechanism does not in-
clude mathematical expressions or equations it cannot 
ultimately lead them to the correct answer. In the next 
clip, a comment from the TA helps them reframe the 
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problem, activate other resources they have, and play 
another epistemic game. 

Playing the Pictorial Analysis Game 
In the last clip we saw the students making sense of 

the problem by using their intuitive reasoning primitives 
in the context of Physical Mechanism game. At the end 
of the clip, the students appear to have difficulty focus-
ing their collective attention. To assist them, the TA 
(Tuminaro) offers a suggestion.  
 Darlene:  I think they all have the same charge. 
Bonnie:  You think they all have the same charge?  

Then they don't repel each other.  
Darlene:  Huh? 
Bonnie:  Then they would all repel each other. 
Darlene:  That's what I think is happening. 
Bonnie:  Yeah, but q3 is fixed. If it was being re-

pelled— 
Alisa:  No, it's not. q3 is free to move. 
Bonnie:  I mean, q3 is not fixed. That's what I 

meant. 
Darlene:  Right. 
Bonnie:  So, like... 
Darlene:  So, the force of q2 is pushing away with is 

only equal to d. 
Bonnie:  Yeah, but then... 
Darlene: These two aren't moving. 
Bonnie:  Wouldn't this push it somewhat? 
Alisa:   Just because they're not moving doesn't 

mean they're not exerting forces. 
Darlene:  I know. 
Alisa:  What do you think? 
TA:   Can I make a suggestion?   
Darlene: Uh-huh. 
TA:   You guys are talking about like a lot of 

forces and stuff. And, one thing I've suggested 
in previous semesters, if you write it down and 
say, what forces do you think are acting here, 
you can all talk about it. 

Darlene: Where did the marker go? 
TA:   That's a suggestion—a general sugges-

tion—that I might make.  
In the first few lines above, it seems as though the 

students take a step back. Earlier, they appeared to have 
established the major aspect of the problem:  two influ-
ences act on q3, which exactly cancel each other. In this 
clip, the students restate the set up of the problem 
(“these two are moving”) and recite remembered facts 
(“just because they’re not moving doesn’t mean they’re 

not exerting forces”). While these things are important 
to keep straight, this discussion does not appear to push 
the problem-solving process forward.  

The suggestion to write on the whiteboards has two 
effects on the students. First, it nudges them into play-
ing a different epistemic game, pictorial analysis.85  
Second, the introduction of this new epistemic game 
and a new e-form reframes the students’ interactions 
and helps them focus their collective attention and clari-
fies their communication.  

Alisa attempts to make an external representation of 
this problem on the white board while Bonnie and Dar-
lene offer their assistance:  
Darlene:  You're trying to figure out what q1 is, 

right? 
Bonnie:  Oh, yeah. 
Alisa:  Because this is in equilibrium, there's some 

force... 
Darlene: Pulling it that way and some force pulling 

ex—equally back on it. 
Bonnie:  Yeah. 
Alisa:   And, they’re equal? 
Bonnie:  Yes.  
Darlene: Same with up and down. Not that that mat-

ters, really. 
Bonnie:  We'll just stick with... 
Darlene: Horizontal. 
Bonnie:  Yeah, one dimension.  

In this clip the students are deciding which features 
mentioned in the problem should be included in their 
diagram  — a move within Pictorial Analysis. The 
structure of this game is similar to Physical Mechanism; 
however, the ontological components of Physical 
Mechanism and Pictorial Analysis are different. The 
epistemic form in Pictorial Analysis involves a coher-
ent, physical description and an external representation; 
the epistemic form for Physical Mechanism only in-
volves a coherent, physical description. 

The external representation generated in the Pictorial 
Analysis epistemic game activates additional resources 
in the students, which help them better understand this 
problem. In particular, the students draw on the interpre-
tive device of physical change to conclude that q1 and q2 
have to have opposite charges. 
Alisa:   So, maybe this is pushing... 
Darlene: That's [q2] repelling and q1's attracting? 
Bonnie:  Yeah, it's just that whatever q2 is, q1 has to 

be the opposite. Right? 
Alisa:   Not necessarily. 
Darlene: Yeah. 
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Bonnie:  OK, like what if they were both positive? 
Alisa:   Well, I guess you're right, they do have to 

be different, because if they were both positive... 
Bonnie:  Then, they'd both push the same way. 
Alisa:   And, this were positive it would go zooming 

that way. 
Darlene: They would both push. 
Alisa:   And, if this were negative it would go there. 
Bonnie:  It would go zooming that way. 
Alisa:   And, if they were negative... 
Darlene: It would still—they'd all go that way. 
Alisa:   It would be the same thing.  

Bonnie makes a claim that the charge on q1 has to be 
the opposite of q2, but the others don’t initially agree, 
despite the fact that they had mentioned the result in the 
context of a different game in the previous clip. Bon-
nie’s suggestion to verify, or falsify, her claim involves 
the interpretive strategy of physical change. That is, she 
considers the affect of an actual physical alteration to 
the system (“OK, like what if they were both posi-
tive?”). From this move the students almost immedi-
ately conclude that the charges on q1 and q2 must be dif-
ferent, or else q3 would go ‘zooming’ away.  

Switching to Pictorial Analysis turns out to be a very 
effective strategy for this group of students. By decom-
posing the forces in space and creating an external rep-
resentation, they are able to physically justify why q1 
and q2 have to have opposite charge. This clip also illus-
trates that the students’ problem does not stem from 
lack of knowledge or skills; rather, the epistemic game 
the students play in their initial approach (Physical 
Mechanism) does not help adequately articulate the 
physical relationship between the charges. The external 
representation they collectively generate in Pictorial 
Analysis cues resources they already possess (physical 
change), which helps them make progress on this prob-
lem (i.e. conclude with confidence that q1 and q2 have 
opposite charges). 

Although the students’ external representation and 
conclusion marks progress, they have yet to solve the 
problem. In fact, they have not even identified the nec-
essary physics principle: Coulomb’s Law. That’s what 
happens in the next clip. 

Playing the Mapping Mathematics to Meaning 
Game 

So far the students have drawn a diagram represent-
ing which forces act and in what direction, and they 
have concluded that q1 and q2 have opposite charges; 
however, they have not yet solved the problem. In this 
clip we see Alisa spontaneously reframe the problem 
solving process by drawing on a new set of resources: 
formal mathematics knowledge. 

Alisa:   Are we going to go with that? 
Bonnie:  I think it makes sense. 
Darlene: That makes... 
Alisa:   Well, I don't know, because when you're 

covering a distance you're using it in the de-
nominator as the square.  

Bonnie:  Oh!  Is that how it works? 
Alisa:   And (?) makes a difference. 
Bonnie:  Yeah, you're right. 
TA:   So, how do you know that? 
All:  From the Coulomb's Law. 
Bonnie:  So, it should actually be negative four q?  

Or what?  Since it has… 
Alisa:   Cause we were getting into problems in the 

beginning of the problem with [the force-
distance two-charge problem] (Appendix, prob-
lem  #5), because I thought that like if you move 
this a little bit to the right the decrease for this 
would make up for the increase for this. But, 
then we decided it didn't. So, that's how I know 
that I don't think it would just increase it by a 
factor of two. 

Alisa is not only attempting to introduce an equation, 
she is negotiating a shift in how this problem is being 
viewed — asking the group to play a new epistemic 
game. All the previous reasoning relied on intuitive rea-
soning primitives, without any explicit reference to 
physics principles or equations. Alisa’s introduction of 
Coulomb’s Law is the first mention of a physics princi-
ple during this entire problem-solving process. In addi-
tion, it’s the first time anyone explicitly makes reference 
to an equation (“when you cover a distance you use it in 
the denominator as the square”).  Alisa’s use of formal 
physics principles and explicit reference to equations is 
(tacitly) asking the other students to play Mapping 
Mathematics to Meaning. 

Alisa’s discussion follows all the moves within Map-
ping Mathematics to Meaning (see figure 10). First, the 
distance and force are identified as the relevant concepts 
in this problem. Second, she identifies Coulomb’s Law 
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to other concepts. Third, she develops a story using this 
relationship between concepts: “When you’re covering 
a distance you’re using it in the denominator as the 
square.”  Fourth, she evaluates the validity of her story 
by referencing a previous problem. She acknowledges 
that her intuitive reasoning had failed her on the previ-
ous problem, which justifies for her the need for Cou-
lomb’s Law on this problem: “I thought that like if you 
move this a little bit to the right the decrease for this 
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would make up for the increase for this. But, then we 
decided it didn't.”    

 

Fig. 10: Schematic map of Alisa’s moves within Mapping 
Mathematics to Meaning 

Alisa’s use of Coulomb’s Law is significant progress 
on this problem, but all the other students don’t know 
how to apply this new piece of information. In fact, the 
introduction of Coulomb’s Law cues Darlene to play a 
new (and counter-productive) epistemic game. 

Playing the Transliteration to Mathematics 
Game  

Although it appears the students are making progress 
on this problem, they take a detour and attempt to use 
another problem as a prototype for solving this problem. 
Alisa has suggested that Coulomb’s Law is an important 
concept. It appears that Darlene does not initially know 
how to apply this new information. She attempts to find 
a different problem that uses Coulomb’s Law in its solu-
tion, and then map the solution pattern from the other 
problem to the Three-Charge Problem. The problem that 
Darlene identifies as using Coulomb’s Law in the solu-
tion is the Force-Distance Two-Charge Problem (Ap-
pendix, problem #5). 
Darlene:  Where is that other problem?  Three times 

as far apart as they were now what is the mag-
nitude of the force? 

Bonnie:  I think it should be four times.  
Darlene: If it's three times as far apart it's...you di-

vide...uh!  I think it's q over two. 
Bonnie:  Q over two?  So, if you think of it as half 

the force of q2. 
Darlene: Look at this one. 
Bonnie:  Is this one you're talking about? 
Darlene: Uh-huh. If you increase the distance that 

they are from each other it's decreasing by the 

same amount. I thought it was four (?), but they 
said it was (?). I don't know why. Just three 
times...does it matter? I'm looking at this one. 
Number three, isn't that like the same thing? 

Alisa:   Three was an estimation problem. 
Darlene: No, no with the q and four q and all that, 

you know how there was this question that 
asked when you move the charges three times 
further apart than they originally were, what 
the resulting force is. 

Alisa:  OK. 
Darlene: And, you said it was—we said it was 

four—the charge would be like q, or nine, but it 
would get three times as far apart. Why it's not 
three I don't understand, but that’s all right. 
So—  

Alisa:  Well, 'cause in the equation you square 
this—the distance between them. Like if you're 
multiplying by three... 

Darlene: Oh!  So, I would think this one would be q 
over four—negative q over four. Cause it's 
twice as far away, opposite charge. Does that 
make sense? 

Alisa:   But, then it's a smaller charge than this. 
Bonnie:  Yeah. 
Alisa:   So, I don't understand how it would be 

pushing three or pulling three whatever it's do-
ing. 

In the Force-Distance Two-Charge Problem, the stu-
dents had found that if the force between two charges 
for a given distance is F, tripling the distance results in a 
force between the two charges that is decreased by a 
factor of nine (see Appendix, problem #5), in compli-
ance with Coulomb’s Law. Darlene is attempting to 
match the quantities in the Three Charge Problem with 
quantities from the Force-Distance Charge Problem, so 
the solution pattern can be transferred; i.e. she is playing 
the Transliteration to Mathematics epistemic game.  

One obvious piece of evidence that Darlene is play-
ing Transliteration to Mathematics comes when she 
says, “Why it’s not three I don’t understand, but that’s 
all right.”  Darlene is explicitly indicating that she 
doesn’t understand the previous problem, but concep-
tual understanding is not a move in the Transliteration 
to Mathematics epistemic game. All that is important is 
that the problems have enough similar features that the 
solution from one problem can be transferred to the 
other.  

Darlene’s metacognitive statement (“Why it’s not 
three I don’t understand, but that’s all right.”) stands in 
stark contrast to Alisa’s meta-cognitive statement (“I 
thought that like if you move this a little bit to the right 
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the decrease for this would make up for the increase for 
this.”). Darlene simply admits she doesn’t understand 
and slavishly transfers the solution pattern from the pre-
vious problem anyway. Alisa’s metacognitive statement 
leads to her justification for using Coulomb’s Law.  

Darlene’s Transliteration to Mathematics approach 
doesn’t help her with the Three-Charge Problem. She 
says, “If you increase the distance that they are from 
each other it's decreasing by the same amount.”  The 
problem with Darlene’s approach is that she is unaware 
of the two meanings that she attributes to the pronoun 
‘it.’  In the previous problem the pronoun stands for 
‘force,’ so that the statement would read, “If you in-
crease the distance that they are from each other, then 
the force is decreasing by the same amount.”  However, 
Darlene tacitly maps this into the statement, “If you in-
crease the distance that they are from each other, then 
the charge is decreasing by the same amount.”  The 
Transliteration to Mathematics game is not helpful in 
this case because force and charge are not related to dis-
tance in the same way in Coulomb’s Law. The charge 
has to be found from the balance of two forces. This is 
not to say that the Transliteration to Mathematics game 
is wrong; it doesn’t work in this situation because of 
Darlene’s inappropriate mapping of force and charge. 
The components (ontology and structure) of Translit-
eration to Mathematics can also be found as a part of 
the richer Mapping Mathematics to Meaning game – 
just as was true for Recursive Plug-and-Chug, but the 
goals (perceived endstates) of the games differ. 

Playing the Mapping Meaning to Mathematics 
Game 

In this clip the students finally come to the solution 
of the problem. Alisa summarizes her final solution as 
the other students listen. Alisa’s problem solving activi-
ties follow the Mapping Meaning to Mathematics epis-
temic game (see figure 11). First, she develops a con-
ceptual story describing the physical situation. This 
conceptual story relies heavily on the reasoning primi-
tives of balancing.  
TA:   What did you do there? 
Alisa:   What did I do there? 
TA:   Yeah, can I ask? 
Alisa:   All right, so because this isn't moving, the 

two forces that are acting on it are equal:  the 
push and the pull.  

Alisa correctly maps ‘force’ as the two influences 
that balance in this physical situation. Second, Alisa 
uses the identity symbolic form, which has the symbol 
template  = …, to translate her conceptual story into 
mathematical expressions: 
Alisa:   So, the F—I don't know if this is the right F 

symbol—but, the F q2 on q3 is equal to this (see 

Equation 2). And, then the F q1 on q3 is equal to 
this (see Equation 3), because the distance is 
twice as much, so it would be four d squared in-
stead of d squared.  

2
3

32 d
kQq

F qq =→
  (2) 

2
3

31 4d
kxQq

F qq =→
  (3) 

Alisa explains why she wrote the charge on q1 as 
‘xQ,’ by drawing on the reasoning primitive of scaling, 
which has the syntax x . 
Alisa:   And, then I used xQ like or you can even 

do—yeah—xQ for the charge on q1, because we 
know in some way it's going to be related to Q 
like the big Q we just got to find the factor that 
relates to that.  

In the third step in the Mapping Meaning to Mathe-
matics, Alisa relates the mathematical entities that she 
derived in step 2 with her conceptual story that she de-
veloped in step 1: 
Alisa:   Then, I set them equal to each other… 

Fourth, she manipulates the mathematical expression 
to arrive at the desired solution: 
Alisa:   … and I crossed out like the q2 and the k 

and the d squared and that gave me Q equals 
xQ over four.  And, then  Q equals four Q, so x 
would have to be equal to four. That's how you 
know it's four Q. 

Fifth, the other students evaluate Alisa’s problem 
solving approach and conclusion. 
Bonnie:   Well, shouldn't it be—well equal 

and opposite, but... 
Alisa:   Yeah, you could stick the negative. 
Bonnie:   Yeah. 
Darlene:   I didn't use Coulomb's equation, I 

just—but it was similar to that. 
Bonnie:   That's a good way of proving it. 
Darlene:   Uh-huh. 
Bonnie:   Good explanation. 
Alisa:   Can I have my A now? 

Darlene and Bonnie accept Alisa’s approach is “a 
good way of proving it.”  In fact, Alisa must realize that 
this is a good way to prove this, since she self-evaluates 
her solution and asks for an “A now.” 
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Fig. 11: Schematic map of Alisa’s moves within Mapping 
Meaning to Mathematics. 

6. Implications for Instruction, and Conclu-
sions 

Far too often in physics instruction, physics teachers 
focus on the content and results rather than on what it is 
they really wants their students to learn — how to think 
about physics. When we choose our content as learning 
Newton’s or Kirchoff’s Laws, when we give students a 
syllabus consisting of particular chapters in an encyclo-
pedic text, and when we permit them to take a card con-
sisting of all the “necessary equations” into an exam, we 
are sending an unintended message that what matters in 
physics are the equations and results. Physics teachers 
generally know that this is not the case and may stress 
understanding and reasoning in their lectures. But stu-
dents may not understand what this means and ignore 
the derivations and reasoning the teacher presents, box-
ing the final results in their notes for memorization and 
ignoring the process that generated them. Research in 
physics education documents that the students bring un-
derstandings of the physical world in to a physics class 
that may contradict and confound their attempt to make 
sense of what is being taught. This can lead them to em-
phasize memorization — which in some environments 
works even when you have little understanding of what 
you are memorizing. 

Physics teachers often have the sense that “problem 
solving is where you learn to actually do physics” — 
where students should learn the process and sense mak-
ing that exemplifies good physical thinking. We assign 
many problems and model the processes we want them 

to follow in lectures. But without a good understanding 
of what kinds of thinking the students need to activate 
for solving problems, it is difficult to understand why 
some students seem to get so little out of solving large 
numbers of problems. The teacher’s knowledge exists in 
compiled form; whereas, the students’ knowledge does 
not. Instructors may not be aware of all the knowledge 
and reasoning that goes into solving a problem, if the 
solution comes so easily and quickly. Decomposing the 
students’ problem-solving session in terms of epistemic 
games and resources allows us to ‘see’ and examine the 
knowledge and reasoning that is involved in this prob-
lem. With increased understanding of the knowledge 
and reasoning involved in a seemingly simple problem, 
instructors and educators can begin to develop teaching 
environments and interventions that more effectively 
and efficiently cue the appropriate resources and epis-
temic games. This in turn could help students become 
better and more efficient problem solvers. 

This study focused on students at the university level 
and most of them were upper division students who had 
already taken many science courses at the university. As 
a result, we make no claims concerning the origin of the 
games the students were playing. However, we often 
saw the students playing games that were clearly 
learned somewhere. Students playing Recursive Plug-
and-Chug, for example, had a very strong sense of what 
they thought they were supposed to be doing — both the 
goals of their local activities and what they ought to be 
doing to get there. We can well imagine the students be-
ing taught to “identify the variable to be found,” to “find 
an equation containing that variable,” and so forth. This 
is strongly suggestive that instructors need to be aware 
that when they are teaching their students processes that 
can produce effective results in situations with a particu-
lar limited class of problems to be solved, they may also 
unintentionally be teaching their students to play par-
ticular epistemic games without helping them to de-
velop a good sense of when those games might (or 
might not) be appropriate. Such instruction might help 
students get through the vicissitudes of a particular 
course but might have unintended negative conse-
quences at later stages in the students’ education. 

This study gives just one example of how cog-
nitive modeling helps increase our understanding of just 
what it is our students need to learn. The specific re-
sources and games we describe are not meant to be 
complete, but rather to introduce a new kind of structure 
for analyzing students’ thoughts on problem solving.  

Our focus has been on structures in the cogni-
tive model of the individual student, but it is clear that 
two additional factors play essential roles and require 
further research. First, the student’s decisions (tacit or 
conscious) about which games to play have a critical 
role. Second, the interaction of the students in their 
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group games is extremely important and the structures 
proposed here could be of considerable help in under-
standing a group’s negotiation of how to approach and 
solve a problem.  
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Appendix 
1. Conversion Problem 
Discuss the question: “Is 500 feet big or small?” Before you 
do so, carry out the following estimates. 
(a) You are on the top floor of a 500 ft tall building. A fire 

breaks out in the building and the elevator stops working. 
You have to walk down to the ground floor. Estimate how 
long this would take you. (Your stairwell is on the other 
side of the building from the fire.) 

(b) You are hiking the Appalachian Trail on a beautiful Fall 
morning as part of a 10 mile hike with a group of friends. 
You are walking along a well-tended, level part of the trail. 
Estimate how long it would take you to walk 500 feet. 

(c) You are driving on the New Jersey Turnpike at 65 mi/hr. 
You pass a sign that says "Lane ends 500 feet." How much 
time do you have in order to change lanes? 

2. Air Drag Problem 
For the first part of the problem, let's figure out what the drag 
force has to look like as a function of the possible variables 
using dimensional analysis. Consider a sphere of radius R and 
mass m moving through the air at a speed v. Assume the air 
has a density ρ (measured in kg/m3) 
• The force the air exerts on the sphere is independent of 

the sphere's mass. Discuss why this is plausible. (Hint: 
consider the case of the sphere held fixed and the air 
blowing past it at a speed v.) 

• From the quantities R, ρ, and v use dimensional analysis 
to show that there is only one possible combination of 
these variables that produces a quantity with the dimen-
sion of force. 

3. Colliding Gliders (Algebraic) Problem 
 

A 
M 

vAi 
vMi= 0  

                               
                                        vMf = ? 
  vAf  = 0        

A 

 
Figure 12. Figure for the colliding gliders problem. 

The mass of glider A is one-half that of glider M (i.e. mM = 
2mA). Apply Newton’s second law (Fnet = m∆v/∆t) to each of 
the colliding gliders to compare the change in momentum 
(∆p=m∆v) of gliders A and M during the collision. Discuss 
both magnitude and direction. Explain. 

 

4. Three-Charge Problem  

 
Figure 13. Figure for the three-charge problem. 

In the figure above three charged particles lie on a straight line 
and are separated by distances d. Charges q1 and q2 are held 
fixed. Charge q3 is free to move but happens to be in equilib-
rium (no net electrostatic force acts on it). If charge q2 has the 
value Q, what value must the charge q1 have? 

5. Two-Charge Problem  
 

Two small objects each with a net charge of Q (where Q is a 
positive number) exert a force of magnitude F on each other. 
We replace one of the objects with another whose net charge 
is 4Q. If we move the Q and 4Q charges to be 3 times as far 
apart as they were. Now what is the magnitude of the force on 
the 4Q?  

  (a) F/9  (b) F/3  (c) 4F/9  (d) 4F/3  (e) other 

 

 
Figure 14. Figure for the force-distance  

two-charge problem (with the answer shown). 
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