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Reverse engineering the solution
of a “simple” physics problem:
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Problem solving is the heart and soul of most
college physics and many high school physics
courses.  The “big idea” is that physics tells you more
about a physical situation than you thought you knew
— and you can quantify it if you use fundamental
physical principles expressed in mathematical form.
Often, the results of your problem solving can lead
you to understand and rethink your intuitions about
the physical world in new and more productive ways.
As a result, physics is a great place (some of us
would claim the best place) to learn how to use
mathematics effectively in science.

As physics teachers, we often stress the
importance of problem solving in learning physics.
Unfortunately, many of our students appear to find
problem solving very difficult.  Sometimes they
generate ridiculous answers and seem satisfied with
them. Sometimes they can do the calculations but not
interpret the implications of the results.  Sometimes,
despite apparent success in problem solving, they
seem to have a poor understanding of the physics that
went into the problems.1  We give them explicit
instructions on how to solve problems (“draw a
picture,” “find the right equation,” …) but it doesn’t
seem to help.

We might respond that they need to take more
math prerequisite classes, but in the algebra-based
physics class at the University of Maryland, almost
all of the students have taken calculus and earned an
A or a B.  Many of them have been successful in
classes such as organic chemistry, cellular biology,
and genetics.  Why do they have so much trouble
with the math in an introductory physics class?

As part of a research project to study learning in
algebra-based physics,2 the Physics Education
Research Group at the University of Maryland
videotaped students working together on physics
problems. Analyzing these tapes gives us new
insights into the problems they have in using math in
the context of physics.  One problem is that they have
inappropriate expectations as to how to solve

problems in physics (some of it learned, perhaps, in math
classes).  This is discussed elsewhere.3  A second
problem seems to lie with the instructors.  As instructors,
we may have misconceptions about how people think
and learn, and this has important implications about how
we interpret what our students are doing.

In this paper, we want to consider one example of
students working on a physics problem that showed us in
a dramatic fashion that we had failed to understand the
work the students needed to do in order to solve an
apparently “simple” problem in electrostatics.  Our
critical misunderstanding was failing to realize the level
of complexity that we had built into our own “obvious”
knowledge about physics.

“Packing” Knowledge Until You Don’t See Its
Parts: Compilation

Modern cognitive psychology and neuroscience
have documented that much of our everyday functional
knowledge is dramatically more complex than we give it
credit for.  One component of this is automaticity.  Once
we have learned to do something, like tie our shoes or
ride a bicycle, it becomes easy and we can do it without
thinking.  But we usually understand and remember the
learning that goes into such tasks and we typically have
patience in teaching them to our children.

But we have other knowledge that has component
parts that are invisible to us.  Once our knowledge
reaches that stage it is hard to see why someone might
not find the result obvious. Even an apparently simple
thing like identifying an object is clearly much more
complicated than it appears.4  When we pick up a cup of
coffee, its visual image enters the back of our brain
through the retina. Tactile data about the feel and heft of
the cup enters in the midbrain, the aroma in the
forebrain, and the episodic memories that give us the
knowledge of what to do with the coffee, what it will
taste like, and what its effect will be on us are stored yet
elsewhere.  Yet the overall result is our sensation of the
object as a single integrated and irreducible “thing.”
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Some cognitive “illusions” dramatically
demonstrate how much unnoticed processing the
brain is doing for us.  A nice example is given by Ed
Adelson and is shown in figure 1.  The squares of the
checkerboard marked A and B are, in fact, exactly the
same color.  (If you don’t believe this, make a copy
of the page with the figure, cut out the squares, and
place them next to each other, or check out Adelson’s
webpage on the topic.5)  Your brain knows enough to
realize that if two objects appear to be the same color
but one is in shadow, then the one in shadow must be
“really” lighter — and that’s how you see it.  This
particular example appears to be “wired up” very
tightly and at a very young age.  You can’t see it any
other way.

Fig. 1: An example of automatic processing that you
cannot unpack. (E. Adelson, with permission)

A second example is more obviously learned.  If
you look at figure 2, you will find it impossible to
look at the words and see any of them (say “cat”) as a
series of lines and shapes.  You probably not only
saw the meaning immediately, you had some visual
image associated with the phrase.  You have learned
to interpret the shapes as letters, to see combinations
of letters as words, and to associate the words with
particular meanings — objects and actions.  Although
you can’t undo this easily (looking at it upside down
does it for some folks), you know that there was a
time when all you could see where lines and shapes.

Fig. 2: An example of learned recognition you cannot
easily unpack.

This same sort of process occurs as we learn
throughout our lives.  When professional physicists
look at a graph, it is almost impossible for them not
to see the y-intercept, the slope at each point, the

maxima and minima of the curve.  For many students in
introductory physics, however, this process is not quick
and automatic but takes explicit recall and reasoning.

We refer to the process of binding knowledge tightly
so that its parts are inaccessible to the user as
compilation.6  The metaphor here is computer code.
Once a program written in a high level computer
language has been debugged and is stable, it is
convenient to convert it into machine language so it
doesn’t need to be translated each time it runs.  This
“executable” is fast, but if you are only given a machine-
language executable, it is immensely difficult to back-
interpret it to understand what it is actually doing.  To
understand what is going on in such a program, a
computer programmer who wants to re-create it may
have to reverse engineer it.7

Once we learn how to do something, it can be
difficult to empathize with someone who does not know
how to do that thing. In particular, this lack of empathy
may lead physics teachers to forget what it is like to
actually learn physics—and, therefore, to not understand
how their students are unable to solve “simple” physics
problems. Some physics teachers may think, “If it takes a
student an hour to solve a problem to which I can just
write down the answer, then that student does not know
enough physics—and she is wasting her time spending
that long on such a ‘simple’ problem.”  In this paper we
want to demonstrate that this is not the case.  To do this,
we reverse engineer what solving a “simple” physics
problem really entails. We analyze a group of students’
solution to this simple problem and show that, while the
students take much longer than the typical teacher to
solve this problem, their solution involves many
activities that can be seen as part of compiling their
physics knowledge and that are appropriate for students
at their stage of knowledge.

The Setting for this Study.
The setting for this study is an algebra-based physics

course at the University of Maryland that was non-
traditional in many aspects.  The most important non-
traditional aspect of this course was its shift in emphasis
away from a focus on answers to the idea of
understanding principles, process, and concepts.  This
emphasis was expressed through explicit discussion with
the students and through reforms in lecture, recitation,
laboratory and homework.8

Students were given about five homework problems
per week and were told that we expected them to spend
about an hour on each problem, even when working
together in groups.  Many resisted this at first, some not
believing it (and trying to do the homework in the fifteen
minutes before it was due), some not knowing what work
to do for an hour.  We gave no exercises and our
problems often contained qualitative questions,
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estimations, and essays.  We required that they give
explanations in words for each problem in order to
receive full credit on the grading.  Each week, one
problem (not identified for the students beforehand)
was graded carefully with written feedback (grade of
0-5).  The others received only an indication of
whether it was right or not (grade of 0-2).  Detailed
solutions were posted on the class website.  We set
up a workroom, the Course Center, where students
could gather work on their physics homework. The
center was staffed approximately twenty hours per
week by a teaching assistant (TA) or the course
instructor. The staff members assisted the students
with their homework, but did not explicitly solve any
of the students’ homework problems. Often, instead
of answering students” questions, TAs directed them
to other students working on the problem in the
center and they were encouraged to form
workgroups.9  By the end of the first semester, most
of the students were working in groups and spending
significant amounts of time on their homework (4-6
hours/week).

An Example: the Three-Charge Problem
We examine a videotaped episode in which a

group of students attempt to solve an electrostatics
problem that we refer to as the Three-Charge
Problem (figure 3).  This episode occurred in the
second week of the second semester of the two-
semester sequence and shows three female students
(pseudonyms, Alisa, Bonnie, and Darlene) working
together.  All of the students had taken the
transformed course in the first semester and were
familiar with the idea that a single problem might
take a long time to solve and that qualitative and
quantitative considerations might both be needed.

Fig. 3: The “three charge” problem.

How instructors solve this problem:

We have asked this problem of numerous physics
instructors.  Some answer immediately.  Others have to
think for a few seconds.  Occasionally an instructor will
give a quick answer and get it wrong at first — but it
rarely takes anyone more than a minute to work their
way through to a correct answer.  A typical instructor’s
solution might be: “Well, charge 3 is twice as far away
from charge 1 as it is from charge 2.  So if the forces
balance, charge one has to be –4Q, opposite sign to
balance Q and four times as big because Coulomb’s law
says the force falls like the square of the distance.”

What instructors want students to do

Although most instructors can do this kind of a
calculation in their heads, we, as instructors, expected the
students to go through a bit more math. The problem
states there is “no net electrostatic force” acting on
charge q3. This implies that the sum of all the forces
acting on q3 is equal to zero, which is written formally in
symbols as

  

€ 

r 
F q2→q3

+
r 
F q1→q3

= 0 . (1)

(We will see below that this form of this equation is
deceptively simple and hides a great deal of conceptual
information.) Using Coulomb’s Law to write the forces
in equation (1) yields:

€ 

kQq3
d2

ˆ i +
kq1q3
2d( )2

ˆ i = 0
, (2)

where we have set q2 = Q  and written (for simplicity as
we did in the class) k=1/4πε0. Finally, we bring the
second term to the right side of the equation and cancel
similar terms, which results in the answer: 

€ 

q1 = −4Q.

What the students did

An interesting aspect about the students’ problem
solving approach is that it takes so long compared to a
typical instructor’s solution. The students work for
nearly 60 minutes before arriving at a solution— almost
two orders of magnitude longer than the typical teacher!
Is this a problem?  In our analysis of our students’
approach in solving this and in other problems, two
factors seemed critical in understanding what the
students were doing.

First, we observe that students tend to solve
problems by working in locally coherent activities in
which they use only a limited set of the knowledge that
they could in principle bring to bear on the problem.  We
refer to each of these activities as an epistemic or
knowledge-building game. Each game has allowed
moves, a starting point, a goal or ending point, and a
form or visible result. Most important, while students are
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playing one game, they ignore moves that they
consider as not pertinent, thereby excluding much
relevant knowledge.  We see an example of this in
our episode. (These are discussed in detail in ref. 3.)

Second, we note that much of the knowledge that
students are using are not integrated; results that
would be considered trivially identical by an
instructor are treated as distinct and unrelated.  They
have not yet compiled these distinct knowledge
elements the way experts have.

An example of a knowledge-building game
many of us have seen when interacting with students
is Recursive Plug-and-Chug.  The student’s goal is to
calculate a numerical answer.  The opening move is
to identify the target variable to be calculated.  The
next move is to find an equation containing that
variable.  Then, check if the rest of the variables in
the equation are known.  If so, calculate the resulting
quantity.  If not, find another target variable in the
equation and repeat the process.  Note the absence of
developing a story about the problem, evaluating the
relevance of the equation, or making sense of the
answer.  The absence of these sense-making moves
can produce strikingly inappropriate and even bizarre
results.  The output form of this game is a string of
equations — one that might look identical to that
produced by a student playing a more productive
game, such as Making Meaning with Mathematics.

E-Game Description
Physical
Mechanism

using common sense
reasoning; “telling the
story” of the problem

Pictorial
Analysis

using the e-form of a
free-body diagram to
“nail down” the relevant
forces

Mapping
Mathematics to
Meaning

interpreting current state
of mathematical
knowledge in terms of
the physical elements of
the problem

Mapping
Meaning to
Mathematics

connecting the physical
result to using formal
knowledge

Table 1: Knowledge games played by the students

Knowledge-building games the students used

In the example we are considering, we can
identify five different knowledge-building games that
this group of students played to solve the three-
charge problem. (See table 1.)

Physical mechanism: Understanding the physical
situation. The students start this problem by attempting
to understand the physical situation articulated in the
problem statement. Their reasoning is based on intuitive
knowledge about and experience with physical
phenomena rather than on formal physics principles.
Darlene: I'm thinking that the charge q1 must have

it's...negative Q.
Alisa: We thought [q1] would be twice as much,

because it can't repel q2, because they're fixed.
But, it's repelling in such a way that it's
keeping q3 there.

Bonnie: Yeah. It has to—
Darlene: Wait, say that.
Alisa: Like— q2 is— q2 is pushing this way, or

attracting—whichever. There's a certain force
between two Q, or q2 that's attracting.

Darlene: q3.
Alisa: But at the same time you have q1 repelling

q3.

Darlene initiates this exchange with a possible
solution to this problem: the charge on q1 is “negative
Q.” Although this is wrong, it has a good piece of
physics: the charge on q1 must have the opposite sign to
the charge on q2 if the forces they exert on q3 are to
balance.  Rather than simply accept or reject this
suggestion, the students discuss the physical mechanism
that acts to keep q3 from moving: q2 is attracting and q1 is
repelling q3, or vice versa. If the students were only
attempting to find a solution to this problem, then a
discussion about the physical mechanism seems
unnecessary—they would only need to assess the
correctness of Darlene’s assertion. That the students
discuss a possible physical mechanism involved in the
physical situation is an indication that the students are
attempting to develop a conceptual understanding of this
problem. Much of the research on quantitative problem
solving in physics discusses the importance of
conceptual understanding.10  Although the instructor’s
solution outlined above does not explicitly contain a
description of the physical mechanism underlying the
physical situation, it is clearly implicit — compiled into
the way the instructor thinks about and approaches the
problem.  They not only “know the right formula,” they
know what the formula means and how to use it.

The next exchange indicates, however, that the
students’ intuitive ideas about the physical situation are
not always consistent with the physics principles that an
expert would use.  The students are still struggling with
reconciling the principle of superposition with their
everyday ideas.
Darlene: How is [q1] repelling when it's got this

charge in the middle?
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Alisa: Because it's still acting. Like if it's bigger
than q2 it can still, because they're fixed.
This isn't going to move to its equilibrium
point. So, it could be being pushed this
way.

Darlene: Oh, I see what you're saying.
Alisa: Or, pulled. You know, it could be being

pulled more, but it's not moving.
Darlene: Un-huh.

The arrangement of the charges cues Darlene to
think that the presence of q2 somehow hinders or
blocks the effect of q1 on q3, which does not agree
with the superposition principle. Exploring the
possibility that q2 blocks the effect of q1 on q3 is not a
step in the instructor’s solution outlined above — it’s
something the instructor knows and takes for granted.
The exploration is not a dead-end but a step in
helping them to develop the intuitive sense of
superposition.  Alisa’s argument is particular
interesting here.  She uses an incorrect qualitative
argument (overcoming — “if it’s bigger…it could be
being pulled more”) rather than the correct
quantitative one (superposition) that she later shows
she knows.  Within the context of the Physical
Mechanism game, formal arguments are not “legal”
moves.

What we see here (and in many other examples)
is that when the students are playing a particular
knowledge-building game, they tend not to use other
knowledge that they have.  That knowledge seems to
belong to a different game and not be easily accessed
here.

Pictorial analysis: Drawing a picture. The students
make progress on this problem by attempting to
develop a conceptual understanding of the physical
situation in terms of their intuitive ideas; however,
this is not stable within the group. After their
apparent initial agreement in developing a conceptual
understanding of the physical situation, and in
particular on determining that charges q1 and q2 had
to have opposite sign, Darlene decides she is not
convinced.
Darlene: I think they all have the same charge.
Bonnie: You think they all have the same

charge? Then they don't repel each other.
Darlene: Huh?
Bonnie: Then they would all repel each other.
Darlene: That's what I think is happening.
Bonnie: Yeah, but q3 is fixed. If it was being

repelled—
Alisa: No, it's not. q3 is free to move.
Bonnie: I mean, q3 is not fixed. That's what I

meant.

Darlene: Right.
Bonnie: So, like...
Darlene: So, the force of q2 is pushing away with is

only equal to d.
Bonnie: Yeah, but then...
Darlene: These two aren't moving.
Bonnie: Wouldn't this push it somewhat?
Alisa: Just because they're not moving doesn't

mean they're not exerting forces.
Darlene: I know.
Alisa: What do you think?

The TA (Tuminaro) notices the students’ failing to
communicate clearly and lock down their apparent gains,
and suggests that they draw a picture of the physical
situation.  The students do not use an algorithmic
pictorial analysis technique (e.g. free-body diagrams),
but rely on their intuitive ideas about the situation to
generate a picture.  The picture helps the students
organize their thoughts and agree on the relative sign on
each of the charges.
Alisa: So, maybe this is pushing...
Darlene: That's [q2] repelling and q1's attracting?
Bonnie: Yeah, it's just that whatever q2 is, q1 has to

be the opposite. Right?
Alisa: Not necessarily.
Darlene: Yeah.
Bonnie: OK, like what if they were both positive?
Alisa: Well, I guess you're right, they do have to be

different, because if they were both positive...
Bonnie: Then, they'd both push the same way.
Alisa: And, this were positive it would go zooming

that way.
Darlene: They would both push.
Alisa: And, if this were negative it would go there.
Bonnie: It would go zooming that way.
Alisa: And, if they were negative...
Darlene: It would still—they'd all go that way.
Alisa: It would be the same thing.

The picture enhances the students’ ability to reason
about this problem, which enables them to agree on a
clear intuitive understanding of the physical situation:
“whatever [the sign of] q2, q1 has to be the opposite.”

Mapping mathematics to meaning: Identifying the
relevant physics. At this point, the students have not
made use of Coulomb’s Law—they have relied solely on
their intuitive ideas. Yet, their intuitive reasoning helps
them understand the physical situation—and, ultimately,
realize that Coulomb’s Law is essential for this problem.
Bonnie: Yeah. Negative two Q, since it's twice as

far away.
Alisa: And, this is negative Q.
Bonnie: Negative two Q.
Darlene: Negative two Q.
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Alisa: Are we going to go with that?
Bonnie: I think it makes sense.
Darlene: That makes...
Alisa: Well, I don't know, because when you’re

covering a distance you’re using it in the
denominator as the square.

Bonnie: Oh!  Is that how it works?
Alisa: And [...inaudible...] makes a difference.
Bonnie: Yeah, you're right.
Tuminaro: So, how do you know that?
All: From the Coulomb's Law.
Bonnie: So, it should actually be negative four

q? Or what? Since it has…
Alisa: Cause we were getting into problems in

the beginning of the problem with [the
non-equilibrium three-charge problem –
see figure 4] because I thought that like if
you move this a little bit to the right the
decrease for this would make up for the
increase for this. But, then we decided it
didn't. So, that's how I know that I don't
think it would just increase it by a factor of
two.

Fig. 4: Another “three charge” problem

The students relied on their intuitive ideas to
generate a conceptual understanding of the physical
situation—two mutually exclusive influences acting
on q3 that exactly cancel each other. Yet, Alisa,
recalling her experience of working on an earlier
problem (figure 4) realizes that their intuitive ideas
are not enough—they need Coulomb’s Law.

Mapping meaning to mathematics: Translating
conceptual understanding into mathematical
formalism After some false starts and nearly sixty
minutes, the students finally solve this problem,
integrating their conceptual understanding, which
they developed in terms of their intuitive common-
sense ideas, with formal application of Coulomb’s
Law.

Tuminaro: What did you do there?
Alisa: What did I do there?
Tuminaro: Yeah, can I ask?
Alisa: All right, so because this isn't moving, the

two forces that are acting on it are equal: the
push and the pull.

Alisa reiterates the group’s conceptual
understanding of the physical situation: two mutually
exclusive influences exactly canceling yielding no result.

Next, Alisa writes down the form of the two forces
in terms of Coulomb’s Law:
Alisa: So, the F—I don't know if this is the right F

symbol—but, the F q2 on q3 is equal to this
[see eq. 3]. And, then the F q1 on q3 is equal
to this [see eq. 4], because the distance is
twice as much, so it would be four d squared
instead of d squared.

2
3

32 d

kQq
F qq =→

(3)

2
3

31 4d

kxQq
F qq =→

(4)
Alisa: And, then I used x Q like or you can even

do—yeah—x Q for the charge on q1, because
we know in some way it's going to be related
to Q like the big Q we just got to find the
factor that relates to that…Then, I set them
equal to each other…

Alisa uses Coulomb’s Law to write the form of the
two forces, but she does not formally invoke the other
physics principle outlined in the ideal solution: Newton’s
2nd Law. Rather, Alisa relies on her conceptual
understanding of the physical situation to write that the
forces must be equal—not on a formal application of
Newton’s 2nd Law. This feature of her solution is not
insignificant; it lends additional evidence that Alisa is
making sense of this problem, rather than simply
following some problem-solving algorithm.

After setting up the equation, Alisa is only left with
an algebra problem, which she has little trouble solving:
Alisa: … and I crossed out like the q2 and the k and

the d squared and that gave me Q equals x Q
over four.  And, then x Q equals four Q, so x
would have to be equal to four. That's how
you know it's four Q.

The other students then evaluate the plausibility and
validity of Alisa’s recited solution—yet another
indication that these students are making sense of this
problem.
Bonnie: Well, shouldn't it be—well equal and

opposite, but...
Alisa: Yeah, you could stick the negative.
Bonnie: Yeah.
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Darlene: I didn't use Coulomb's equation, I
just—but it was similar to that.

Bonnie: That's a good way of proving it.
Darlene: Uh-huh.
Bonnie: Good explanation.
Alisa: Can I have my A now?

Alisa’s final question is meant in jest (“Can I
have my A now?”), but shows that she realizes that
she has understood and solved this problem in an
expert-type manner.

Doing good work
The students’ solution, while it took much longer

than the average teacher would take to generate one,
has many components of an expert-like solution.
However, they show that much of the knowledge
they call on is not yet compiled in an expert fashion.
The students have to recall and construct the
background knowledge needed to make sense of the
problem a step at a time: a long but likely necessary
step in creating their own knowledge compilations.

Even though it takes them longer than the typical
expert, there are two clues that show that the students
are working appropriately — in an expert-like
manner: they rely heavily on their conceptual
understanding and they themselves choose their own
path.

First, the students solve this problem by using
their intuitive understanding of the physical
situation—two mutually exclusive influences exactly
canceling each other—and formal application of
Coulomb’s Law. At no point during the entire
problem-solving episode do they use or make explicit
reference to Newton’s 2nd Law, even though it is the
relevant physics principle for why q3 remains in
equilibrium. This is not a negative. It shows that the
students are using their own understanding of the
physical situation to generate a solution (an expert-
like characteristic), rather than doggedly applying a
formal physical principle (a novice-like
characteristic).

Second, they generate their own problem-solving
path. They do not defer to the TA and let him direct
what they should do next. The language that the
students use is an indication that they do not defer to
the TA—even though the students follow the TA’s
suggestion to draw a picture. The students use
phrases like “we thought” or “I decided,” and never
use phrases like “the TA said” or “the book says,”
which offers linguistic evidence that the students are
in control of the solution path—and not the TA.

Finally, from the details of the full transcript,11 it
is clear that the students are recalling and working
through many of the items of basic knowledge that

are new to them (only learned last semester) and that
they are still reconciling with their intuitive knowledge.
A list of some of the physics knowledge the students call
on explicitly is given in table 2.

E-Game Physics Knowledge Needed
Physical
Mechanism

• Like charges repel, unlike attract
• Attractions and repulsions are forces
• Forces can add and cancel (one does

not “win”; one is not “blocked”)
• “Equilibrium” corresponds to

balanced, opposing forces (not a
single strong “holding” force)

• Electric force both increases with
charge and decreases with distance
from charge

• Objects respond to the forces they feel
(not those they exert)

• Charges may be of indeterminate sign
and still exert balancing forces on the
test charge

• “Fixed” objects don’t give visible
indication of forces acting on them;
“free” ones do

Pictorial
Analysis

• Only forces on the test charge require
analysis

• Each other charge exerts one force on
test charge

• Each force may be represented by a
vector

• “Equilibrium” corresponds to
opposing vectors

• Vertical and horizontal dimensions are
separable

• One dimension is sufficient for
analysis

Mapping
Mathematics
to Meaning

• Electric force both increases with
charge and decreases with distance
from charge

• Electric force decreases with the
square of the distance

Mapping
Meaning to
Mathematics

• Charges of indeterminate sign are
appropriately represented by symbols
of indeterminate sign

• Coefficients may relate similar
quantities

• Balanced forces correspond to
algebraically equal Coulomb’s-Law
expressions

Table 2: Some of the knowledge required by the student
in each game

Recognition vs. formal manipulation
In physics, especially at the college level, we tend to

focus our attention on formal manipulation.  We often
don’t realize how much of an expert’s success is based
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on a more fundamental cognitive ability: recognition.
There is good evidence from both cognitive and
neuroscience that we possess a variety of mental
abilities.12  The ability to handle language and formal
reasoning is analogous to serial processing in
computer technology — sequential and reasonably
slow.  The ability to recognize faces and places is
analogous to parallel processing — all happening at
once and very quickly.  When we identify a coffee
cup or recognize a friend we don’t go through a
formal checklist of properties, we just recognize
them.  Many physicists have had the experience of
going through a tedious calculation, making
mathematical manipulation after manipulation, and
then reaching a particular point and saying: “Oh!
Now I get it.”  Either the rest of the calculation now
becomes trivial or the previous steps now are obvious
rather than formal.

The sort of thing we mean is easily demonstrated
in more daily activities.  The anagram puzzle
“Jumble” is familiar to many and appears in hundreds
of newspapers.  (See figure 5.)  The task is to
rearrange each of four strings of letters into words.
The circled letters in each of the four words are
combined and rearranged to provide the answer to the
phrase clued by the drawing.  Before going on to the
next paragraph, look at figure 5 and see if any of the
words just spring to mind.

Fig. 5: A puzzle illustrating two kinds of thinking
(©Jumble, permission applied for)

Many people immediately recognize either the
first or the third word.13  With these, the bonus phrase
(“false alarm”) is reasonably obvious from the
context.  After getting the fourth word (pretty
straightforward since there are only three distinct
letters), the second word can be approached.  The
bonus phrase tells us that the two circled letters in the
second word must be “a” and “r”.  This produces the
two options: “a __ __ __ r” or “r __ __ __ a” with the
letters “u”, “u”, and “g” to be distributed in the three
interior spaces.  There are only six possibilities:

running through them has one recognizable word:
“augur.”

Note the two mental processes we’ve described.  In
the first case (see note 13) most people simply look at the
scrambled letters and know the answer — direct
recognition.  In the second case (“augur”), most people
have to go through a formal algorithm — checking out
all of a limited set of possibilities.  But in the end, even
the second case relies on our recognizing the word
“augur.”  It’s a fairly uncommon word and many people
don’t know it.  If the recognition process is missing, the
formal manipulations won’t help.

Our handling of a physics problem has much in
common with the way we think about the Jumble puzzle.
We do formal manipulation until we reach a point where
we recognize the result as making sense.  But when we
have a lot of compiled knowledge, our intuitive
recognition skills become much stronger.  When we
focus on teaching our students formal manipulation
skills, we are tacitly assuming that the recognition skills
will grow naturally.  But if we are unaware of how
compiled our knowledge is, we may not appreciate the
work students need to do to compile their new
knowledge and build their intuitive recognition skills.

In this paper, we reverse engineered a simply
physics problem, comparing the way instructors who
already have lots of compiled knowledge solve it to the
way a group of novice students who are still working on
compiling their knowledge solve it. An immediately
obvious difference between the two solutions is that the
students’ solution took much longer to generate—nearly
two orders of magnitude longer.  Our analysis shows two
things. First, even simple physics problems are difficult
for novices. There are many conceptual and technical
subtleties to physics problems that experts tend to forget
about because they are so familiar with these subtleties
that they don’t notice them. Second, what we may at first
judge to be poor student problem-solving behavior may
actually be very good behavior. After careful analysis of
the students’ solution in the three-charge problem, we
see that the students’ solution shares many aspects with
the expert-like solution.  In addition, the students are
doing work towards the consolidation and reconciliation
of new knowledge, which is just what they need to be
doing at their stage of learning. To do a better job
helping our students, we need to better understand both
what they know and the hidden components of our own
knowledge. Only then, can we effectively “reverse-
engineer” what we know to figure out what our students
have to go through to build expert problem-solving
skills.
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