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For students to successfully complete an experiment, they must have an understanding of measurement and its related uncertainty. We  
argue for teaching the concepts of measurement and not only the calculations. An example of a concepts-based laboratory course is given, 
outlining the concepts presented, the design of the laboratory time, and the laboratory tasks. The concepts are briefly described and two  
often-overlooked concepts, predictive versus descriptive questions and internal versus external variation, are explained. Our survey results 
show that the fraction of students using range and not just average when comparing two data sets approximately doubled after instruction. 

 

I.  INTRODUCTION 
Instructors have several educational objectives for the  

physics laboratory, the most common being to link theory to 
practice, to develop scientific thinking, and to develop ex-
perimental skills.1 Because most laboratory work involves 
measurement, it is imperative that students learn to appropri-
ately interpret their data if any of these goals are to be met. 
Unfortunately, few students (at any level) can demonstrate an 
understanding of the uncertainty in a measurement. Students 
rarely carry out multiple trials spontaneously unless they 
suspect a flaw in their first measurement.2 When asked to 
obtain multiple trials, students tend to rely only on the arith-
metic mean to report a final result and to compare data sets,3 
though if they happen to get repeated values in a data set, 
students may report that number as the final result.4 In general, 
students in the laboratory search for the “true value” and do 
not consider uncertainty. Many laboratory courses teach 
students the mathematics of uncertainty analysis such as the 
arithmetic mean, standard deviation, and percent error, but 
students are rarely able to use these constructs to make a 
strong argument from their data. Even worse, using such tools 
without understanding may be detrimental to future develop-
ment of understanding.5 

In this paper a concept-based approach to uncertainty in-
struction is proposed: design the student laboratory to teach 
concepts first, then the mathematical constructs can follow. 
We begin by describing the basic concepts needed for under-
standing uncertainty and the laboratory activities designed to 
teach uncertainty. Two often overlooked uncertainty concepts 
and one laboratory activity are described in more detail. 
Finally, results from this type of laboratory instruction are 
discussed.  

 

II.  CONCEPTS BEFORE CALCULATION 
As early as 1972, Hewitt argued for the importance of 

teaching students the concepts of physics before introducing 
the mathematical constructs,6 and recent research-based 
curricula attempt to do so.7 Research on physics education has 
repeatedly shown that students lack an appropriate under-
standing of fundamental physics concepts, even students who 
can successfully solve traditional physics problems.8 The 

value of teaching the concepts of physics is well known and 
accepted for the lecture setting, but not generally for the 
laboratory setting.9 Students are typically given procedures for 
calculating the mathematical constructs of uncertainty and are 
expected to absorb these ideas by following lab manuals step 
by step. 

Given the results of research on students’ understanding of 
acceleration,10 special relativity,11 electromagnetic waves,12 it 
is no surprise that step-by-step-like instruction of uncertainty 
leaves students with, at best, the ability to successfully calcu-
late the average and standard deviation, but with little concep-
tual understanding of why, when, and how to use these 
constructs. One way toward a solution of this problem is to 
create experiences that require students to build a conceptual 
understanding of measurement before (or perhaps along 
with)13 their calculational ability. 

Another argument for teaching the concepts of measure-
ment is that most of students taking physics at the introductory 
level in the U.S. are not physics majors.14 Different fields have 
different methods for calculating, reporting, and comparing 
uncertainty. Even among physicists there is much variation in 
the expression of uncertainty.15 Teaching students one way of 
calculating and expressing uncertainty may not be useful. 
However, the concepts of uncertainty are applicable in any 
scientific domain. 

 

III.  A CONCEPTS-BASED LABORATORY 
COURSE 

Delineating the important ideas of a topic can be useful for 
defining and explaining the topic and helpful for instructors 
developing curricula. We propose that the underlying ideas for 
understanding uncertainty can be broadly categorized as 
follows:16 

• All measurements have an associated uncertainty, which 
should be quantified and reported. 

• A calculated result has an associated uncertainty based 
on its dependent values. 

• The design of an experiment and skill of conducting the 
experiment affects the uncertainty in the measurement. 

• Uncertainty is used to compare results and draw conclu-
sions. 
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A sequence of specific laboratory concepts designed to 
elucidate these ideas has been implemented in a semester-long 
laboratory for an algebra-based introductory physics course at 
the University of Maryland.17 

 

A.  Sequence of measurement concepts 
Our sequence does not include every measurement concept 

necessary for a complete introductory understanding of 
uncertainty. We believe that reaching such a stage would 
require a whole series of laboratory curriculum reforms.18 The 
specific measurement concepts were chosen because most of 
the students were unable to show mastery of these concepts 
before instruction and because these concepts were judged 
essential for students preparing for a scientific career (and are 
important for a wide variety of everyday situations).19 

Predictive versus descriptive question. Students 
should understand the difference between a question asking 
for a prediction (often involving probability) of what might 
happen and a question asking for a description of what did 
happen. Typically a laboratory question asks a predictive 
question (see Sec. IIIC). 

Techniques for measuring time. Having students 
measure time primarily with stopwatches makes the measure-
ment process explicit. Using more complicated instruments 
may hide the underlying uncertainty factors because students 
are likely to think that computer sensors make perfect meas-
urements. By using a stopwatch students are confronted with 
the clear limitations of a human using such a device, and can 
more easily be drawn into evaluating the accuracy and preci-
sion of their time measurements.20 

Purposes of multiple measurements. Many students 
do not appreciate the purpose of multiple trials and might 
expect to obtain the same number repeatedly. Before proceed-
ing to a more complicated uncertainty analysis, students 
should first understand the idea that multiple trials can pro-
duce a range of numbers that provide more information than 
just one number. 

Using range overlap. When comparing two sets of 
data, one should look at the degree of overlap between the 
data in the two sets. The decision of how much overlap is 
necessary to show agreement is a difficult one and depends on 
specific circumstances.21 

Stacking. This technique often is used on repeatable 
measurements to increase precision. For example, the thick-
ness of one piece of paper can be determined by measuring 
the height of a stack of 500 pieces of paper and dividing by 
500. Students should be able to appraise the benefits and 
disadvantages of stacking.22 

Systematic or random mechanism. Students should 
think about what causes the variation in their data. Whether 
the mechanism is causing a systematic or random variation 
should affect how they attempt to reduce its effects and how 
they interpret their result. 

Internal versus external variation. Students must be 
able to distinguish between variation coming from the meas-

urement process, which is external to the system, and variation 
caused by something internal to the system being measured. 
They should understand that external variation detracts from 
their conclusions, but internal variation is neither harmful nor 
beneficial (see Sec. IIIC for more detail.) 

Displaying data with representations. Introductory 
students tend to report their data in tables, but frequently a 
graph or chart is more convincing. Different types of repre-
sentations convey different information and are useful for 
different amounts and types of data. For example, a histogram 
is useless for displaying the results of five readings. 

Low probability data. Students should consider which 
characteristics are necessary to allow an outlying data point to 
be discarded.23 

Minimize external variation. There are typically sev-
eral ways to reduce the uncertainty of an experiment’s results, 
which may or may not require more resources.24 Students 
should consider how to improve every aspect of their data 
collection. 

Range propagation. Students should know that uncer-
tainty in experimental data will imply uncertainty in a calcu-
lated result, and should be able to find this uncertainty. 

Predict uncertainty. Given an experimental method, we 
can estimate from experience what the uncertainty in the data 
would likely be and can estimate the uncertainty in the results. 
Students should be able to carry out this estimation and use it 
to compare experimental methods without actual implementa-
tion. 

Generalize theory. Typically the theory taught to stu-
dents is true for a limited set of circumstances (for example, 
when friction effects are minimal). Often, invalidating effects 
emerge in the student laboratory. These are not errors, but 
show a need to generalize the model to include such effects. 

 

B.  Laboratory Exercises 
We chose laboratory problems to illustrate the measurement 

concepts described in Sec. IIIA; the level of difficulty was 
increased as the semester progressed. They are open-ended to 
promote students’ engagement with the measurement con-
cepts. Because the concepts are revisited several times over 
the semester in different laboratory exercises (see Fig. 1), the 
students have the opportunity to develop an appropriate and 
coherent understanding of measurement. Frequently, a theo-
retical answer for an ideal situation is known, but the answer 
for the actual laboratory situation is not known. Each labora-
tory exercise can be answered using several different experi-
mental designs, encouraging students to critique different 
experimental methods. Teaching assistants know which 
concepts are critical for each laboratory activity, so they can 
monitor the students’ progress and direct students’ attention to 
the concepts where necessary. The exercises are described in 
the following in the order of course implementation. 
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Fig.1: The measurement goals for each laboratory question.  

Primary goals are shown with a darker fill than revisited goals. 

 
Reaction time to catch a ruler. In the first lab we give 

students a method for measuring their reaction time (the 
distance through which a ruler falls before it is caught) and 
students decide what to investigate, for example, whether a 
person’s dominant hand (typically their right hand) has a 
faster reaction time. Because the class of 20 students designs 
the experiment, the teaching assistant can help model correct 
behavior and raise important issues such as how many meas-
urements should be taken, and why. 

What affects the period of a pendulum? Students 
must show whether changing the mass, length, or amplitude 
affects the period. Here the laboratory method is simple, 
allowing students time to consider questions of equipment 
setup, for example, whether it is better to tie the pendulum 
string tightly or loosely around the pivot rod, data collection, 
for example, whether timing 5 periods each trial is better than 
timing 1 period, and data analysis, for example, how much of 
a difference between periods is significant. 

What affects the acceleration of a rolling object? 
This experiment is a typical moment of inertia laboratory. 
Students choose what property to investigate (for example, 
mass, mass distribution, length, radius, and material), and 
choose two objects that differ in that property. They then 
measure the acceleration of two objects rolling down a ramp. 
(Often students find that large differences in mass make a 
difference because of frictional effects.) Here students con-
tinue to struggle with the same concepts as the previous lab in 
a less familiar context. 

Are the cans the same or different? This lab involves 
a collection of outwardly identical cylinders that have the 
same mass, but half the cylinders have a low moment of 
inertia and half have a high moment of inertia. Each group of 
students is given two cylinders and must determine whether 
their two cylinders’ moments of inertia differ or match. 
Frequently the difference in students’ data is caused by 
external variation, because students improve their measuring 
method with the second cylinder, and thus obtain different 
results. Even if students use the same method, they still must 
determine how large a difference is needed for the cylinders 
not to match. Students are told whether or not they were right, 
which helps them evaluate their method and analysis. 

Does friction depend on contact area? Students 
measure the frictional force between a surface and an object 
and determine whether the force changes when the contact 
area changes. In this lab, small changes in method can cause 
large differences in result. These differences allow students to 
directly see the result of improving their method by minimiz-
ing external variation. 

What size target for projectile launch? Students 
build a device to launch a marble off a table and determine 
how large a target is needed to catch the marble (see Fig. 2). 
To find the target size, students must determine the internal 
variation of their launching device, although their measure-
ments give the external and internal variations combined. 

Release height for a ball to go around a loop. Us-
ing energy conservation, students calculate the lowest height 
at which a ball should be released to complete a loop-the-loop. 
Students make measurements on a sample section of track to 
determine frictional energy losses, and thus the minimum 
release height for a frictional situation. They must determine 
how to calculate a release height from their measurements, 
and also decide what final value to use for the release height 
(for example, average, maximum, minimum, and mode). 

Measure g. Students are asked to measure the gravita-
tional field strength in the laboratory as accurately and pre-
cisely as possible, and to estimate the uncertainty in their 
answer. Here we ask students to estimate the uncertainty for 
several different methods before deciding on a method and 
taking data. 

Period of a mass oscillating on a “massful” 
spring. When the mass of the spring and the mass of the 
oscillating object are comparable, a correction term must be 
added to the simple equation for the period of the oscillation. 
Students measure the spring constant and the period of oscilla-
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tion to find the correction term, making this lab more difficult 
than earlier labs. Here students continue to gain experience 
with the same concepts in a more difficult lab. 

 
Fig.2: An example of a laboratory which focuses on  

distinguishing between internal and external variation and  
minimizing external variation. 

 

C.  Overlooked concepts 
There are two measurement concepts that deserve more 

attention because they are frequently overlooked. The first 
concept focuses on the difference between a question asking 
for a prediction of what is likely to happen and a question 
asking for a description of what already has occurred. The 
different interpretations can be illustrated by responses to a 
quiz question that asked the students to compare two sets of 
data (see Fig. 3). A sophisticated answer to this quiz question 
might take into account the spread of data, and recognize that 
the two sets of data overlap almost completely so that the 
difference in averages is not significant (see Fig. 4). 

 
 

 
Fig.3: The battery lab quiz question. 

4 6 8 10 12 14
Time (hours)

Duracell

Energizer

 
Fig.4: A representation of the data in the battery lab quiz question. 
The large overlap indicates that the difference between the two data 

sets’ averages is not significant. 

Consider the following two student responses, where each 
student counted the number of times each battery lasted longer 
during a trial.25 

Student A: “I would say Energizer because 3 out 
[of] 5 trials, it lasted for longer hours 
than Duracell. Also, the average shows it 
lasting longer by 0.6 hrs.” 

Student B: “Although on average for the above tri-
als, Energizer appears to last longer, it 
cannot be concluded that this is the case 
for most or all situations because in 2/5 
trials Duracell was longer and 3/5 trials 
Energizer was longer.” 

These two students use the same reasons (Energizer win-
ning 3 out of 5 trials and having a longer average) to reach 
very different conclusions. We argue that this difference is 
because they are interpreting the question differently. Student 
A’s response could be interpreted as a description of the data, 
what happened when the student tested the batteries. Like a 
sports tournament where best out of five wins, it is true that 
for those five trials Energizer won. Student B also gives a 
description of what happened, but takes it further. Student B’s 
statement, “it cannot be concluded that this is the case for 
most or all situations,” could be answering a question asking 
for a prediction of which battery will last longer in other 
situations. He appears to claim that one cannot make a predic-
tion; it could go either way. The same question, “Which 
battery lasts longer?” can be interpreted as a predictive or a 
descriptive question. 

Misinterpreting a predictive question for a descriptive ques-
tion (or vice versa) can cause instructional difficulties in the 
student laboratory. Suppose a teacher asks a question, “Does a 
cylinder with a larger radius roll down the ramp faster?” A 
student may interpret that question as a descriptive question, 
and answer “Yes, when we raced them, the larger cylinder 
won three times, the smaller cylinder only won twice.” In an 
attempt to get students to consider uncertainty, the teacher 
might respond “But is that difference significant?” This 
question means nothing to the student – why does significance 
matter when that is what happened? The teacher has misdiag-
nosed the student, and the intervention will likely lead no-
where. Instead, the question “if you had an option to bet your 
life savings on a future race, would you?” may help by intro-
ducing gambling, a common situation where people attempt to 

Which battery lasts longer, Energizer or Duracell?   
A student performs an experiment measuring the number of 
hours two AA batteries from each brand will run a tape player. 
Her data is below. 

 
Trial 

1: 
Trial 

2: 
Trial 

3: 
Trial 

4: 
Trial 

5: Average:
Duracell (hours) 11.4 12.2 7.8 5.3 10.3 9.4 
Energizer (hours) 11.6 7.0 10.6 11.9 9.0 10.0 

Consider the following design problem:  
You are designing a new booth for a traveling carnival. 
People will use a catapult to toss a coin at a plate. If it 
lands on the plate, they win a prize. If no one ever wins a 
prize, people will stop playing. If too many people win a 
prize, you will lose money. So you want to make your 
plate large enough to catch a small fraction of coins, but 
not large enough to catch them all. 

Two of the main things we have been working on in previous 
labs are how to design an experiment to answer a question 
and how to think about the spread in the data you take.  
To focus on these issues, consider the following task.  

Design a method for launching a marble horizontally from 
the table onto the floor. The goal is to launch the marble 
onto a paper target on the floor so that in 10 launches it 
hits the target more than 5 times but less than 10. You 
may take measurements on the floor or on the table, but 
may only launch your marble through the air once (before 
the 10 trials), with TA in attendance. 
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predict what will happen, switching the student to a predictive 
mode.  

The second measurement concept can be illustrated by an-
other student answer to the same battery quiz question. This 
student gave a rather sophisticated response, taking into 
account the overlap between the two data sets. 

Student C: “The information shows there is signifi-
cant overlap. So we cannot really tell 
which battery lasts longer. They last the 
same approximately.” 

If the last two sentences of this answer are closely in-
spected, they may be interpreted as being contradictory. The 
first, “we cannot really tell which battery lasts longer,” could 
be interpreted to claim that the large range in the battery data 
is caused by the measurement process. If the range were 
smaller, perhaps the two data sets would overlap less, and we 
could see a difference. Possibly when the student tested the 
batteries, she was not careful to keep everything consistent 
between trials –she may have played different music at differ-
ing volume. Because the researcher’s experimental design 
contributed to the range in the result, it is called external 
variation. 

The second statement, “They last the same approximately,” 
could be interpreted to mean that the student was able to take 
a good measurement and determined that the batteries last 
about the same length of time. In this case, the batteries 
themselves cause the range – the student tested some batteries 
that just happened to last longer than others. This difference 
may be because the manufacturing process is variable, or 
perhaps the batteries were stored in different conditions for 
different periods of time. The source of the range is inside the 
tested system, so it represents internal variation. 

To further explain these two ideas, consider the better-
known terms instrumental uncertainty and statistical uncer-
tainty,26 which also distinguish between sources of uncer-
tainty. Instrumental uncertainty and external variation are 
effectively synonyms; however, the word instrumental may 
downplay the role of the person taking the measurement. 
Statistical uncertainty is by definition random (in contrast to 
systematic uncertainty) and does not correspond to either 
internal or external variation. Internal variation, using the 
battery example, can be random if varying amounts of a 
certain chemical are placed inside the battery. Internal varia-
tion also can be systematic - perhaps the Energizer batteries 
spent a longer time in transit, reducing each battery’s life by 
the same amount. External variation also can be statistical or 
systematic. 

Internal variation cannot be evaluated in the same manner 
as external variation. Internal variation is not harmful or 
helpful; it just exists. If we were to measure the quality at the 
battery manufacturing plant, we would measure the battery’s 
internal variation while minimizing the external variation. 
Quality control would then wish to minimize that internal 
variation.  As another example, consider an experiment 
measuring the energy of gamma rays emitted from a source. 
There will be a range in the result due to the measuring device 

(external variation) and the fact that the source does not emit 
gamma rays with the same exact energy (internal variation). 
If, instead, we use the gamma source to scatter rays off a 
target, the differing energy of the gamma rays becomes 
external variation, and we may include some sort of filtering 
device to narrow the spread in energy of the gamma rays 
incident on the target. Whether a variation is internal or 
external depends on the experimental context. 

This difference is critical for questions about quality con-
trol or equipment capability. For example, “If you use the 
device and method described below, how well can you meas-
ure a food’s weight?” Such questions ask students to reduce 
external variation while measuring internal variation. Students 
who conflate the two ideas will be unsure of what to measure, 
and may treat all variation as “error.” 

Failing to distinguish predictive questions from descriptive 
questions and internal variation from external variation is 
likely to cause learning difficulties for students. In addition, it 
can lead to miscommunication between instructors and stu-
dents, and may cause a teacher’s intervention to fail. Instruc-
tors should be aware of these differences, and laboratory 
courses should make these concepts explicit. In Sec. IIID we 
present an activity designed to elicit these and other concepts 
of measurement. 

 

D.  A concept-based laboratory activity 
A projectile lab asks students to build a device to launch a 

marble off a table and predict how large a target is needed to 
catch the marble between six and nine times out of ten. The 
goal is not to build the most accurate launcher, but to deter-
mine the accuracy of the launcher (see Fig. 2). The carnival 
background for the laboratory question provides a context to 
help students make sense of the question and also authenti-
cates the task of uncertainty propagation. 

Students are asked to design an experiment to answer the 
question, perform the experiment, come to a conclusion, and 
defend their conclusion to their peers. Most students measure 
the time it takes the marble to roll across the table, use that 
number to calculate the velocity of the ball leaving the 
launcher, and then use that velocity to predict the horizontal 
distance the ball travels through the air. The shortest and 
longest times define the largest and smallest horizontal dis-
tance. Students then must decide how large to make the target 
so that it will catch most, but not all of the marbles. 

Each stage of the laboratory is critical for students’ concep-
tual understanding. When designing the experiment them-
selves, students question how much data to take or how to best 
take a measurement. When performing the experiment, 
students get a idea of how their measuring instruments or 
implementation skill affects the uncertainty of their results 
(for example, how well they can measure time with a stop-
watch), and frequently troubleshoot problems such as how to 
keep the marble rolling straight on the table without experi-
encing significant friction. When defending their conclusion, 
students must have an idea of the uncertainty in their data to 
make a convincing argument for their conclusion. 
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For the projectile lab example, internal variation is caused 
by the launching device, which does not always push the 
marble exactly the same way. External variation is inherent in 
the various distance (using a meter stick) and time (using a 
stopwatch) measurements. If students design a reliable launch-
ing device, they may predict a larger target than necessary 
because their range is caused mainly by external variation. 

In addition, students are asked to predict the proper target 
size, not just describe what happened during their measured 
launches. In some cases, students measure only ten launches, 
which happen to cluster close together. When they test their 
target size, the launches happen to differ more, and the target 
size is too small. Students must decide how many measure-
ments are enough to make a prediction about 10 trials. 

This lab is held mid-semester, and requires other measure-
ment concepts. For example, students must decide whether to 
discard or retain any outlying data, (a concept introduced in an 
earlier lab) and have to be able to propagate the uncertainty 
found in their time measurement to the uncertainty in the 
calculated horizontal distance (a concept newly introduced in 
this lab). 

 

IV.  RESULTS FROM CONCEPT-BASED 
INSTRUCTION 

In the fall 2002 semester, a computer-based multiple-choice 
survey was administered to 120 students before and after the 
described concept-based laboratory course. The survey was 
based on the Physics Measurement Questionnaire, a free-
response survey that tests students’ ideas about making 
multiple measurements in space and time, deciding on a final 
value to report, and comparing two sets of data.5 Questions 
refer to exemplar data “gathered” by releasing a ball from a 
certain height on an elevated ramp and measuring how far the 
ball travels horizontally. On the computer survey, students 
viewed the question, chose an answer, and then were shown 
different reasons to choose in support of their answer. For the 
question in Fig. 5, students chose yes or no, and then a pop-up 
window with the specific reasons appeared. Students could 
choose multiple reasons, so the percentages shown add up to 
more than 100%. 

The most informative results occurred with the questions 
asking students to compare two data sets, where the number of 
students who chose to use range overlap as a reason for their 
answer increased greatly. For example, in Fig. 5, reasons 4 
and 10 use range overlap.27 Four data-comparison questions 
were included in the survey, the first two giving students five 
data points and an average, and the second two giving the 
average and standard deviation for two data sets. As shown in 
Fig. 6, there is a significant increase in the number of students 
using range overlap to compare data sets for all four questions 
(standard error bars are shown).28 

 
Fig.5: A standard deviation data comparison question from the 

multiple-choice computer survey. 

 
In contrast, consider the results from a traditional, “cook-

book” style laboratory associated with a calculus-based 
introductory physics course. Abbott surveyed 72 students 
before and after such a course, using a free-response question 
almost identical to the first data points question we used.29 For 
this traditional course (similar to many introductory physics 
labs), the lab manual gives written instructions on uncertainty 
estimation and propagation, but rarely required students to 
perform these calculations. Instead, students frequently 
calculated the percent difference between two of their results, 
or between their results and an accepted value. Abbott found 
no significant difference in the number of students using range 
to compare data sets after the students completed the course. 
(One student used range before the course and no students 
used range after the course.) This result indicates that expos-
ing students to laboratory methods and requiring limited 
uncertainty calculations will not increase their understanding 
of uncertainty – it takes a purposeful concept-based laboratory 
course to do that. 

Two other groups of students compare their results for  d 
obtained by releasing the ball at  h = 400 mm.  
Their means and the standard deviation of the means  
for their releases are shown below. 

 
Group A:    d = 434  ±  5 mm 
Group B:  d = 442  ±  6 mm 
 
Do the results of the two groups agree? 
 
Yes 

1. There isn’t a significant difference between the two 
group’s results. 

2. Everything has error, it’s impossible to get exactly the 
same every time. 

3. There’s a difference of eight millimeters between the 
two group’s averages. Eight millimeters is small,  
and so they pretty much have the same result. 

4. Group A’s range is from 429 to 439,  
group B’s from 436 to 448, so the ranges overlap. 

5. Other 
 
No 

6. Their averages are different. 
7. There is a significant difference between the two 

group’s results. 
8. The difference of eight millimeters is a large difference 

compared to the distances they’re measuring. 
9. Group A’s range has a width of 10 mm,  

group B’s range has a width of 12 mm,  
so they have different results. 

10. Group A’s range is from 429 to 439,  
group B’s range is from 436 to 448,  
they only overlap for 3 mm which is not enough. 

11. Group A’s average of 434 does not fall within the range 
for group B (436 to 448), and vice versa. 

12. Other 
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Fig.6: Percentage of students using range to compare data sets on 
four survey questions, two giving data points and two giving the 

average and standard deviation. The standard error of a 
proportion is shown as error bars. 

 

V.  SUMMARY 
We have argued that students must have a conceptual un-

derstanding of measurement and its related uncertainty to plan 
an experiment, analyze data, and make and defend conclu-
sions. Teaching students to calculate the average, percent 
difference, and standard deviation often does not lead to such 
an understanding, and the concepts themselves must be taught 
explicitly. However, the conceptual instruction of measure-
ment appears to be rare, and instruction on distinguishing 
predictive from descriptive questions and internal from 
external variation is almost non-existent. We have provided 
details of the design and testing of a concept-based laboratory 
course and have shown how such instruction resulted in gains 
in students’ ability to consider the uncertainty in data when 
forming conclusions. 
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