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Many introductory, algebra-based physics students perform poorly on mathematical 

problem solving tasks in physics.  There are at least two possible, distinct reasons for this 
poor performance:  (1) students simply lack the mathematical skills needed to solve 
problems in physics, or (2) students do not know how to apply the mathematical skills 
they have to particular problem situations in physics.   While many students do lack the 
requisite mathematical skills, a major finding from this work is that the majority of 
students possess the requisite mathematical skills, yet fail to use or interpret them in the 
context of physics.   

In this thesis I propose a theoretical framework to analyze and describe students’ 
mathematical thinking in physics.  In particular, I attempt to answer two questions.  What 
are the cognitive tools involved in formal mathematical thinking in physics?  And, why 
do students make the kinds of mistakes they do when using mathematics in physics? 

According to the proposed theoretical framework there are three major theoretical 
constructs:  mathematical resources, which are the knowledge elements that are activated 
in mathematical thinking and problem solving; epistemic games, which are patterns of 
activities that use particular kinds of knowledge to create new knowledge or solve a 
problem; and frames, which are structures of expectations that determine how individuals 
interpret situations or events.   

The empirical basis for this study comes from videotaped sessions of college students 
solving homework problems.  The students are enrolled in an algebra-based introductory 
physics course.  The videotapes were transcribed and analyzed using the aforementioned 
theoretical framework. 

Two important results from this work are:  (1) the construction of a theoretical 
framework that offers researchers a vocabulary (ontological classification of cognitive 
structures) and grammar (relationship between the cognitive structures) for understanding 
the nature and origin of mathematical use in the context physics, and (2) a detailed 
understanding, in terms of the proposed theoretical framework, of the errors that students 
make when using mathematics in the context of physics. 
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Chapter 1: Framing the Issue 

Introduction 

Galileo wrote that “the book of nature is written in the language of mathematics.”  
Over the 400 years since Galileo wrote these words, the mathematical language needed to 
read the book of nature has become increasingly complex – so complex that it led 
Einstein to say, “Do not worry about your difficulties in Mathematics. I can assure you 
mine are still greater.”   

Since mathematics is the language of physics, a complete understanding of the 
concepts in physics requires fluency in the mathematical language in which these 
concepts are couched.  However, most instructors of physics would agree that 
mathematical problem solving tasks in physics are, in general, a struggle for students.   

Among most physics faculty and instructors, there exist two common interpretations 
for students’ poor performance on mathematical problem solving in physics. One 
interpretation is that students lack the requisite mathematical knowledge to solve 
mathematical problems in physics.  An alternative interpretation is that students do not 
know how to apply the mathematical knowledge they have learned in mathematics 
classes to the context of physics.  Fleshing out exactly why students perform poorly on 
mathematical problem solving tasks in physics could have important implications for 
physics curriculum and instruction.   

Implications for physics curriculum   

Students’ poor performance on mathematical problem solving tasks in physics has led 
many physics departments and instructors to adopt conceptual physics courses, which 
remove explicit use of equations from the curriculum.  If students do not possess the 
requisite mathematical knowledge, these conceptual physics courses provide students 
with exposure to many important physics concepts to which they would otherwise not 
have access.  However, if students do have the relevant mathematical knowledge, then 
the dilution or removal of mathematical problem solving tasks in physics does not help 
the students learn to appropriately apply their mathematical knowledge in the context of 
physics; rather, it deprives them of the opportunity to do so.  

Implications for physics instruction  

An instructor’s (tacit or explicit) interpretation for why students perform poorly on 
mathematical problem solving tasks can have implications for physics instruction.  To 
illustrate this point, consider the following example of a student (pseudonym Mary) 
working on a homework problem.   

The particular problem that Mary is working on states:  
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You are driving on the New Jersey Turnpike at 65 mi/hr. You pass a 
sign that says "Lane ends 500 feet." How much time do you have in 
order to change lanes? 

Mary has difficulty, so she discusses her approach with an instructor: 
 …all right if I convert 65 mph to feet per second, which is the other thing 

that's given in feet… So then I got 95 feet per second is what you're 
moving, so in 500 feet like how long?  So, I was trying to do a 
proportion, but that doesn't work.  I was like 95 feet per second...oh 
wait...yeah in 500 feet, like, x would be like the time...that doesn't—I 
get like this huge number and that doesn't make any sense.  

Mary correctly identifies that using a proportion could help her solve this problem, 
but has trouble implementing this strategy.   

One interpretation for Mary’s difficulties is that she lacks the mathematical 
sophistication to solve this problem.  That is, she doesn’t know how to set up the 
proportion correctly, or, worse, she doesn’t know how to perform division reliably!  If 
this interpretation is correct, a legitimate pedagogical approach is to assign many 
mathematical exercises, in the hope that Mary’s problem solving skills will improve 
through inculcation on proportion and/or division problems.   

However, there is an alternative interpretation: it may be that Mary has the relevant 
mathematical knowledge, but has difficulty using it.  Mary’s difficulty in using her 
mathematics knowledge may stem from one of three reasons: (1) she doesn’t know how 
to use her knowledge in the context of physics to arrive at an answer, (2) her strategy for 
solving this problem precludes her from using the appropriate mathematics knowledge, or 
(3) the mathematics knowledge that she is remembering and using precludes her from 
using the appropriate strategies to solve this problem. 

If this alternative interpretation is correct (i.e. Mary has the knowledge, but doesn’t 
use it) then Mary might not benefit from inculcation on proportion problems, and, indeed, 
that might make things worse!  Rather, she needs guidance on how to activate and 
effectively apply the relevant mathematics knowledge she learned in her mathematics 
classes to the context of physics. 

We have no compelling reason to favor one interpretation over the other without a 
theoretical framework and supporting empirical evidence for analyzing and interpreting 
how students use mathematics in physics.  

Research Questions  

In this dissertation I propose a theoretical framework to analyze and describe 
students’ mathematical thinking in physics.  In particular, this theoretical framework is 
my attempt to answer two research questions:   
• What are the cognitive tools involved in formal mathematical thinking in physics?   
• Why do students make the kinds of mistakes they do when using mathematics in 

physics? 
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Main Contributions of this Dissertation 

Constructivism is the dominant paradigm in modern educational theory.   Redish 
(2004) defines constructivism as follows: 

The belief, common among educational researchers today, that new 
knowledge must be constructed out of existing knowledge, by 
establishment of new associations, transformation, and processing. 

The educator’s role in the constructivist paradigm is to help students construct new 
knowledge.  In order to assist the students the educator needs to be able to determine 
what the students are thinking and why they make the mistakes that they do.   That is, 
educators and researchers need to be able to describe and understand how students 
construct new knowledge. 

The major contribution of this dissertation is a theoretical, cognitive framework for 
analyzing and describing how students use and understand mathematics in the context of 
physics.  The theoretical framework in this dissertation offers educators and researchers a 
technical language capable of describing students’ (correct and incorrect) use of 
mathematics in physics.  That is, this theoretical framework offers a vocabulary 
(definition of the relevant cognitive structures) and grammar (relationship between the 
cognitive structures) for analyzing and describing students’ mathematical thinking and 
problem solving in the context physics.   It is useful to researchers and educators in three 
important ways: it synthesizes previous research into one coherent framework, it can be 
used as a diagnostic tool during instruction, and it can be used as a guide for future 
instruction and curriculum development. 

Theoretical framework as a synthesis of previous research  

Cognitive scientists, sociolinguists, and education researchers have posited the 
existence of many different cognitive structures and frameworks to explain how students 
parse, interpret, and understand the myriad of stimuli that inundate them in all learning 
environments.  The proposed cognitive structures vary in their grain-size, ranging from 
small cognitive building blocks (diSessa, 1993; Minsky, 1985; Minstrell, 1992; Sherin, 
2001) to large cognitive structures that describe how students interpret the world 
(Rumelhart, 1975; Tannen, 1993).  Despite the efforts of a few (Redish, 2004), these 
theoretical constructs exist as isolated ideas, without consensus about their range of 
applicability and relationship to each other. 

The theoretical framework presented in this dissertation attempts to synthesize the 
isolated theoretical constructs into one coherent framework.  This framework 
incorporates the ideas of phenomenological primitives (diSessa, 1993), symbolic forms 
and interpretive devices (Sherin, 1996), epistemic games (Collins and Ferguson, 1993), 
and frames (Fillmore, 1985; Goffman, 1974; Tannen, 1993) into one coherent theoretical 
framework for describing how students understand and use mathematics in physics.   
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The theoretical framework as a diagnostic tool 

The technical language developed in this theoretical framework can help educators 
and researchers diagnose students’ mathematical difficulties, on a case by case basis, and 
offer instructional interventions to help students utilize the mathematical knowledge that 
they already possess.  Simply stated, this framework makes sense of introductory physics 
students’ seemingly bizarre use of mathematics in the context of physics.  That is, 
students sometimes use mathematics in physics in a manner that is in stark contrast to 
how an expert would use the same mathematics. This theoretical framework can help 
experts understand students’ use of mathematics. 

The theoretical framework as a guide for instruction  

Many pedagogical attempts to improve mathematical problem solving focuses on 
teaching a systematic, step-by-step method that could be applied to all problem solving 
tasks (Pólya, 1945; Schoenfeld, 1978; Reif & Heller, 1982).  While instruction based on 
these types of prescriptive methods can produce improvements in students’ abilities to 
solve mathematical problems, exactly why these approaches work in not very well 
understood.  That is, it is not clear how these instructional methods help students use the 
mathematical knowledge they already possess – in the constructivists’ paradigm of 
learning. 

The theoretical framework developed in this dissertation offers instructors and 
curriculum developers a more thorough understanding of the cognitive building blocks 
and processes involved in mathematical thinking and problem solving in the context of 
physics.  With this improved understanding perhaps more effective and efficient 
instructional strategies can be developed.1 

Brief introduction to the theoretical framework 

My theoretical framework identifies three levels of cognitive structures relevant to 
mathematical thinking and problem solving in the context of physics:   

• Mathematical Resources – the basic knowledge elements that are activated in 
mathematical thinking and problem solving;  

• Epistemic Games – coherent activities that use particular kinds of knowledge and 
processes associated with that knowledge to create knowledge or solve a 
problem; and  

• Frames – structures of expectations that determine how individuals interpret 
situations or events.   

Each of these types of cognitive structures is described in more detail below.    

                                                 
1 I will offer more speculations and anecdotal evidence for this in chapter 8. 
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Mathematical Resources 

Mathematical resources are abstract knowledge elements – the cognitive tools 
involved in mathematical thinking and problem solving.  Within the category of 
mathematical resources there are  

o Intuitive Mathematics Knowledge – knowledge of mathematics that is learned at 
a very early age; examples are counting and subitizing.  Subitizing is the 
ability that humans have to immediately differentiate sets of one, two, and 
three objects from each other (Fuson, 1992). 

o Reasoning Primitives – abstract knowledge elements which describe students’ 
intuitive sense of physical mechanism.  Reasoning primitives are a 
generalization of diSessa’s phenomenological primitives (diSessa, 1993). 

o Symbolic Forms – combination of the conceptual knowledge of reasoning 
primitives and syntactic knowledge of mathematical symbolism into one 
single knowledge element (Sherin, 1996, 2001).  Symbolic forms consist of a 
symbol template and conceptual schema.  The symbol template is an element 
of knowledge that gives structure to mathematical expressions; e.g.  =  or  
+  + ...  (where the boxes can contain any type of mathematical expression).  
The conceptual schema is a simple structure associated with the symbolic 
form that offers a conceptualization of the knowledge contained in the 
mathematical expression; this part of the symbolic form is similar to the 
reasoning primitives discussed in the previous section. 

o Interpretive Devices – interpretive strategies used to extract information from a 
physics equation (Sherin, 1996). 

Resources can exist in three states of activation: inactive, primed, and active.  Inactive 
and primed resources are abstract knowledge elements that can potentially be used in 
different problem situations; as such they are neither right nor wrong.  Facets are 
resources that are active and mapped into specific problem situations – in accordance 
with Redish’s (2004) refinement of Minstrell’s (1992) term.  As such, facets can be right 
or wrong depending on how they are used.  Whereas there are small numbers of 
mathematical resources, there are countless numbers of facets corresponding to the 
myriad different situations into which mathematical resources can be mapped. 

Epistemic Games 

During mathematical thinking and problem solving in the context of physics, students 
appear to engage in activities that are associated with each other.  Epistemic games, 
which were first proposed by Collins and Ferguson (1993), are used to describe these 
associated activities.  The epistemic games that Collins and Ferguson identify are 
normative; their games are used to describe expert scientific inquiry across all scientific 
disciplines.  I extend their idea of epistemic games to include an observational 
categorization of what students actually do.  My identification of epistemic games is 
descriptive, rather than normative, and specific to physics rather than common to all 
scientific disciplines. I identify six different epistemic games that can be used to describe 
how students actually use and understand mathematics in the context of physics.  I follow 
Redish (2004) and define epistemic games as coherent activities that use particular kinds 
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of knowledge and processes associated with that knowledge to create knowledge or solve 
a problem.   

Epistemic games can be distinguished from each other by their ontology2 and 
structure.  There are two components that make up the ontology of an epistemic game: 
the knowledge base and the epistemic form.  The knowledge base is the set of 
mathematical resources that are activated during the playing of the epistemic game.  The 
epistemic form is a target structure that guides the inquiry.  The structure of an epistemic 
game also consists of two components: the entry conditions and the moves.  The entry 
conditions are determined by an individual’s expectations about the particular situation or 
problem.  To describe students’ expectations I introduce the concept of frames, which are 
discussed in the next section.  The moves of an epistemic game are the collections of 
activities that occur during the course of the problem solving activity. 

To understand the different components of an epistemic game, consider the epistemic 
game that Collins and Ferguson call list making.  All lists are inherently the attempt to 
answer a question.  Such as: “What do I need from the grocery store?”; “What were the 
causes of the American Civil War?”: Or, “What are the constituents of matter?”  The 
knowledge that one uses to answer anyone of these questions is the knowledge base.  The 
epistemic form in list making is the list itself; the list is the target structure that guides the 
inquiry.  The condition for entering the list making game is the expectation that a list can 
help answer the initial question.  Legitimate moves in list making are adding a new item, 
combining two or more items into one, changing an item, splitting an item into two or 
more items, or deleting an item.    

Frames and Framing 

The concepts of frames and framing help us understand how or why students 
“choose” to play a particular epistemic game in a particular context.  (I put the word 
“choose” in quotes, because I don’t mean a conscious choice, but rather a tacit decision.)  
Frames and framing have a long history in the linguistics and cognitive science 
communities (Goffman, 1974; Fillmore, 1985; Tannen, 1993).   

As a working definition of a frame, an individual’s frame helps her answer the 
question “What kind of activity is this?”  A frame is the definition of a situation that 
guides interpretation.  One’s expectations about a situation or event determine how the 
situation or event is interpreted.  The moment-by-moment interpretation of the situation 
is the frame. 

Overview of Dissertation 

Chapter 2 offers a review of previous research on mathematical problem solving.  In 
chapter 3, I discuss the data and the methodologies I employ to analyze the data.  
Chapters 4 and 5 are the major theoretical chapter.  In chapter 4, I introduce the 
mathematical resources that describe the cognitive tools involved in mathematical 
thinking and problem solving.  In particular, I discuss four different kinds of 
                                                 
2 Ontology – the description of a system in terms of the kinds of objects relevant for its description and 
their characteristics (Redish, 2004). 
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mathematical resources: intuitive mathematics knowledge, reasoning primitives, 
symbolic forms, and interpretive devices. 

In chapter 5, I discuss epistemic games and frames.  Students play six different 
epistemic games during mathematical thinking and problem solving in the context of 
physics:  Mapping Meaning to Mathematics, Mapping Mathematics to Meaning, Physical 
Mechanism Game, Pictorial Analysis, Recursive Plug-and-Chug, and Transliteration to 
Mathematics.  In addition, there are three different frames in which these games are 
couched:  quantitative sense-making, qualitative sense-making, and rote equation 
chasing. 

In chapter 6, I use this framework to analyze, in depth, a particular problem solving 
episode involving four students.  In particular, I show how this framework allows 
educators and researchers to ‘see’ and examine all the knowledge and reasoning that is 
involved in mathematical thinking and problem solving. In chapter 7, I show how this 
framework can be used to interpret the kinds of mathematical errors that students make 
when using mathematics in the context of physics.  In particular, I show how this 
framework helps make sense of students’ semantic mathematics errors in physics.  That 
is, this framework helps make sense of some of our students’ seemingly bizarre use of 
mathematics.  Lastly, in chapter 8, I summarize the theoretical framework and results, 
and discuss some instructional implications and possible future research that arise from 
this theoretical framework.
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Chapter 2: Review of previous research  

on students’ use of mathematics 

Introduction 

In my dissertation research I am interested in the cognitive tools involved in 
mathematical thinking and problem solving in the context of physics, and why students 
make the kinds of mathematical mistakes that they do.  There is ample research in the 
literature that can shed light on these issues.  In this chapter I summarize the work of a 
few key researchers and discuss how their work relates to my own research. 

Previous research on mathematical thinking and problem solving can be divided into 
two major categories: empirical research on student mathematics use and theoretical 
approaches to student mathematics use.  In the next section I discuss empirical research 
on student mathematics use.  In particular, I discuss research of students’ use of 
mathematics in the context of mathematics courses and physics courses.  I focus more on 
the latter, since I am interested in how students’ use mathematics in physics.  In the third 
section, I discuss theoretical approaches to understanding students’ use of mathematics.  
First, I describe some general theories of knowledge structures, and then I discuss some 
specific theories of the structure of students’ mathematical knowledge. 

The final section offers a brief discussion about how these different approaches fit 
together in a coherent whole, and how I use and build upon these approaches in my own 
research. 

Empirical research on student mathematics use 

The necessary first step in understanding students’ use of mathematics in physics is 
observing what students do with math.  It cannot be assumed that students necessarily use 
mathematics in the manner that they are instructed to by their teachers.  There is 
empirical research of students’ use of mathematics in the context of mathematics and the 
context of physics.   

Empirical research in mathematics context 

The mathematics education and mathematical psychology research communities have 
made significant progress on understanding students’ use of mathematics in the context 
of mathematics courses.  (Stephen Reed (1998) offers a review of research on problem 
solving in mathematics.)  Research has focused on students’ understanding of addition 
and subtraction (Carpenter and Moser, 1983; Riley, Greeno, and Heller, 1983; Kintsch 
and Greeno, 1985; Fuson, 1992), multiplication and division (Greer, 1992; Vergnaud, 
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1983, 1988; Schwartz, 1988), and understanding and describing student mathematical 
errors in mathematics courses (Ben-Zeev, 1996, 1998; Matz, 1982; VanLehn, 1986).  In 
addition, researchers in the mathematics education research community have pushed to 
incorporate the results and methods of cognitive science in their pursuits of understanding 
students’ use of mathematics (Schoenfeld, 1992; Silver, 1987).  In this vein, Lakoff and 
Núñez (2000) offer cognitive mechanisms by which humans can make sense of abstract 
mathematical concepts. 

These results in the mathematics education community are very useful, however a 
coherent and meaningful description of a highly context dependent phenomenon – like 
mathematics achievement in the context of physics – can only be achieved if the 
phenomenon is studied in its’ original setting.  Therefore, although the results from the 
mathematics education community have colored my own interpretations of my data, the 
bulk of my attention has focused on previous research on mathematics use in the context 
of physics.  Hence, the remainder of this chapter will focus on research on mathematics 
in the context of physics.  

Empirical research in physics context 

Previous empirical research on the role of mathematics in physics can be classified by 
the various methods employed by researchers to probe how students use mathematics in 
physics.  Two approaches have emerged:  the observational approach and modeling 
approach.  In the observational approach, researchers observe students’ use of 
mathematics in physics and attempt to explain these observations without explicit 
reference to the students’ knowledge structure or cognitive state.  The modeling approach 
generally starts by observing differences between experts and novices when using 
mathematics in physics, and then proceeds by constructing computer models that mimic 
the respective performances of the two groups.    

Observational Approach 

The observational approach is a relatively straightforward approach used to probe 
students’ use of mathematics in physics.  This approach tacitly assumes that students are 
rational thinkers who make mistakes when using mathematics in physics because of a 
small number of inappropriate interpretations.  It is the presence of these inappropriate 
interpretations that explain student errors when using mathematics in physics.   

Every algebraic equation has two main structural features: an equal symbol and 
variables.  From the arrangement of these structures, the relationship between the 
variables can be deduced.  So, in order to understand an algebraic equation one must 
successfully interpret at least three different things: the equal symbol, the variables, and 
the relationship between the variables.  This section is broken up into three subsections 
that focus on students’ misinterpretations of the equal symbol, the nature of a variable in 
an algebraic equation, and the relationship between the variables (in the context of 
thermodynamics). 

The equal symbol.  As a first attempt to understand students’ use of mathematics in 
physics it is natural to assess their interpretation of what an equation really means.  
Herscovics and Kieran (1980), and later Kieran (1981), attempt to understand students’ 
interpretations of the equals symbol.  By examining previous research on a range of 
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students from elementary school to early college students, Kieran concludes that students 
view the equal symbol as a “do something” symbol.  These students’ interpretation of the 
equal symbol is not necessarily harmful to their learning; it simply is illustrative of how 
students interpret one aspect of equations.    

Elementary students when reading arithmetic equations like “3 + 5 = 8” would say “3 
and 5 make 8.”  This reading of the arithmetic equation “3 + 5 = 8” was interpreted by 
Kieran to indicate that the students view the equal symbol as a symbolic prompt to add 
the first two numbers together.  The following example supports this interpretation about 
how students view the equal symbol.  First and second grade students when asked to read 
expressions like “  = 3 + 4,” would say, “blank equals 3 plus 4,” but they would also 
include that “it’s backwards!  Am I supposed to read it backwards?”  The students read 
the equations from left to right, like English sentences, in which case the result appears 
before the two numbers are added together.  However, to these students three and four 
must be added together before a result can be computed.   

The previous examples lend credence to the interpretation that elementary school 
students view the equal symbol as a “do something” symbol.  Kieran argues, however, 
that this interpretation of the equal symbol is not specific to elementary school students.  
Kieran cites the following example, from a high school student’s written solution, to 
argue that high school students also see the equal symbol as a do something symbol or an 
operator symbol:   

Solve for x: (Byers and Herscovics, 1977) 
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Examining this example it is seen that both sides of the equations are not always 
equal.  The equal symbol is traditionally used in algebraic equations to indicate a 
numerical equivalence between two mathematical expressions.  That is, the equal symbol 
separates two mathematical expressions that represent the same numerical value.  
However, the student does not use the equal symbol in that way in the above example. 

Kieran cites an example from Clement (1980), in which early college students 
enrolled in a calculus course use the equal symbol as a “do something” symbol.  The 
student sees an equals symbol and spontaneously attempts to differentiate the function. 

(Clement, 1980): 
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In this example it’s as if the student sees the equal symbol as an arrow that leads to 
the next step in the problem solution.  In the first line the student writes down what the 
function is.  In the third line, which the student’s solution implies is equal to the first line, 
the student is calculating the derivative of that function.  The student connects these lines 
in the derivation by an equal symbol, which suggests that the student is using the equal 
symbol as an arrow or “do something” symbol and not as an equivalence symbol.   

It’s not clear from this research whether the interpretation of the equal symbol as a 
“do something” symbol is harmful to the students or not.  That is, there are no direct 
instructional implications that can be drawn from this work.  Rather, this research only 
gives insight about how students understand one aspect of equations: the equal symbol.   

Variables in Algebraic Equations.  Clement, Lochhead, and Monk (1981) 
videotaped college science students solving simple word problems.  The students were 
instructed to talk aloud throughout the process of solving the problem.  The observed 
students experienced great difficulty in translating the English words from the problem 
statement into algebraic expressions.  Leery that the problem was “simply one of 
misunderstanding English,” Clement et al developed a set of written questions to further 
probe this issue.  One such question read:  

Write an equation for the following statement: “There are six times as 
many students as professors at this university.”  Use S for the number 
of students and P for the numbers of professors. 

This question was given to 150 calculus-level and 47 non-science major students. The 
correct answer to this question is S = 6P; however, 37 percent of the calculus students 
and 57 percent of the non-science majors answered this question incorrectly, with the 
most common mistake being 6S = P. 

Clement et al offered two possible explanations for the students’ mistakes.  The first 
explanation, which they called word order matching, is direct mapping of the English 
words into algebraic symbols.  So the sentence “there are six times as many students as 
professors” becomes 6S = P, simply because that’s the order in which the words “six,” 
“student,” and “professor” appear in the statement of the problem.  However, they offer a 
second, more interesting explanation for the students’ mistakes, which they call static 
comparison.  According to this explanation students misinterpreted the very meaning of 
the variables.  The variable S, to students using the static comparison interpretation, does 
not represent the number of students, but rather is a label or unit associated with the 
number six.  Some students even drew figures like the one below (see Figure 1), which 
indicates that they recognized that there are more students than professors. 

  S  S S S S S P  
Figure 1.  Figure that a student produced to assist in constructing an equation for the following statement: 

“There are six times as many students as professors at this university.” 

Relationship between variables.  Research by Rozier and Viennot (1991) shows 
that, in the context of thermodynamics, some students have trouble parsing the 
relationship between variables in multivariable problems.  Rozier and Viennot analyzed 
written responses to questions about thermodynamic processes on ideal gases, which 
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could be understood using the equation of state for ideal gases nRTpV = .  They found 
that students made two mistakes when interpreting multivariable processes.3   

First, the students would chunk the variables by mentally reducing the number of 
variables they would consider in a given process.  For example, Rozier and Viennot 
examined student responses to the following question: 

In an adiabatic compression of an ideal gas, pressure increases.  Can 
you explain why in terms of particles? 

The correct response involves the following string of reasoning:  

volume goes down → number of particles per unit volume goes up 
and the average velocity of each particle goes up → number of 
collisions goes up and the average velocity of each particle goes up 
→ the pressure goes up.  

However, a typical student response dropped any consideration about the velocity of the 
gas particles increasing and would only focus on the number of particles per unit volume 
increasing.  The student response can be represented in the following way:  

volume goes down → number of particles per unit volume goes up → 
number of collisions goes up → pressure goes up.   

By only considering the effect that the increase in the number of particles per unit volume 
had, the students reduced the number of variables that influence this process, and thereby 
resorted to what Rozier and Viennot refer to as linear reasoning.  The student’s response, 
in this example, is not necessarily wrong—that is, it doesn’t lead to an incorrect 
conclusion—rather, it demonstrates that students may use a simplified reasoning track to 
reach the correct conclusion.  This example serves only to give insight about the 
reasoning processes that students use when reasoning about the relationship between 
variables in multivariable causation. 

The second mistake that Rozier and Viennot observed students making when 
interpreting multivariable causation was the unwarranted incorporation of a chronological 
interpretation to certain thermodynamic processes.  An example of a student response 
helps bring this point out.  When asked to explain why the volume would increase for an 
ideal gas that is being heated at constant pressure, a student responded: 

The temperature of the gas increases.  Knowing that in a perfect gas 
nRTpV = , therefore at constant volume, pressure increases: the 

piston is free to slide, therefore it moves and volume increases. 
In this example the student’s response is wrong.  It is clear that by allowing the 

pressure to increase in the solution the student has contradicted the statement of the 
problem; i.e. that the gas is heated at constant pressure.  Rozier and Viennot argue that 
this contradiction disappears if the stipulation of constant pressure is only temporary, so 
that the interpretation by the student is understood to progress in time.  That is, if the 
word “therefore” in the student’s solution is interpreted to mean “later,” the student’s 

                                                 
3 Loverude et al (2001) find results that are consist with Rozier and Viennot’s results, but conclude that 
“general reasoning difficulties could not be completely separated from difficulties with specific concepts” 
(p. 141).  That is, Loverude et al conclude that the difficulties are not only with the variables but also with 
the concepts the variables represent.   
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solution is no longer contradictory.  However, the chronological interpretation present in 
the student’s solution does not come from the equation of state for an ideal gas.  The 
equation nRTpV =  represents simultaneous changes in the variables, whereas the 
student interprets the multivariable causation as being temporal. 

The research presented here does not have any direct instructional implications; 
rather, it serves as a “jumping-off-point” to help us understand how students interpret the 
different features of an equation.  This section focused on student interpretations and 
student reasoning about equations.  The next section will focus on student (and expert) 
performance while using equations during problem solving. 

Modeling Approach 

There are two basic components to what I call the modeling approach.  First, one 
observes the difference between the problem solving skills of the novice and the expert 
through talk aloud problem solving sessions, or written questionnaires, or both.  The 
second component of the modeling approach is the reason for the name ‘modeling 
approach.’   Computer programs are developed with the intent of modeling the 
performance of either the novice or the expert on similar problem solving tasks.  

Larkin, McDermott, Simon, and Simon (1980) articulated four novice/expert 
differences when solving problems; (i) speed of solution, (ii) backward vs. forward 
chaining, (iii) uncompiled vs. compiled knowledge, and (iv) syntax vs. semantic 
interpretations of English statements.  The speed of the solution is an obvious difference 
between novice and expert problem solvers; experts solve problems faster than novices. 

A difference that was articulated by Larkin et. al is that novices tend to “backward 
chain,” whereas experts tend to “forward chain” when solving problems.  This means that 
novices tend to attack the problem by determining what the end goal is and then working 
backwards from the end goal toward the initial conditions that are given in the problem 
statement.  In contrast, the expert tends to starts with the initial conditions given in the 
problem statement and work toward the end goal.  This is surprising because backward 
chaining is generally thought to be a sophisticated problem solving technique.   

The third novice/expert difference mentioned above is not a result from direct 
observations; rather it is a theoretical conjecture about how knowledge is structured for 
the novice and the expert.  Larkin et. al. argue that the novice’s knowledge must be 
processed “on the spot” in order to arrive at the problem solution; that is, the novice’s 
knowledge exists in what Redish (2004) calls an uncompiled form (much like a computer 
program that is uncompiled).  However, the expert may have portions of the problem 
solution compiled from experience in solving similar problems.  Because of these chunks 
of compiled knowledge, not all of the expert’s knowledge must be processed “on the 
spot” to generate the problem solution; i.e. some of the expert’s knowledge exists in 
compiled form.  The difference in the speed of solution for the expert and novice may be 
accounted for by this difference in knowledge structure; procedures using compiled 
knowledge can be executed much faster than procedures relying on uncompiled 
knowledge.   

The fourth novice/expert difference concerns the manner in which English statements 
are translated into algebraic notation.  The novice tends to write algebraic expressions 
that correspond with the syntax of the English statements (this is similar to Clement’s 
word order matching discussed above).   The expert, on the other hand, tends to translate 
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the English statements semantically—that is, in terms of the physics knowledge relevant 
to the problem—in order to construct algebraic expressions. 

Larkin et. al. discuss the computer program developed in 1968, called STUDENT, 
which translates English problem statements into algebraic expressions using the same 
syntax mapping that is generally associated with students.  Larkin et. al. use the 
following problem to discuss how STUDENT works: 

A board was sawed into two pieces.  One piece was one-third as long 
as the whole board.  It was exceeded in length by the second piece by 
4 feet.  How long was the board before it was cut? 

To solve the problem STUDENT starts by assigning a variable name (x) to the “length of 
the board.”  The first piece mentioned then becomes x/3 and the next piece becomes    
(x/3 + 4); therefore, the algebraic expression to be solved is x = x/3 + (x/3 +4).   

It was mentioned above that experts use their knowledge of physics to translate 
English statements into algebraic expressions.  The program ISAAC was developed to 
model this type of expert performance.  ISAAC uses schemata to understand ordinary 
language in terms of idealized levers, fulcrum, ropes, frictionless surfaces, etc.; i.e. it uses 
its physics knowledge to generate equations from the English statements.  For example, 
ISAAC will recognize a ladder leaning up against a wall as a lever, and associate with 
that lever the specific properties mentioned in the problem. 

What can be concluded from these computer programs?  Research by Hinsley and 
Hayes (1977) suggests that students can quickly (within the first few words of the 
problem statement) categorize mathematics word problems.  If these categorizations 
match with known problem solving strategies, then the students tend to employ these 
strategies – in much the same way that ISAAC attempts to solve algebraic word 
problems.  However, if the problem statement does not match with a known problem 
strategy, the students tend to employ a line by line translation of the text into 
mathematical expressions – in much the same way as STUDENT does.  Because of the 
correspondence of student performance and computer programs like STUDENT and 
ISAAC, Larkin et al argue that intuition and problem solving “need no longer to be 
considered mysterious and inexplicable”; with our increased understanding of the 
expert’s knowledge will come new avenues by which to understand the learning 
processes involved in the acquisition of such knowledge.   

Theoretical approaches to student mathematics use 

Theoretical approaches to understand students’ use of mathematics establish 
principles for understanding reasoning in general and in mathematics in particular.  First, 
I discuss general theories of knowledge structures.  In particular, I describe two different 
frameworks that have emerged for describing the general structure of knowledge.  
Second, I discuss specific theories of the structure of mathematics knowledge – in 
particular, the types of scientific knowledge and the ontological structure of mathematical 
entities.  
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General theories of knowledge structure 

The general theories of  knowledge structure method posits the existence of various 
kinds of cognitive constructs to understand the structure of concepts in general, not 
restricting the focus to simply concepts in mathematics.  A cognitive mechanism that 
explains the use of concepts in learning can be constructed from the theoretical cognitive 
structures. 

Two ostensibly distinct frameworks have emerged in the debate about the structure of 
student knowledge; (i) the unitary, misconceptions, or alternative theories framework 
(Chi, 1992; Clement, 1983; Carey, 1986; McCloskey, 1983) and (ii) the manifold or 
knowledge-in-pieces framework (diSessa, 1993; Minsky, 1985; Minstrell, 1992).  In 
short, the unitary story of knowledge is that students possess robust cognitive structures, 
or misconceptions, that need to be torn down, so the correct conception can be erected in 
its stead.   The manifold framework claims that students possess small pieces of 
knowledge that have developed through everyday reasoning about the world.  These 
small pieces of knowledge are activated by different contexts, and can be built upon to 
foster learning during formal instruction (diSessa, 1993; Smith et al, 1993; Hammer, 
1996).   

More recently, researchers have attempted to combine these two theoretical 
perspectives into one coherent framework.  Scherr (2002a, 2002b, 2003) shows how 
some aspects of student reasoning within the context of special relativity fall within the 
misconceptions framework, whereas, other aspects of their reasoning are better 
understood in terms of a knowledge-in-pieces framework.  Redish (2004) proposes a 
theoretical superstructure that subsumes the unitary and knowledge-in-pieces framework 
into one overarching framework and argues that both unitary and knowledge-in-pieces 
frameworks have explanatory power in different contexts.  

The remainder of this section discusses two representative theories about concepts 
that emerge from the unitary and knowledge-in-pieces frameworks. 

Unitary Knowledge Structure 

Chi’s (1992) central claim is that concepts exist within ontological categories, and the 
ontological categories admit an intrinsic and a psychological reality.  The intrinsic reality 
is “a distinct set of constraints [that] govern the behavior and properties of entities in each 
ontological category.”  The psychological reality is “a distinct set of predicates [that] 
modify concepts in one ontological category versus another, based on sensibility 
judgment task.”  So, the intrinsic reality is an objective reality that is imposed by a 
“sensible” (scientific) community; whereas, the psychological reality is a subjective 
reality created by the individual.  Chi argues that there should be an isomorphism 
between these two realities in order for learning to occur.  Figure 2 shows what an 
idealized ontology might look like, where an idealized ontology is “based on certain 
scientific disciplinary standards.”  
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Figure 2.  Idealized ontology (Chi, 1992). 

Students do not start out knowing everything; they must change their mental state, i.e. 
undergo conceptual change, in order to learn.  To understand conceptual change in Chi’s 
ontological categories model, the details of Figure 2 must be discussed.  The six entries 
along level 3—namely, the ovals entitled Natural Kind, Artifacts, Intentional, Constraint-
based, Emotional, and Mental—are six different branches or ontological categories.  The 
ontological tree refers to the collection of branches or ontological categories that are 
linked across different levels by arrows (in the figure the ontological tree associated with 
Matter is in blue).  The ontological structure permits two kinds of conceptual change: 
conceptual change within an ontological category and conceptual change across 
ontological categories.  Chi argues that the latter is more difficult and requires different 
cognitive processes to occur; therefore, it would better be classified as the acquisition of 
new conceptions rather than conceptual change.  

The theory asserts that conceptual change across ontological categories—henceforth 
called radical conceptual change—requires two independent processes.  First, the new 
category must be learned and understood.  An example from physics would be the 
acquisition of the scientific notion of Force as a new ontological category. Secondly, 
radical conceptual change requires the realization that the original assignment of the 
concept to a particular category is inconsistent with the properties of that category; 
therefore, the concept must be reassigned to a different category.  Staying with the same 
example from physics, one must realize that the concept of Impetus, as articulated by 
McCloskey (1983), does not belong in the ontological category of Force. 

The first requirement for radical conceptual change—stated in the previous 
paragraph—is achieved by learning the new ontological category’s properties and 
learning the meaning of the individual concepts contained within this ontological 
category.  The second requirement for radical conceptual change—reassignment of a 
concept to a new ontological category—can be achieved in one of three ways.   
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Firstly, one can “actively abandon the concept’s original meaning and replace it with 
a new meaning.”  For example, actively realizing that a thrown ball does not posses a 
quality like Impetus, rather the ball simply interacts with other objects via Forces.   

The second method to reassign a concept to a new ontological category is to allow 
both meanings of the concept to coexist, in different ontological categories, with either 
meaning being accessible depending on context.  Chi argues that this is probably the most 
common type of change since many professional “physicists will occasionally revert back 
and use naive notions to make predictions of everyday events.”  (It should be noted that 
some authors see this same example as evidence for knowledge fragments, like p-prims, 
instead of unitary knowledge structures like ontological categories.)   

Third, the coherence and strength of the new meaning can be so robust that the 
replacement of the concept is automatic. 

To summarize this subsection, Chi proposes a theoretical framework to understand 
conceptual change that occurs in learning science.  In this framework, concepts exist 
within a rigid hierarchical structure.  In the next subsection the very concept of a 
scientific concept is brought into question. 

Manifold Knowledge Structure 

diSessa and Sherin (1998) espouse a theory of one kind of concept4 that is based on 
the linkage of fragmented knowledge structures, which they call a coordination class.  
The word “coordinate” is used in two different senses in the definition of a coordination 
class.  The first is the integration of a particular situation into a whole, and the second is 
the invariance of the interpretation across contexts.  Along with the two uses of 
coordination, there are two structural components that make up a coordination class: the 
read-out strategies and the causal net. The information that one uses to construct a 
coordination class is gathered through various read-out strategies.  Read-out strategies 
refer to the methods one employs to extract information in various contexts and 
situations. The causal net is the set of implications associated with the coordination class.  
For example, the existence of a force ‘causes’ an acceleration, which is essentially 
captured in Newton’s Second Law: amF rr

= .  The meaning of these abstract definitions 
will be extracted from an example found in the literature.   

Wittmann (2002) applies diSessa and Sherin’s theory to interpret students’ 
understanding of wave pulses.  This work will serve as a concrete example of how the 
theory of coordination classes may be used by researchers in education research.  
Wittmann’s central claim is that students understand waves as object-like things instead 
of event-like things.  One example that Wittmann discusses involves students’ beliefs 
about pulses traveling on a string.  Flicking a taut string with one’s hand will generate a 
wave pulse that travels down the string.  The students in Wittmann’s study believe the 
pulse will travel faster if the string is flicked faster.  If one is thinking of the wave as 
being like an object, for example a ball, this interpretation would be true.  This is 
consistent with a common phenomenological primitive associated with objects, namely 
faster means faster.  (See chapter 4 for more on phenomenological primitives and 
mathematical resources.)  For example, throwing a ball is accurately described by the 

                                                 
4 They argue that the word ‘concept’ is used rather broadly in the research literature.  The theory of 
coordination classes only refers to a narrowly defined type of concept.  
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faster means faster p-prim, since moving one’s hand faster when throwing a ball will 
cause the ball to move faster.   

However, in the case of waves—which Wittmann describes as event-like—the faster 
means faster p-prim can be misleading.  That is, the faster means faster p-prim does not 
apply to the transverse velocity of the wave, which is how the students are using it.  So, 
in this example the p-prim is simply mapped incorrectly onto the physical situation.  The 
speed of the pulse is only dependent on the properties of the media in which it travels, in 
this case the string.  The relative speed at which the hand is moved to generate the pulse 
has no effect on the relative speed at which the pulse travels down the string.   

Wittmann’s conclusion is that students coordinate wave around the idea of objects; 
i.e. the students coordinate waves around the Object coordination class, whereas waves 
would be coordinated by an expert around the Event coordination class.  This 
coordination, according to Wittmann, occurs along three dimensions.  First, the students 
use their read-out strategies to associate wave as solid and object as point.  Second, the 
students’ motion resources, like faster means faster point to wave as object.  Third, from 
examples that are not discussed in this review, the students’ interaction resources, like 
adding and bouncing, point to wave as object.  The motion resources, interaction 
resources, and read-out strategies all coordinate around wave as object.  Figure 3 
(Wittmann, 2002) summarizes this conclusion. 

 

Smaller is Faster 

Working Harder 

Actuating Agency

Motion resources 

Object as Point Wave as Solid 

Wave as Object

Canceling

Bouncing 

Adding 

Interaction resources 

Readout strategies

 

Figure 3.  Possible schematic showing reasoning resources that describe an object-like model of waves. 

Specific theories of the structure of students’ mathematics knowledge 

In the mathematics knowledge structure approach, researchers posit various 
theoretical cognitive structures.  A cognitive mechanism, which explains the observed 
phenomena of the novice and/or the expert using mathematics, can then be constructed 
from the theoretical cognitive structures.  This section will be divided into three 
subsections entitled Types of Scientific Knowledge, Symbolic Forms, and Ontological 
Structure of Mathematical Entities.  These three subsections will focus on work by Reif 
and Allen (1992), Sherin (2001), and Sfard (1991), respectively. 

Types of Scientific Knowledge 
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Reif and Allen (1992) developed a cognitive model of “ideally good scientific 
concept interpretation,” which they used to understand the difference between 5 experts 
and 5 novices solving problems about acceleration.  Reif and Allen’s model starts by 
proposing knowledge that falls in three different categories (see Figure 4): 

main interpretation knowledge,  
ancillary knowledge, and  
form of knowledge. 
Main interpretation knowledge, as the name suggests, is the primary structure 

implicated in interpreting a scientific concept.  Main interpretation knowledge has two 
major components:  

1. General knowledge. General knowledge about a scientific concept is divided into 
three parts. 

a. A precise definition is important for any scientific concept and makes 
up the first part of general knowledge.  

b. Entailed knowledge is derivable from the definition, but is not 
explicitly articulated in the definition.  

c. Lastly, supplementary knowledge is related to, but not derivable from 
the definition.  

2. Case-specific knowledge.  This is knowledge that is applicable in a narrow 
domain of phenomena.  As an example, consider an object moving with constant 
speed on an oval path.  Many students say that the acceleration of the object is 
directed toward the center of the oval.  Although this is true for a circular path, 
this result is not true for a generic oval path.  

Ancilliary Knowledge 
 
Applicability conditions 
(Validity & Utility) 
 
Application Methods 

Main interpretation knowledge
 

General 
Definitional 
Entailed 
Supplementary 

 

Case Specific 

Form of Knowledge 
 

Description   Coherence   
Confidence

Retrieve
Apply 

 
Figure 4. Kinds of knowledge facilitating interpretation of a scientific concept. 

(Reif and Allen, 1992, p. 10) 

The second type of knowledge in Reif and Allen’s framework is ancillary knowledge.  
Like main interpretation knowledge, there are two major components that make up 
ancillary knowledge.  First, interpreting a scientific concept requires one to know when to 
use their knowledge; i.e. when is it applicable [validity] and when is it useful [utility].  
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Second, interpreting a scientific concept requires one to know how to use their 
knowledge; i.e. knowing the rules for applying one’s knowledge. 

The form of knowledge is the third type of knowledge that Reif and Allen proposed, 
which deals with the organization of the individual’s knowledge.  The following three 
components are contained in the form of knowledge:  

1. Description.  An individual’s knowledge can have a very precise description or it 
could be described in vague terms.  Either description will affect how the 
knowledge is applied.  

2. Coherence.  Individual knowledge elements may fit together into a coherent 
structure or they may be loosely connected fragments. 

3. Confidence.  Confidence in one’s knowledge can affect how that knowledge is 
applied.  Over-confidence in one’s knowledge may lead to careless mistakes or 
“incorrect application of the knowledge,” whereas under-confidence in one’s 
knowledge may prevent the application of appropriate knowledge. 

Reif and Allen attempt to categorize the different types of knowledge implicated in 
the understanding of a scientific concept – in this case, acceleration.  However, Reif and 
Allen’s model does not offer a constructivist’s account of how students develop expertise 
based on their intuitive ideas.  If a hypothetical group of students’ were asked questions 
about acceleration, even before they were formally taught about the concept, they would 
have intuitive ideas about it.  (See diSessa, 1993, for an account of students’ intuitive 
reasoning in physics.)  However, Reif and Allen’s model has difficulty explaining 
students’ intuitive ideas about scientific concepts.   

Symbolic Forms 

Sherin (2001) tries to gain insight as to “how students understand physics equations.”  
He starts by collecting data on how students used equations.  His data consists of 
videotaped sessions in which engineering students solved problems in pairs at a 
whiteboard.  They are fairly advanced and do not make structural math errors.  From this 
data Sherin developes a framework, called symbolic forms, to interpret how students 
understand physics equations. 

Symbolic forms consist of two parts.  The symbol template is an element of 
knowledge that gives structure to mathematical expressions; e.g.  =  or  +  + ...  
(where the boxes can contain any type of mathematical expression).  The conceptual 
schema is a simple structure associated with the symbolic form that offers a 
conceptualization of the knowledge contained in the mathematical expression; this part of 
the symbolic form is similar to diSessa’s p-prims (diSessa, 1993). 

  Examples of the difference between the symbol template and conceptual schema 
may serve to clarify these definitions (Table 1).  A student would use the symbol 
template,  = , when invoking the conceptual schema of balancing.  For instance, the 
utterance, “the normal force of a table on a block is balancing the gravitational force of 
the earth on the block,” corresponds with the algebraic expression BonEWBonTN = , a 

clear use of the symbol template  = .  The student also utilizes the same symbol 
template,  = , in association with the conceptual schema same amount.  For instance, 
the mathematical expression associated with the utterance, “the velocity of block A is the 
same as the velocity of block B,” is BvAv = ; this, again, is a clear use of the symbol 
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template  = .  To summarize, although the symbol templates were the same for both 
cases, the conceptual schemata associated with the symbol templates were different; 
therefore, different symbolic forms are implicated in the two cases.   

Utterance Conceptual 
Schema 

Symbol 
template 

Mathematical 
expression 

“The normal force of a table on 
a block is balancing the 
gravitational force of the earth 
on the block”  
 

Balancing  =  BonEWBonTN =

 “The velocity of block A is the 
same as the velocity of block B” 

Same 
amount 

 =  BvAv =  

Table 1.  Different conceptual schema associated with the same symbol template. 

Sherin’s framework was developed to accommodate algebraic equations for 
structureless quantities.  That is, his framework does not discuss the nature of the 
structure of physics equations.  For example, in physics there are algebraic equations, 
vector equations, operator equations, and matrix equations.  It’s unclear whether Sherin’s 
framework would accommodate different types of equations—like vector equations and 
operator equations—or, if this framework needs to be extended in some way to handle 
equations that are not simply algebraic equations containing structureless quantities.  It 
may be that different mathematical entities—like vector equations and operator 
equations—are conceptualized in different ways by the students.  The next section 
discusses two different ways in which mathematical entities can be conceptualized. 

Ontological Structure of Mathematical Entities 

There is no explicit mention of any ontological structure in Sherin’s symbolic forms, 
however Sfard (1991) argues there is an ontological structure to all abstract mathematical 
notions.  According to Sfard, these abstract mathematical notions can be viewed 
“structurally—as objects, and operationally—as processes,” and that these two views are 
complementary.   For example, a circle can be viewed structurally as the locus of all 
points equidistance from a given point.  Or, a circle can be viewed operationally as the 
figure obtained by rotating a compass about a fixed point.  Sfard gives various examples 
of mathematical notions viewed structurally and operationally (these are summarized in 
Table 2). 
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 Operational Structural 
Function Computational process 

   or 
Well defined method of getting 
from one system to another 
(Skemp, 1971) 
 

Set of ordered pairs (Bourbaki, 
1934) 

Symmetry  [Invariance under] 
transformation of a geometrical 
shape 

Property of a geometrical 
shape 
 

Natural 
number 

0 or any number obtained from 
another natural number by 
adding one ([the result of] 
counting) 

Property of a set 
   or 
The class of all sets of the 
same finite cardinality 
 

Rational 
number 

[the result of] division of 
integers 

Pair of integers (a member of a 
specially defined set of pairs) 
 

Circle [a curve obtained by] rotating a 
compass around a fixed point 

The locus of all points 
equidistant from a given point 

Table 2.  Operational and structural descriptions of mathematical notions (Sfard, p5). Note: At some level 
these maybe formally the same, i.e. to identify a property of a shape one may have to transform the object 
in their mind—but may not be aware of this mental transformation.  That is, the operational and structural 

interpretations are cognitive not formal differences. 

Sfard argues that from a historical point of view a structural understanding of a 
mathematical notion is conceptually more difficult to achieve than an operational 
understanding.  The transition from an operational to a structural understanding involves 
the following three-stage process:  

1. Interiorization:  At this stage, in order for the mathematical notion “to be 
considered, analyzed and compared it needs no longer to be actually performed” 
(p. 18).   

2. Condensation:  This phase involves a greater familiarity with the process as a 
whole, without the need of going through all the details of the process to 
understand it.  That is, “it is like turning a recurrent part of a computer program 
into an autonomous procedure.”  

3. Reification:  This stage is characterized by an ontological shift in how the 
mathematical notion is viewed, from process to object.  This is a sudden and 
radical shift that offers the “ability to see something familiar in a totally new 
light.” 

Sfard summarizes the difference between an operational and structural conception of 
a mathematical notion along four dimensions (see Table 3): (1) the general 
characteristics, (2) the internal representation, (3) its place in concept development, and 
(4) its role in cognitive processes.  Sfard concludes that the operational and structural 
conceptions of a mathematical entity are complementary and are both useful in problem 
solving. 
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 Operational Conception Structural Conception 
General Characteristics Mathematical entity is 

conceived as a product of 
a certain process or is 
identified with the 
process itself 
 

A mathematical entity is 
conceived as a static 
structure as if it was a 
real object 

Internal Representation Is supported by verbal 
representations 
 

Is supported by visual 
imagery 

Its place in concept 
development 

Develops at the first 
stages of concept 
formation 
 

Evolves from the 
operational conception 

Its role in cognitive 
processes 

Is necessary, but not 
sufficient, for effective 
problem-solving learning 

Facilitates all the 
cognitive processes 
(learning, problem-
solving) 

Table 3.  Differences between an operational and structural  
conception of a mathematical notion. 

Although, the structural conception comes later than the operational conception of a 
mathematical notion in Sfard’s story, she claims they are two “sides of the same coin.”  
Both conceptions of a mathematical notion are important for understanding and for 
problem solving.  

Discussion 

The chapter looks fairly closely at empirical and theoretical attempts to understand 
how students use mathematics in physics.  Can one distill a common thread between 
these approaches?  There appears to be a logical flow that leads one approach into the 
next.  The first step to understand how students use mathematics in physics is to 
systematically observe situations in which students use mathematics or simply document 
the problems students have when using mathematics in physics.  This is the crux of the 
program in the observational approach.  The second step in this logical flow—the 
modeling approach—attempts to model the performance or behavior of the students by 
creating runnable programs.  The third step—the general and mathematical knowledge 
structures approaches—attempts to understand the internal cognitive structures that are 
responsible for the students’ performance.     

My own dissertation research is an attempt to construct a cognitive model for 
describing how students understand and use mathematics in the context of physics.  The 
observational approach offers the necessary first step, lending insight into what students 
do with mathematics in physics, and where they have difficulties.  The general 
knowledge structures approach has established general principles for describing the 
cognitive mechanisms involved in understanding scientific concepts – principles that can 
be applied to describing the cognitive mechanisms involved in mathematical thinking in 
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the context of physics.  I use Sherin’s (1996, 2001) cognitive description of how students’ 
understand physics equations (in terms of symbolic forms and interpretive devices), and 
extend his work to include a description of how students actually use mathematics in the 
course of solving problems in physics (in terms of epistemic games).  Lastly, I show how 
one can use the cognitive framework that I have developed to understand student 
mathematical errors in physics. 

I do not create a runnable, computational model of the mind in my own research.  To 
date, I have only identified the cognitive structures and mechanisms to describe and 
analyze students’ use of mathematics in physics.  Future work could involve developing 
computer models, based on the cognitive model outlined in this current work, to model 
students’ use of mathematics in physics.  I have more to say about this in chapter 8. 
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Chapter 3: Data and research methodology 

Introduction 

Researchers have studied human problem solving in different contexts: problem 
solving associated with games such as chess (Newell and Simon, 1972), problem solving 
in mathematics (Kintsch & Greeno, 1985; Schoenfeld, 1992), and mathematical problem 
solving in the context of physics (Chi et al, 1981; Clement, 1987; Clement, 1988; Larkin, 
1979; Larkin et. al., 1980; Trowbridge & McDermott, 1980; Viennot & Rozier, 1991).  
My own research is not per se about mathematical problem solving; rather, it’s about 
how students use mathematics in the context of physics.  In particular, my research goal 
is to construct a theoretical framework for describing how students – correctly and 
incorrectly – understand and utilize mathematics in physics; i.e. what are the cognitive 
tools and processes they employ to understand mathematics in physics?  From a detailed 
understanding of how students use and understand the mathematics I can then interpret 
the students’ mathematical errors.  Eventually, this work may lead to new instructional 
strategies and environments that improve students’ use of mathematics in physics.   

However, before I can outline a solution (a theoretical framework for analyzing and 
describing students use of mathematics in physics) I must clearly articulate the problem 
(what is it that students do with mathematics in physics).  In this chapter I describe the 
empirical basis for this study.  In the first section I discuss how math in math courses is 
different than math in physics courses.  The second section gives some background into 
the existing cognitive theory of mathematical thinking and problem solving.  In the third 
section I give a brief preview of the theoretical framework and how it incorporates 
existing ideas from cognitive theory.  In the fourth and fifth sections I describe the 
reformed physics course in which the data was taken for this study and the actual data set.  
In the penultimate section I discuss the research methodologies employed in this study.      

Math in physics courses is different than math in math courses 

The first thing to note is that students use mathematics in physics courses differently 
than they do in mathematics course.  My support for this claim rests on three non-
orthogonal dimensions:  (1) students have difficulty mapping concepts from mathematics 
courses to concepts in physics, (2) there are ontological differences between the 
mathematics taught in mathematics courses and that used in physics courses, and (3) 
students think there is a difference between the mathematics in math courses and the 
mathematics in physics courses. 
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Difficulties mapping concepts from mathematics courses 

Mathematics is required in physics; algebra is a prerequisite for almost all physics 
courses (with the exception of some conceptual physics courses).  In fact, many students 
have already taken two semesters of calculus by the time they enroll in a college level 
physics course.  (In this study, greater than 95% of the students enrolled in the algebra-
based physics course had taken two semesters of calculus.)   However, research by 
Steinberg, Saul, Wittmann, and Redish (1996) indicates that introductory physics 
students don’t apply what is learned in math classes to problems in physics – a reality that 
many physics professors have observed first hand.  Students have had repeated exposure 
to mathematics in their previous course work, and yet they continue to perform poorly on 
mathematical problem solving tasks in physics. 

We could simply require more mathematical preparation.  However, our students are 
already very busy; requiring more course work does not seem like the answer.  Even if 
we did require more course work, it is not likely to success if we do not understand why 
the students are not applying what they have learned in mathematics classes to problem 
solving in physics.  With a detailed understanding of why students don’t apply their 
mathematics knowledge to physics courses (or when they do) we can begin to develop 
instructional strategies and environments to help them apply their previous knowledge – 
i.e. we can help our students learn more efficiently.  The only way this can be done is by 
investigating students’ use of mathematics in the context of physics. 

Ontological discord between math used in physics and math taught in mathematics 

There is an ontological discord between the mathematics taught in introductory, 
college-level math courses and introductory, college-level physics courses.5  By an 
ontological discord, I simply mean that the mathematical objects used in introductory, 
college-level physics courses are often more complex than the mathematical objects used 
in introductory, college-level math courses.  Open a standard textbook used for an 
introductory college-level (or calculus) math course and you will see mostly single 
variable equations and relationships.6  Redish et al (1996) notice that a standard 
introductory physics course contains many different mathematical entities that students 
must successfully interpret: 

1. numbers: 2, e, 5/7  
2. universal constants: c, G, h, k (Boltzmann)  
3. experimental parameters: m, R, T, k (spring)  
4. initial conditions: x0, v0  
5. independent variables: x, y, z, t  
6. dependent variables: x, y, v 

                                                 
5 The ontological discord between math courses and physics courses is not simply relegated to introductory 
courses.  This discord has led many physics departments across the country (including the one at the 
University of Maryland) to adopt mathematical physics courses for advanced undergraduates (at UMd it is 
labeled PHYS 374 “Intermediate Theoretical Methods”).   Future research could involve using the 
theoretical framework developed in this dissertation to study advanced physics undergraduate and graduate 
students’ mathematical difficulties.  
6 Multi-variable relationships are usually not taught until 3rd semester calculus. 
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7. quantities and net quantities: netF ,  appliedF , frictionf  
Students in a typical introductory mathematics course are not asked to discern a 

difference between a quantity and a net quantity (like F and Fnet).  This issue may seem 
relatively subtle or simply unimportant – one might think that students would have no 
trouble distinguishing force and net force.  In fact, the opposite is true.  Students have a 
great deal of trouble with the mathematical differences between force and net force, 
velocity and change in velocity, momentum and change in momentum, etc.  Since these 
distinctions are not generally emphasized in mathematics – and since they are particularly 
important distinctions in physics – the obvious place to study students’ difficulties with 
these distinctions is in the context of physics and not mathematics. 

Students think there is a difference between math in physics and math in math     

A third reason that indicates that the mathematics in math course is different from that 
in physics courses is that students think and act as if there is a difference.  A conversation 
between two students working on the Fuel Efficiency Problem (Appendix A, #8) 
illustrates this point.  The students find the relationship between the European fuel 
efficiency e (measured in liters/100 km) and the American fuel efficiency f (measured in 
miles/gallon) to be 227=fe .  In order to interpret what this equation means the students 
must translate it into “a regular math example”: 

 S4:  So, let's say, e is equal to x, e is the thing that you don't know, and f is 
equal to 2.  That's, that's given in the equation.  That's given in the 
example.  So when you have a regular math example like this, a 
number is equal to 2 x, what do you do? 

S1:  Divide. 
S4:  You just divide by 2.   
S1:  So, then that would give you e. 

The point of this quotation is to illustrate that the students do not immediately 
interpret an expression like 227=fe  as a “regular math example.”  It is not until e is 
mapped into x and f is mapped into 2 that the students are able to interpret the meaning of 

227=fe .  This is one example of a more general student belief that the mathematics in a 
physics course is different than the mathematics in a mathematics course.  If the students 
perceive a difference between the mathematics in a physics course and the mathematics 
in a mathematics course, they may use different knowledge elements and reasoning 
strategies when using mathematics in these two different settings.  To understand 
students’ use of mathematics in physics courses, we should observe students using 
mathematics in physics courses – observations of students using mathematics in math 
courses is not enough. 

The cognitive science of mathematical thinking and problem solving 

As I mentioned earlier, I am interested in the cognitive tools involved in formal 
mathematical thinking in physics and understanding students’ correct and incorrect use of 
mathematics in physics.  However, before I explain the cognitive tools students bring to 
bear on problem solving in physics, I review some basic aspects from cognitive science. 
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Basics of cognitive theory 

Research in cognitive science has reached a consensus on certain aspects of human 
memory.  Most cognitive scientists divide memory into working memory and long term 
memory.  Anderson (1983) further divides long term memory into declarative memory 
and production memory.   

I will use the schematic diagram of the structure of memory contained in Figure 5 to 
discuss the different aspects of memory articulated by cognitive scientists.  Working 
memory, or short-term memory, is where we encode and store input from the outside 
world.  However, the memory space in working memory is limited and fleeting.  For 
example, most of us cannot remember a ten digit phone number we just looked up in the 
phonebook between the time we read it and the time we dial unless we actively recite the 
digits in the phone number.  Information that is elevated from working memory to 
permanent knowledge is stored in declarative memory.  In contrast to working memory, 
declarative memory appears to have unlimited capacity; however, there is an issue with 
retrieving information stored in declarative memory.  Production memory stores 
information about scripts and strategies for solving problems.  If the encoding of a 
situation in working memory matches a strategy that exists in production memory, then 
the strategy is called and executed in working memory.   

 

Declarative 
Memory 

Production 
Memory 

Working 
Memory 

Storage

Retrieval Execution 

Match 

Encoding Performances
 

Figure 5.  Schematic view of cognitive theorists’ view of the ontological structure of human memory 
(Anderson, 1983).  

Basics of cognitive theory applied to mathematical thinking and problem solving 

In light of the structure of human memory, articulated by cognitive scientists, 
mathematics education researchers have established five generally accepted aspects that 
are important for any inquiry into mathematical thinking and problem solving 
(Schoenfeld, 1992): 
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1. The knowledge base – refers to the organization of and access to information stored 
in long term memory.   What do students know?  How is it organized?  How do 
they access what they know?       

2.Problem solving strategies – the strategies and heuristics that students employ during 
mathematical problem solving tasks.  The modern discussion of problem solving 
strategies and heuristics starts with Pólya’s book How to Solve It (1945). 

3.Monitoring and control – human problem solvers awareness of and control over their 
progress during the problem solving process.  It has been observed that human 
problem solvers must limit their attention to certain aspects of the problem situation 
– humans cannot parse and interpret the myriad of stimuli inundating them every 
second due to limitations of working memory.   An umbrella term that encompasses 
monitoring and control is metacognition. 

4.Beliefs and affects – an individual’s beliefs about and feelings toward mathematics 
influences when and how she approaches and utilizes her knowledge about the 
subject.  

5. Practices – the environments in which mathematics is taught that affect what and 
how the mathematical information is learned.  It seems that some learning 
environments contribute to students developing a disconnect between “school 
mathematics” and “real mathematics.”  For these and other reasons, Schoenfeld 
(1992) espouses teaching mathematics as an “enculturation.”  In this view, students 
are immersed in the process and culture of thinking mathematically in the attempt 
to get the students to “[see] the world through the lens of the mathematician” 
(Schoenfeld, p. 341). 

To address the first four aspects listed above, I distinguish three different cognitive 
structures implicated in mathematical thinking: resources (the cognitive building blocks 
of student thinking), epistemic games (the collections of reasoning strategies employed 
during problem solving), and frames and framing (individuals’ interpretation of a 
situation or event based on their expectations of the situation or event).  Each of these 
structures will be discussed in turn.  

Although I believe the study of the practices of mathematical education is very 
important, I do not address practices in my study.  However, the theoretical framework 
that I develop in this dissertation can be used as a guidepost for future work in developing 
learning environments and practices that enhance and improve students’ use of 
mathematics in physics. 

Theoretical Framework, in brief 

Resources as knowledge base  

The knowledge base refers to the organization of, and access to, information that is 
stored in long term memory.  Students’ mathematical knowledge consists of loosely 
organized bits of knowledge, or resources.7  The cognitive mechanism governing access 
                                                 
7 My own view of resources in based on the work of many researchers (diSessa, 1993; Hammer, 2000; 
Hammer and Elby, 2002; Minstrell, 1992; Minsky, 1985; Redish, 2004; Sherin, 2001).  I give a more 
thorough description of resources in chapter 4. 



 30 

to these resources is activation.  The following example helps illustrate the difference 
between resources and their activation. 

A student (pseudonym Mary) working on the Conversion Problem (Appendix A, #4) 
explains her method to the TA:  

Mary:  I'm trying to—this one seems like it should be not too bad. This one 
you're driving on the New Jersey turnpike at 65 mph...so I was 
thinking—all right if I convert 65 mph to feet per second which is the 
other thing that's given in feet. 

TA:  OK. 
Mary:  So then I got 95 feet per second is what you're moving, so in 500 feet 

like how long?  So, I was trying to do a proportion, but that doesn't 
work.  I was like 95 feet per second...oh wait...yeah in 500 feet, like, 
x would be like the time...that doesn't, I get like this huge number 
and that doesn't make any sense.  

Mary realizes that a proportion could help her solve this problem, but has trouble 
implementing her strategy.  (I believe what she writes is an expression like this: 

second 1
feet 95

500
=

x .  When she cross-multiplies she gets a “huge number” that “doesn’t 

make any sense.”)  When the TA asks the same question with slightly different numbers 
the student immediately answers the question:  

TA: So what if I said something like… if I was traveling 4 feet per second 
and I moved 20 feet, how long did it take me? 

Mary:  Yeah, 5 seconds.  
Changing the numbers makes this question immediately transparent to Mary, but why 

is that?  The second quotation indicates that Mary has the appropriate mathematical 
resources to answer the original question, but she initially does not have access to those 
resources – that is, they are not activated.  Changing the numbers in the problem 
activated, these resources, giving Mary access to the appropriate knowledge.  (I have 
more to say about resources in chapter 4.)   

Epistemic games as problem solving strategies 

Students employ a variety of strategies during problem solving in physics.  As an 
example consider the following group of students thinking about the equation for 
conservation of momentum in the Colliding Gliders Problem (Appendix A, #3): 

 Arielle:  So then the Fnet for A, the Fnet for M.  This is a big mass and this 
is a little mass and these are equal, so this has got to be a big, what 
is it, a big velocity and this has got to be a small velocity.  So, p for 
A and p for m—the change in velocity here has got to be sort of 
bigger.  Big velocity little mass, big mass little velocity.  But these 
are equal. 

Betty:  Right. 
Tommy:  Right. 
Arielle:  So the momentums got to be the same, right?  
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Arielle seems to understand and draw valid conclusions from the expression for 
momentum.  However, she later processes this same expression in a very different 
manner:  

Arielle:  How could they be the same?  If the masses are different and the 
change in velocities are different the momentums can’t be the same.  

This quotation indicates that the student processes the information contained in the 
expression for momentum in a seemingly, completely different manner than she did in 
first quotation – she draws the conclusion that the “momentums can’t be the same.”  
From the first set of quotations it’s clear that the student possesses the requisite 
mathematical resources; however, the second set of quotations indicates that she uses a 
different strategy for processing and coordinating these resources to arrive at an answer.  
Any theoretical framework of mathematical thinking has to be able to explain how this 
can happen. 

According to the theoretical framework I propose, the various different problem 
solving strategies that students employ can be understood in terms of epistemic games.  
Collins and Ferguson (1992) introduced the idea of epistemic games to categorize the 
different methods that experts employ during scientific inquiry.  I extend the idea to 
novices creating new knowledge.  I follow Redish (2004) in defining an epistemic game 
as: 

A coherent activity that uses particular kinds of knowledge and 
processes associated with that knowledge to create knowledge or 
solve a problem.  

According to the idea of epistemic games, I interpret Arielle’s two different 
approaches to the Colliding Gliders Problem as the activation of two different 
interpretive devices within the same epistemic game.  (I introduce interpretive devices in 
chapter 4.  I have more to say about epistemic games in chapters 5 and 6.) 

Frames and Framing as a mechanism for monitoring and control 

According to the theoretical framework I propose, students’ expectations govern what 
they monitor and control.  An example of Mary and Emma working on the Paper Towel 
Problem (Appendix A, #10) illustrates this point: 

Mary:  If you pull it with one hand, so all the force is concentrated in one 
area of the towel, so it causes it to rip.  You know.  But, if you pull it 
with both hands, it's going to be a more equal distribution, maybe.  
So, you could (?), that's what I was thinking.  But, if your hands are 
wet it makes the towel soggy, which makes it weak, so it's more likely 
to rip. 

Emma:  It might make it more likely to rip, but still that's better than pulling 
it with one hand. 

Mary:  Yeah, if both your hands--like (?) yeah. 
Emma:  Is that all we're supposed to do with that?  I feel like (?).  Like, I 

feel like it should have something to do with like not just force.  I feel 
like it should have something to do with what we've learned like 
recently.  Having to do with like water and pressure  (?). 
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Mary offers an explanation for this problem, but Emma is not completely satisfied 
with this explanation.  Emma’s expectations about what this problem involves are the 
driving factor behind her dissatisfaction: “I feel like it should have something to do with 
like not just force.  I feel like it should have something to do with what we've learned like 
recently.”  This example typifies how students’ expectations govern what they pay 
attention to and how they evaluate their own performance. 

Frames and framing are the main theoretical constructs that I use for describing 
structures of expectations.  The ideas of frames and framing have a long history in the 
sociolinguistics community.  (See Tannen, 1993, for a review.)  Tannen explains that an 
individual’s framing (i.e. structure of expectations) helps her answer the question, “What 
kind of activity is this?”  I discuss frames and framing in more detail in chapter 5.       

The setting of this study 

Student Population 

The students for this study come from an introductory, algebra-based physics course 
at the University of Maryland, College Park.  The students enrolled in this course are 
approximately 60% female; 70% are juniors and seniors, about 50% are biological 
science majors, and about 40% are pre-meds.   

A particularly interesting statistic for this study is that greater than 95% of the 
students have had two semester of calculus, yet they are enrolled in an algebra-based 
introductory physics course.  One possible reason that the students enroll in the algebra-
based course although they have the requisite calculus background may simply be that 
the calculus based-course is not required for their majors.  In general, these are ambitious 
and busy students, who are extremely concerned about getting “an A” in every course.  
Therefore, it is not in their best interest to take what they imagine to be more difficult 
courses that are not required for their majors.  However, related to the students’ desire to 
get an A, they may lack confidence in their mathematics skills, and therefore opt to take 
the algebra-based course because it requires less mathematical sophistication.  Calculus is 
usually taken by these students in the first year of college, and since 70% of these 
students are juniors and seniors many of these students probably haven’t taken any 
formal mathematics courses for two years (or more) by the time we see them in our 
physics class.  This long hiatus from formal mathematics suggests that lack of confidence 
in their mathematics skills may be a secondary reason for enrolling in the algebra-based, 
introductory physics course. 

Structure of the modified, introductory, algebra-based course 

The students involved in this study were enrolled in the introductory, algebra-based 
physics course that was reformed by the Physics Education Research Group (PERG) at 
the University of Maryland (UMd).  This course had four major structural components 
that were all non-traditional in some fashion: a lecture, a discussion section, and a 
laboratory. 
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The Lecture:  The lecture was taught by the instructor of the course and was given in 
a large lecture hall consisting of about 100-160 students.  The lecture met 3 times a week, 
with each meeting lasting 50 minutes.  Two modifications to this lecture significantly 
increased student participation during these lectures: (1) Each student was issued a 
Remote Answering Device (RAD) that they use to answer multiple choice questions in 
real-time (Mazur, 1997).  The instructor periodically asks a multiple-choice question 
during the lecture to which the students respond.  The students’ responses were collected 
electronically.  A computer program would automatically display a histogram of the 
student responses.  In this way the students and instructor could see the fractions of 
students choosing each answer.  This immediate feedback about the students’ thinking 
was valuable for both the instructor and the students.  (2) Most weeks the students 
participated in an Interactive Lecture Demonstration (ILD).  During an ILD the students 
received a worksheet outlining specific questions that would be discussed.  The instructor 
would lead the students through the worksheet and lead a class discussion about the 
issues raised in the worksheet.  The students were not graded on their answers to the ILD, 
but they were given homework and test questions to assess their understanding of the 
material discussed during ILDs.  (See Sokoloff and Thornton, 2004, for more on ILDs.) 

The discussion and laboratory:  The students also attended a discussion and 
laboratory section taught by a teaching assistant.  These sections were limited to 20 
students per section and met once a week for three hours.  In the first hour the students 
worked in groups of four on worksheets, called tutorials, which lead the students through 
conceptual physics content.  Some of these tutorials were modified versions of the 
University of Washington’s Tutorials in Introductory Physics (McDermott et al, 2002).  
During the second and third hours the students worked on a physics laboratory, called 
Scientific Community Labs (Lippmann, 2003).  These laboratories were modified in many 
ways.  First, the students were not given a lab manual of lengthy instructions.  Rather, the 
students were given a brief description of a particular setting (for example, the pendulum 
of a grandfather clock) and were asked a question (for example, what properties of a 
pendulum affect the period).  The students were expected to design an experiment to 
answer the question.  A second major modification is that these laboratories focused on 
the process of doing science, rather than focusing on physics content.  Many of the 
questions focused on physics topics that the students hadn’t seen yet in lecture.  In this 
way, ideally, the students would focus on how to arrive at and evaluate an answer in a 
scientific manner, rather than focusing on the answer that is accepted by the scientific 
community.   

Description of the Course Center 

Since the discussion sections were modified, the students did not have time to discuss 
the problems on the homework set with a TA.  To mitigate this deficiency a room was set 
up, called the course center, where students could gather to work on the homework 
problems together.  Most of the data for this study comes from video-taped sessions of 
students working on homework problems in the course center.  (The data will be 
discussed in more detail below.)   

The course center was staffed during specified hours of the week by a teaching 
assistant or instructor.  The TA or instructor was present to offer assistance but not to 
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explicitly solve the problems for the students (as is often done in many traditional 
recitation sessions).  The special features of this room were its architecture, the white 
boards, and the audio-video set up. 

Architecture:  Many students expect recitation sessions in which a teaching assistant 
stands at the front of the room and solves problems, while the students frantically copy 
down the solutions.   The architecture of the course center was altered in the attempt to 
modify this expectation, by removing the ‘front’ of the room.  All the tables were 
removed from the room and replaced with five long work benches.  (See Figure 6 for a 
schematic lay out of the room.)  This seating arrangement did not direct the attention of 
the students to any one location in the room – as is the case in all lecture halls in which 
the seating is arranged to face the ‘front,’ directing attention to the lecturer.   

White boards:  As a second alteration to the course center, white boards were 
mounted on all the walls and the students were provided with dry erase markers.  The 
reason for this was twofold.  First, the white boards facilitate group problem solving.  
Research on expert and novice problem solving has show that external representations are 
a helpful – and sometimes necessary – tool in the problem solving process (Kintsch and 
Greeno, 1985; Larkin, 1979).  The white boards offered the students a medium to share 
their external representations with each other.  Second, the white boards help me with my 
research agenda.  A video-taped record of the students’ writing during problem solving 
assisted me in my goal to understand how students use mathematics in the context of 
physics. 

Audio-video set-up:  The course center was equipped with a digital video camera and 
microphones.  The microphones were mounted in the middle of the tables to ensure 
quality audio reception.  

Closet 

Tables 

Students 

Microphones 

Video Camera

White Boards 
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Figure 6.  Top-view of the lay-out of the course center. 

The video camera was mounted about seven feet above the floor on the wall of the 
closet across from the tables that were equipped with microphones.  The elevation of the 
camera was ideal for three reasons.  First, students and staff members walking by the 
closet would not be in the camera’s field of vision.  Second, from this vantage point, the 
students sitting closer to the camera did not block the students who sat closer to the wall.  
Third, the location of the camera allowed a clear view of what the students wrote on the 
whiteboards, offering me a videotaped record of the students’ written work.   

Types of problems 

The students worked on problems assigned from their introductory, algebra-based 
physics course.  Because these problems were assigned as homework, this gave us an 
authentic look at how students attempt to solve their actual homework problems – as 
opposed to problems artificially posed to them in an interview environment.    

The problems that the students worked in the course center are also an important 
aspect of the modified, introductory course, because they were not standard end-of-the-
chapter problems or exercises.  The problems asked both quantitative and qualitative 
questions.  The instructor expected that each problem would take the students about an 
hour to complete.  In accordance with his expectation, the instructor only assigned about 
five problems each week.  (Some of the problems that the students worked on appear in 
Appendix A.  For more on these types of problems see Redish, 2003.) 

Data and analysis 

The data set 

The majority of the data for this study comes from about 60 hours of video-taped 
sessions of groups of students solving homework problems in the course center.  
Additional video-taped data comes from a tutorial session involving a discussion about 
conservation of momentum.  In addition to the video data, all the homework and exams 
that the students turned in were electronically scanned and stored on compact disc.  The 
scanned homework data served to corroborate video data collected in the course center.     

Selecting episodes 

The complete data set consists of 60 hours of video-tapes of students working on 
homework problems.  All the video-tapes were watched, from which I selected 11 to 
analyze in more detail.  (Table 4 lists the problems and students that appear in the 11 
different episodes.)  In addition, I selected 18 clips of video, each about one minute long.  
A video-tape was selected for further detail based on two heuristic criteria:  

1. Rich in student thinking.  Since this is an ecological study, the students dictate how 
they choose to work on the problems.  Even students solving problems in group 
may go several minutes without speaking to each other.  So, if a video contained 
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discussions rich in student thinking it was immediately flagged for further 
investigation.  

2. Explicit use of mathematics.  Since this is a study about the use of mathematics in 
physics, videos that contain students using and discussing mathematics were 
selected for transcription. 

Problems Students 
Impulse discussion Adib, Marco 

Pulling Two Boxes Alisa, Emma, 
Mary, Joe, Carrie  

Elevator Problem Mary, Lynn, Tony 
Ladder and friction on the wall 

problem 
Lynn, Mary, 

Kristy, Sabrina 

Rotational kinetic energy Lynn, Mary, 
Kristy, Sabrina 

Units and melting ice problem Mary, Emma, 
Tony, Carrie, Liz 

PV=nRT Valerie and Sarah 

Conversion Problem Mary, Emma, 
Kristy, Carrie 

First course center hours Mary 
Joe’s hours Monica, Mike 

Three-Charge Problem Alisa, Bonnie, 
Darlene, Edgar 

Conservation of Momentum Arielle, Tommy, 
Betty, Allen 

Table 4:  A list of the 11 episodes and the pseudonyms of the students that appear in the video. 

Transcribing the episodes 

The first step in analyzing any of the video episodes was to transcribe the episode into 
a written form.  This type of transcription is valuable for any type of fine-grained analysis 
of student thinking for two important reasons.  First, transcribing the video episodes 
requires that the video be watched several times.  This allows me to see subtle details in 
the video episode that may otherwise be missed after only one viewing.  Second, the 
written transcribe facilitates comparison of key moments across episodes.  This sort of 
comparison would be much more difficult with only the video.  

Communication is more than a collection of words.  The reader has probably heard 
the following statement: “It’s not what you said.  It’s how you said it.”  A statement like 
this illustrates that there are cues other than the spoken words – like gestures, tone, and 
volume – that can contribute to the interpretation of verbal discourse.  In an attempt to 
capture the richness of the communication in the course center, these additional cues (e.g. 
gestures, tone, and volume) were also recorded in the transcript, set off in brackets. 
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All the one-hour problem solving episodes contained in Table 4 were transcribed.  In 
addition, 18 shorter clips (each about 1 minute long) were transcribed.  In total over 11 
hours of video data were transcribed in detail.  

Parsing the video data 

Following the transcription of the video data, the next stage of the analysis is to parse 
the data according to various time scales.  I used the following list of time scales, adapted 
from Sherin (1996), to parse the video data: 

1. The thought time scale (~ 1 second).  This time scale is associated with the time it 
takes a student to look at an equation (or graph) and then say something about it. 

2. The problem heuristics time scale (~ 10 minutes).  As shown by Schoenfeld (1985), 
students (and experts) engage in different problem solving strategies, or 
heuristics, during the course of solving a single problem. 

3. The problem solving time scale (~ 1 hour).  Students were expected to spend about 
an hour on the homework problems in this study.  In fact, it was often the case 
that students spent at least an hour on these problems. 

4. The learning time scale (~ 1 year).  During the course of a two semester course we 
would hope that some of our students would learn some physics. 

Roughly speaking, the thought time scale corresponds with the activation of 
mathematical resources, the problem heuristic time scale corresponds with epistemic 
games, and the problem solving time scale corresponds with frames. 

Identifying and coding Mathematical Resources 

I did not develop a strict set of rules for identifying and coding mathematical 
resources.  Instead, following diSessa (1993) and Sherin (1996), I used a list of heuristic 
principles. 

1. Verbal cues.  What the students say is one of the strongest pieces of evidence for 
identifying and coding mathematical resources.  In some cases the use of specific 
words can be indications of particular mathematical resources.  For example, 
phrases like “in the way” or “in the middle” can be an indication of the reasoning 
primitive of blocking.   

2. Non-verbal cues.  As mentioned above, there is more to communication than a 
collection of words.  Non-verbal cues can contribute in coding interpretive 
utterances – e.g. gestures, volume, and the pace of the speech. 

3. External representations.  The students’ use of external representations or lack 
thereof, can be used to identify mathematical resources.  For example, reasoning 
primitives do not involve explicit reference to physics equations, whereas 
symbolic forms do.  So, one clue for distinguishing between reasoning primitives 
and symbolic forms is explicit reference to physics equations.   

4. Global as well as local evidence.  In addition to local evidence, global evidence can 
also be used to identify mathematical resources.  Isolated interpretive utterances 
are difficult to code.  Couching an individual student’s isolated utterances into a 
larger context can facilitate coding.  For example, sometimes a student will repeat 
a line of reasoning in a more articulate manner in a later episode.  This more 
articulate interpretive utterance can be used to help code the earlier utterance.   



 38 

Identifying and coding Epistemic Games 

Similar to identifying mathematical resources, I used a list of heuristic principles to 
identify and code epistemic games. 

1. Types of problem solving activities.  How the students use the mathematics in the 
context of solving a physics problem is the main source of evidence for 
identifying epistemic games.  In some cases, the order in which the problem 
solving activities occur is an indication of the game being played.  For example, 
Mapping Mathematics to Meaning starts with the identification of a mathematical 
relationship between entities in a particular problem and then progresses to a 
conceptual story, whereas Mapping Meaning to Mathematics starts with a 
conceptual story that is translated into a mathematical relationship.  

2. Coherence of problem solving activities.  Students’ problem solving behavior 
appears to consist of coherent units of activities.  The coherence of the students’ 
problem solving activities can serve to distinguish between different epistemic 
games.  If a particular problem solving activity always follows another, then those 
two activities are probably part of the same epistemic game. 

3. Types of knowledge being used.  The type of knowledge that the students use during 
problem solving activities can serve to distinguish between different epistemic 
games.  In the previous section I discussed how mathematical resources are 
coded.  The mathematical resources that are active during the different problem 
solving activities help in the identification and coding of epistemic games.  For 
example, two problem solving activities may make reference to the same physics 
equation, but involve the activation of a different set of mathematical resources.  
Since the two activities involve different mathematical resources, they are coded 
as different epistemic games. 

4. Epistemic form.  The target structure that guides the students’ inquiry (i.e. the 
epistemic form) is a major piece of evidence for identifying and coding epistemic 
games.  In many cases, since the epistemic form is associated with a particular 
type of external representation, it can be used to identify an epistemic game.  For 
example, if a student draws a free-body diagram, then this is an indication that she 
is playing Pictorial Analysis. 

Identifying and coding Frames 

Frames are theoretical structures that can be used to describe longer time scales than 
epistemic games or mathematical resources.  To identify frames I use both local and 
global cues. 

1. Linguistic cues.  Tannen (1993) list sixteen linguistic cues that indicate 
expectations: omission, repetition, false starts, back tracks, hedges and other 
qualifying words or expressions, negatives, contrastive connectives, modals, 
inexact statements, generalizations, inferences, evaluative language, 
interpretation, moral judgment, incorrect statements, and addition. 

2. Global as well as local evidence.  Global evidence must be used to compare 
interpretive utterances that occur at different times during a given episode.  In 
addition, episodes in a particular situation need to be compared to other situations.  
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Checking the reliability of the coding 

During weekly researcher meetings, a group of researchers (Tuminaro, Redish, and 
Scherr) scrutinized the transcription and coding of the episodes.  During this process the 
transcript and coding were refined and polished.  In addition, two different coders 
(Tuminaro and Scherr) independently analyzed a sample episode in terms of epistemic 
games, with an inter-rater reliability of 80%.  After discussion, the two codings agreed at 
the 100% level.   

Summary 

In this chapter I describe the empirical basis for this study.  First, I outline some 
reasons why the mathematics in math courses is different from the mathematics in 
physics courses.  Second, since I am interested in developing a cognitive framework for 
analyzing and describing students’ use of mathematics in physics, I review some basic 
ideas from cognitive science and showed how they apply to inquiries into mathematical 
thinking and problem solving.  Third, I briefly mention how the theoretical framework I 
developed incorporates what has been learned from cognitive science and mathematics 
education.  Fourth, I described the setting from which the data is taken.  Finally, I 
describe the data and analysis used in this dissertation, including how I identify and code 
Mathematical Resources, Epistemic Games, and Frames. 

In the next chapter I develop of the idea of resources and give examples of 
mathematical resources that introductory physics students’ employ while using 
mathematics in physics.
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Chapter 4: The cognitive building blocks students use to understand 

mathematics in physics: An introduction to Resources   

Introduction: Describing the knowledge base  

As I discussed in chapter 3, previous research established five generally accepted 
aspects that are important for any inquiry into mathematical thinking and problem 
solving: (i) knowledge base, (ii) problem solving strategies, (iii) monitoring and control, 
(iv) beliefs and affect, and (v) practices.  The first aspect dictates that any theoretical 
description of students’ use of mathematics in physics must begin with a model that 
describes the students’ existing knowledge. 

In this chapter I lay the groundwork for a theoretical framework to describe and 
analyze students’ use of mathematics in physics.  I begin by modeling the students’ 
mathematical knowledge base in terms of mathematical resources.  In particular, I 
identify four different kinds of mathematical resources: intuitive mathematics knowledge, 
reasoning primitives, symbolic forms, and interpretive devices (see Table 5).   

• Intuitive mathematics knowledge – knowledge of mathematics that is learned at a 
very early age; examples are counting and subitizing.  Subitizing is the ability 
that humans have to immediately differentiate sets of one, two, and three objects 
from each other (Fuson, 1992).   

• Reasoning primitives – abstract knowledge elements which describe students’ 
intuitive sense of physical mechanism.  Reasoning primitives are abstractions of 
phenomenological primitives (diSessa, 1993).   

• Symbolic forms – combination of the conceptual knowledge of reasoning 
primitives and syntactic knowledge of mathematical symbolism into one single 
knowledge element (Sherin, 1996, 2001).  Symbolic forms consist of a symbol 
template and conceptual schema.  The symbol template is an element of 
knowledge that gives structure to mathematical expressions; e.g.  =  or  +  
+ ...  (where the boxes can contain any type of mathematical expression).  The 
conceptual schema is a simple structure associated with the symbolic form that 
offers a conceptualization of the knowledge contained in the mathematical 
expression; this part of the symbolic form is similar to the reasoning primitives 
discussed in the previous section. 

• Interpretive devices – interpretive strategies used to extract information from a 
physics equation (Sherin, 1996). 

Before I describe the students’ knowledge base in terms of my theoretical framework, 
I discuss two different paradigms for modeling student thinking: the unitary (or 
misconception) framework and the manifold (or resource) framework.  In section 3, I 
describe some general characteristics of resources.  In section 4, I identify and discuss 
intuitive mathematics knowledge.  In section 5, I introduce p-prims and reasoning 
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primitives.  In addition, I show how the idea of reasoning primitives reduces the huge 
number of p-prims and how it creates knowledge elements that exist at the same level of 
abstraction.  In section 6, I discuss symbolic forms and give some examples.  In addition, 
I contrast the theory of symbolic forms with other theories of students’ conceptualization 
of physics equations.  In section 7, I discuss interpretive devices.  Sherin (1996) identifies 
three different classes of interpretive devices – Narrative, Static, and Specific Case – 
from his data corpus.  I identify a fourth class of interpretive devices, which I call the 
intuitive class.  Interpretive devices in the intuitive class are reasoning strategies 
abstracted from everyday experiences that are applied to physics equations. 

Mathematical Resources 
Intuitive 

Mathematics 
Knowledge 

A collection of primitive cognitive capacities 
that are required for and involved in advanced and 

abstract mathematical thought. 
Reasoning 

Primitives8  
Abstract cognitive elements that describe 

students’ intuitive sense of physical mechanism. 

Symbolic Forms9 
Abstract cognitive elements that describe 

students’ intuitive understanding of physics 
equations. 

Interpretive 
Devices10 

Reasoning strategies that when activated 
determine how students interpret meaning in 

physics equations. 
Table 5.  List of students’ knowledge base in terms of Mathematical Resources. 

Unitary versus manifold models of student thinking 

The notion of the students’ knowledge base grew out of the idea of constructivism, 
the dominant paradigm in modern theories about student thinking and learning.  The 
major tenet of constructivism is that students construct new knowledge from their 
existing knowledge.  They are not empty containers to be filled with vast quantities of 
school knowledge; they enter formal instruction with a wealth of existing knowledge and 
previous experiences from which they build their interpretations and understanding of 
concepts taught in a school setting. 

Two different models of student thinking have emerged in this constructivist 
paradigm, which I described in chapter 2 as the unitary and manifold frameworks of 
student thinking.  In the unitary framework – which includes misconceptions and 
alternative theories (Chi, 1992; Clement, 1983; McCloskey, Caramazza, and Green, 
1980; McCloskey, 1983; Whitaker, 1982) – researchers view students’ existing 
knowledge as robust, coherent cognitive structures that are resistant to formal instruction.  
From the unitary perspective students are not blank slates.  Rather, in this view, students 
enter formal instruction with a wealth of knowledge about physical phenomena that is 
often in opposition to the generally accepted scientific explanations.  Therefore, the 

                                                 
8 Abstracted from diSessa’s (1993) phenomenological primitives. 
9 From Sherin’s (1996, 2001) work. 
10 Generalized from Sherin’s (1996) work. 
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students’ existing knowledge acts as an obstacle that the physics instructor must 
overcome, avoid, or eliminate in order for the student to achieve expert understanding. 

DiSessa (1983, 1993), Smith et al (1993), and later Hammer (1996) take issue with 
the unitary view that students’ existing knowledge obstructs formal education in science.  
“If students construct new understanding out of their current knowledge, then there must 
be aspects of their current knowledge that are useful for that construction” (Hammer, p. 
1319).  These researchers espouse a manifold, or knowledge-in-pieces, view of student 
thinking based on resources that if appropriately organized could contribute to expert 
reasoning.  Students’ existing resources are not seen as an obstruction that physics 
instructors need to overcome during formal instruction; rather, students’ existing 
resources can be utilized by instructors during formal physics teaching.   

More recently, researchers have attempted to combine these two theoretical 
perspectives into one coherent framework.  Scherr (2002a, 2002b, 2003) shows how 
some aspects of student reasoning within the context of special relativity fall within the 
misconceptions framework, whereas other aspects of their reasoning are better 
understood in terms of a knowledge-in-pieces framework.  Redish (2004) proposes a 
theoretical superstructure that subsumes the unitary and knowledge-in-pieces framework 
in one overarching framework and argues that both unitary and knowledge-in-pieces 
frameworks have explanatory power in different contexts.  

I follow Redish (2004) and start from the manifold perspective of student knowledge 
in my goal to construct a theoretical framework for student mathematical thinking in 
physics.  The issue of whether student thinking is better modeled according to the unitary 
or fragmented view becomes an empirical question.  Where appropriate I contrast my 
own framework with the unitary perspective.   

According to the manifold or knowledge-in-pieces view of thinking and learning, 
students possess a wealth of previous knowledge and experiences that are stored in long 
term memory, which can be called upon, or activated, during the problem solving process 
(diSessa, 1993; diSessa and Sherin, 1998; Minsky, 1985; Minstrell, 1992; Redish, 2004).  
I use the generic term resources to describe all the previous knowledge and experiences 
that can potentially be used in understanding physical and mathematical phenomena.    
With this view of the mind, understanding any physical phenomenon or mathematical 
expression involves the activation of resources. 

General discussion about resources  

Resources are cognitive structures – units of thought or reasoning with which 
cognitive scientists (and education researchers) describe and understand human thinking 
and learning.  Resources are not a physical structure within the brain; they are not 
neurons.  A probe of a student’s brain would not yield the location of any resources.  
However, neurons and their interactions can be used as a metaphor for understanding 
resources and their interactions (Redish, 2004).  In this section I discuss the different 
activation states and associational structure of resources.  In addition, I discuss whether 
some resources are inherently “correct” while others are inherently “incorrect.” 
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Activation states of resources: inactive, primed, active 

Resources can exist at three different levels of activation: inactive, primed, and 
active.  Inactive resources exist in long term memory but are not cued for sense making 
in a given situation.  For example, a situation involving energy conservation (a block 
sliding down a frictionless incline) may, for a physicist, immediately cue the notion of 
balancing (the potential energy of the block at the top of the incline must equal or 
balance the kinetic energy of the block at the bottom).  However, the same situation may 
not cue balancing for a student.  The student has this resource and uses it frequently – but 
it is not turned on here. 

Resources can also exist in a primed state of activation – a sort of limbo state that is 
not active, but is more easily activated than a completely inactive resource.  For example, 
if you are asked to list four vegetables and then asked to list the names of four objects 
beginning with the letter ‘b,’ you are likely to include the names of some vegetables (like 
‘Brussels sprouts’ and ‘broccoli’) in your list.     

When resources are active they are mapped into particular situations.  Such mapped 
and active resources I call facets, in accordance with Minstrell’s (1992) use of the term.  
When watching students, what we directly observe are facets, from which resources can 
be inferred. 

Associational structure of resources and spreading activation 

Resources exist within a loosely organized associational pattern (Sabella, 1999).  
Activating one leads automatically (depending on context) to activations of other 
associated resources.  All resources are connected to other resources – the strength of the 
connection between resources determines the cuing probability, which is highly context 
dependent.  For instance, you may have had the following experience:  everyday at work, 
you say hi to a colleague of yours.  One day you see that individual in a place other than 
work – perhaps the shopping mall.  You have the feeling that you know him, but you 
can’t place his name.  You easily remember his name when seeing him in a familiar 
context (at work), but when you see him out of context (at the shopping mall) it’s not so 
easy to remember.  The situation illustrates that the associational pattern of resources is 
highly context dependent: in one context, “Bob” is strongly associated with his face and 
in another it is not. 

In this chapter I focus on individual resources that are involved in mathematical 
thinking in physics.  In the next chapter I will focus on the organizational structure of 
resources and how they are used in concert during activities for constructing new 
knowledge. 

Abstract and specific resources 

Resources are abstracted from everyday phenomena and exposure to mathematical 
formalism.  They are classes of different experiences and events.  For example, more is 
more may be abstracted from an array of experiences: from the experience that ‘lifting 
more boxes requires more effort’ to the experience that ‘adding more logs on a campfire 
results in a larger flame.’   
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The last two examples lead to an important question about resources: are some 
resources ‘correct’ and others ‘incorrect’?  The answer to this question is that resources 
exist at a level of abstraction in which they are neither correct nor incorrect.  It is not until 
a resource is mapped into a particular situation that the correctness of its usage can be 
determined.  Asking if more is more is a correct resource is a meaningless question; 
however, asking whether more is more is used correctly in a particular situation is a 
meaningful question. Adding more logs to a campfire sometimes results in larger flames; 
in these cases, more is more results in a correct conclusion.  However, if the logs are too 
big (or, wet) adding more logs may smother the fire, making the flames smaller; mapping 
more is more in these situations yields an incorrect statement. 

Precursors to formal mathematical reasoning: Intuitive Mathematics Knowledge 

The mathematics utilized in physics is a formal, rigorous subject matter that takes 
years of schooling and practice to learn; however, many of the cognitive building blocks 
necessary to understand this subject are present in very young children – even infants.  I 
call these cognitive building blocks intuitive mathematics knowledge.  Research 
involving human infants demonstrates their ability to differentiate sets of one, two, and 
three objects from each other (Fuson, 1992).  This ability has been dubbed subitizing in 
the research literature, and has also been observed in various species of primates and 
birds.  Another, more familiar, cognitive building block that is necessary to understand 
mathematics in physics is counting – a cognitive ability that should be familiar to all 
readers. 

The concepts of subitizing and counting are particularly important for understanding 
students’ use and understanding of mathematics in physics at the introductory college 
level.  I examine the episode of Mary discussing her approach to the Conversion 
Problem, which states (Appendix A, #4):  

You are driving on the New Jersey Turnpike at 65 mi/hr. You pass a sign that 
says "Lane ends 500 feet." How much time do you have in order to change lanes? 
Mary has difficulty, so she calls the TA over to explain her problem: 

 …all right if I convert 65 mph to feet per second, which is the other thing 
that's given in feet… So then I got 95 feet per second is what you're 
moving, so in 500 feet like how long?  So, I was trying to do a 
proportion, but that doesn't work.  I was like 95 feet per second...oh 
wait...yeah in 500 feet, like, x would be like the time...that doesn't—I 
get like this huge number and that doesn't make any sense. 

Mary correctly identifies that using a proportion could help her solve this problem, 
but has trouble implementing this strategy.  The TA attempts to redirect Mary: 

So what if I said something like...if you're traveling 8 feet per second and 
you go 16 feet, how long would that take you? 

The TA changes how Mary approaches this problem by replacing 95 feet per second 
and 500 feet with 8 feet per second and 16 feet, respectively.  With this replacement, 
Mary immediately responds “2 seconds.”  Her immediate response is an indication that 
the knowledge she uses to arrive at this answer is readily available to her – suggesting she 
is using intuitive mathematics knowledge.  In particular, she could be counting or 
subitizing.  That is, she could be counting up the number of seconds needed to make up 
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16 feet.  Alternatively, she could be visualizing the number of ‘8 feet per second’ blocks 
in ‘16 feet,’ then using her subitizing ability she arrives at the answer of 2 seconds.   

The evidence in this case does not distinguish between these interpretations.  
However, the evidence does indicate that changing the numbers in the problem cues 
Mary to use a new set of resources: intuitive mathematics knowledge.  In Mary’s initial 
approach she is attempting to use a formal, symbolic approach involving proportions.  By 
using “easier numbers,” Mary is able to tap into intuitive knowledge that she already has 
to eventually construct a general relationship between distance, speed, and time – a 
relationship she uses to get the answer to the problem as it was originally stated. 

This example episode illustrates that the use of intuitive mathematics knowledge can 
serve as a vehicle for students to the more sophisticated and formal mathematics used in 
college level physics.  I do not offer an exhaustive list of intuitive mathematics 
knowledge.  I am simply drawing attention to the fact that this aspect of students’ 
previous knowledge can be used by instructors during formal instruction that involves 
more advanced mathematics.  Lakoff and Núñez (2000) offer a more extensive list of 
primitive cognitive capacities – like counting, ordering, and pairing – that are required 
for and involved in advanced and abstract mathematical thought.  Table 6 lists some 
different forms of intuitive mathematics knowledge.   

Intuitive Mathematics Knowledge 

Subitizing The ability to distinguish between sets of one, two, and 
three objects. 

Counting The ability to enumerate a series of objects. 

Pairing  The ability to group two objects for collective 
consideration. 

Ordering The ability to rank relative magnitudes of mathematical 
objects. 

Table 6.  List of Intuitive Mathematics Knowledge. 

Students’ sense of physical of mechanism: Abstract Reasoning Primitives 

In addition to intuitive mathematics knowledge, students use a form of intuitive 
knowledge about physical phenomena and processes, which they have learned in their 
everyday life experiences, to make sense of the physical world.  DiSessa (1993) proposes 
that students develop an intuitive sense of physical mechanism from abstractions of 
everyday experience.  This intuitive sense of physical mechanism arises from the 
interaction and activation of myriad of cognitive resources that he calls 
phenomenological primitives (p-prims).   

The name, phenomenological primitives, is used to convey several key aspects of 
these cognitive structures.  The word “phenomenological” is used to reflect the idea that 
these resources are abstracted from everyday phenomena.  (Closer is stronger could be 
abstracted from the phenomena that the closer one is to a fire the warmer it is.)  These 
resources are “primitive” in the sense that they are “irreducible and undetectable” to the 
user – they are often used as if they were self-explanatory.  (Asked why is it warmer 
closer to a fire, a student using closer is stronger may respond, “it just is.”) 
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Because of his focus on the irreducibility of p-prims with respect to the user diSessa 
identifies p-prims at differing levels of abstraction: for example, force as mover and 
abstract balancing.  Force as mover involves the very specific concept of force; whereas, 
abstract balancing involves the very general notion that two abstract influences can be in 
a state of equilibrium.  Because of the specific nature of p-prims like force as mover, 
diSessa proposes that there are thousands of p-prims corresponding to the myriad of 
physical experiences one may have in this complex world. 

To reduce the extremely large number of p-prims and propose cognitive structures 
that exist at the same level of abstraction, I follow Redish (2004) and abstract from p-
prims the notion of intuitive pieces of knowledge called reasoning primitives.  Reasoning 
primitives are abstractions of everyday experiences that involve generalizations of classes 
of objects and influences.  In this view a p-prim like force as mover results from mapping 
an abstract reasoning primitive like agent causes effect into a specific situation that 
involves forces and motion.  The specific agent, in this case, is a force and the effect it 
causes is movement.  Agent causes effect could also be mapped into force as spinner, 
another p-prim identified by diSessa.  This makes it clear how the notion of reasoning 
primitives compared to p-prims reduces the total number of resources necessary to 
describe students’ previous knowledge about physical phenomena.  In addition, agent 
causes effect and abstract balancing both reflect relationships between abstract 
influences, and therefore exist at the same level of abstraction. 

Examples of Abstract Reasoning Primitives from the data 

To illustrate the usefulness of reasoning primitives I discuss some of the reasoning 
primitives that are prevalent in my data.  I do not offer an exhaustive list of reasoning 
primitives that students may use to describe and understand all the complex physical 
interactions they may encounter during formal physics instruction.  Rather, I offer a few 
examples of reasoning primitives that commonly occur. 

Abstract Reasoning Primitives 

Blocking∗ The abstract notion that inanimate objects are not active 
agents in any physical scenario. 

Overcoming* 
The abstract notion that two opposing influences attempt 

to achieve mutually exclusive results, with one of these 
influences beating out the other. 

Balancing*  The abstract notion that two opposing influences exactly 
cancel each other out to produce no apparent result. 

More is more The abstract notion that more of one quantity implies 
more of a related quantity. 

Table 7.  List of Abstract Reasoning Primitives identified. 

Blocking   

                                                 
∗ Discussed below. 
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Many introductory physics students view inanimate objects (such as tables or walls) 
as hindrances or obstacles for more active agents (such as people or cars).  The inanimate 
objects do not play active roles in determining the outcome of any physical situation; they 
are simply in the way.  For example, many introductory physics students do not think that 
a table can exert a normal force on a book placed on top of it.  Rather, these students 
think the book does not fall to the floor simply because the table is “in the way.”   

The following discussion between Alisa and Darlene illustrates the use of blocking. 
Alisa and Darlene are working on the Three Charge Problem (Appendix A, #15):  

Alisa:   Like—q2 is—q2 is pushing this way, or attracting--whichever.  
There's a certain force between two Q, or q2 that's attracting.   

Darlene: q3. 
Alisa:  But at the same time you have q1 repelling q3. 
Darlene: How is it repelling when it's got this charge in the middle?  

The presence of q2, is seen by Darlene, to hinder the affect of q1 on q3, since q2 is “in 
the middle.”   

Overcoming 

Many physical situations may be perceived by students as involving two opposing 
influences attempting to achieve mutually exclusive results.  The reasoning primitive of 
overcoming may be activated if one of those influences is seen as overcoming the other.  
A student discussing her ideas about the Pulling Two Boxes Problem (Appendix A, #13) 
illustrate this: 

Alisa:  Well, if you pull with a small force it's not going to overcome the 
friction coefficient, necessarily.  So, they won't move, so nothing will 
happen.  And, you keep pulling then as soon as you overcome that 
that friction force it moves.  I don't know how else to answer. 

Alisa conceptualizes friction as an influence that her pull must “overcome” in order 
for the book to move.  Her concession that she doesn’t “know how else to answer” is 
another indication that the knowledge she uses seems self-explanatory to her – a sign that 
she is using a reasoning primitive. 

Balancing11  

Balancing is often activated when it appears that two opposing influences exactly 
cancel each other out to produce no apparent result.  It appears that Alisa, Darlene, and 
Betty all utilize the reasoning primitive of balancing in their explanation of why q3 
remains in equilibrium in the Three Charge Problem (Appendix A, #15): 

Alisa:   Because this is in equilibrium, there's some force... 
Darlene: Pulling it that way and some force pulling ex--equally back on it. 
Bonnie:  Yeah. 
Alisa:   And, they’re equal. 
Bonnie:  Yes.  

                                                 
11 diSessa makes a distinction between abstract balancing and dynamic balancing in the following way:  
Abstract balancing is the tendency to believe that two influences must or should be equal; whereas, 
dynamic balancing occurs through the result of some accident or conspiracy.  I abstract both of these ideas 
into one single reasoning primitive: balancing. 
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These students state that the physical mechanism keeping the charge in equilibrium is 
the action of two forces pulling in opposite directions with equal magnitudes.  The two 
influences, in this case forces, are attempting to achieve mutually exclusive goals (i.e. 
pull the charge in opposite directions), but it happens to be the case that these two 
influences exactly balance to yield no net result. 

Resources involved in understanding physics equations: Symbolic Forms 

In the last section we saw how students can use an intuitive sense of physical 
mechanism to understand various physical situations.  Sherin (1996, 2001) was interested 
in the cognitive mechanisms and processes involved when students look at an equation 
and understand and interpret its meaning.  He argues that students use an intuitive sense 
of physical mechanism in concert with knowledge of mathematical symbolism and 
protocols to make sense of equations in physics.  In order to understand and describe how 
students use and understand physics equations we need two cognitive constructs:  a 
symbol template and a conceptual schema.   

The symbol template is an element of knowledge that gives structure to mathematical 
expressions; e.g.  =  or  +  + ...  (where the boxes can contain any type of 
mathematical expression).  That is, the symbol template is a general symbol pattern in 
which specific quantities can be mapped.  The conceptual schema is a knowledge 
structure that offers a conceptualization of the knowledge contained in the mathematical 
expression; the conceptual schema is similar to diSessa’s p-prims.  A symbolic form is the 
combination of a symbol template and conceptual schema. 

An example of a student deriving an equation for air drag in the Air Drag Problem 
(Appendix A, #1) will facilitate this discussion about symbolic forms. 

 Amy:  So basically what you have to do- 
Monica: So like when you think about it, you can think that if you increase 

density, the air can - that - it would have to be directly proportional, 
cause you increase density, the resistance with the air has to also 
increase. 

Amy:  Yeah. So... 
Monica: And as you increase the radius, that also increases. So they're all 

directly proportional- 
Amy:  Right 
Monica: So you multiply them-  
Amy:  Right, so it's all multiplied- 
Monica: Instead of dividing them.  

Monica has more is more activated when she states that “if you increase density…the 
resistance with the air has to also increase”; i.e. more density is more resistance.  This 
conceptual idea is associated with the symbol template [ ]......x= .  The left side of the 
equation is associated with the drag force.  The density appears on the right side of the 
equation; since it is directly proportional to the drag force it.  Therefore, the drag force 
and density are mapped into the symbol template, [ ]......x= , resulting in the specific 
expression, [ ]......ρ=D .  Monica goes on to identify that an increase in radius also results 
in an increase in air drag, which is also associated with the symbol template [ ]......x= , 
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i.e. ......rD = .  Since an increase in density and radius both result in an increase in 
resistance, Monica realizes that they both must appear in the numerator:  “So you 
multiply them.”  The association of the conceptual schema of more is more with the 
symbol template [ ]......x=  occurs often in students’ interpretive utterances, and is given 
the name proportionality plus (prop+, for short). 

Sherin identifies collections of symbolic forms, which he organizes into clusters.  The 
symbolic forms within a given cluster tend to involve “entities of the same or similar 
ontological type.  For example, [symbolic] forms in the Competing Terms Cluster are 
primarily concerned with influences” (Sherin, 1996, p. 75).  That is, symbolic forms in 
the Competing Terms Cluster do not involve specific physics concepts (like force or 
velocity), rather they involve everyday concepts (like push or motion).  Table 8 lists the 
different clusters and symbolic forms that Sherin identifies.  I draw out examples of 
balancing and canceling from my data set and discuss them below.  

Competing Terms Cluster Terms are Amounts Cluster 

Competing Terms  ±  ±  
… 

Parts-of-a-
Whole 

[  +  +  
…] 

Opposition  -  Base ± Change [  ± ∆] 
Balancing∗  =  Whole – Part [  - ] 
Canceling*  -  = 0 Same Amount  =  

Dependence Cluster Coefficient Cluster 
Dependence […x…] Coefficient [x ] 

No Dependence […] Scaling [n ] 
Sole Dependence […x…] Other 

Multiplication Cluster Identity x = … 

Intensive•Extensive yx×  Dying Away ⎥⎦
⎤

⎢⎣
⎡ − ...xe  

Extensive•Extensive yx×    
Proportionality Cluster 

Prop+◊ ⎥⎦
⎤

⎢⎣
⎡

...
......x  Ratio ⎥

⎦

⎤
⎢
⎣

⎡
y
x  

Prop- ⎥⎦
⎤

⎢⎣
⎡

......
...
x

 Canceling(B) ⎥⎦
⎤

⎢⎣
⎡

......

......
x
x  

Table 8. List of symbolic forms identified by Sherin (1996, p. 75). 

Examples of symbolic forms in the data  

Balancing =  

The symbolic form of balancing results from the association of the reasoning 
primitive of balancing along with the symbol template of = .  Alisa’s explanation of 
                                                 
∗ Discussed below. 
◊  Discussed above. 
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her solution to the Three Charge Problem (Appendix A, #15) seems to involve the 
symbolic form of balancing.  Alisa writes the following two equations on the white 

board: 2
3

32 d
kQq

F qq =→  and 2
3

31 4d
kxQq

F qq =→ .  Then she proceeds to explain how she uses 

these two equations: 
Alisa:  Then, I set [the forces] equal to each other, and I crossed out like the 

q2 and the k and the d squared and that gave me q equals x q over 
four.   And, then x q equals four q, so x would have to be equal to 
four.  That's how you know it's four q. 

TA:   How did—why did you set it equal? 
Alisa:   Because, they're equal [forces].  Like these two have to cancel12 

each other out for this to be in that equilibrium.  
Alisa mentions that she set the two forces equal, which involves the symbol 

template = .  When asked why she set them equal, she replied they “have to” be “for 
the [system] to be in equilibrium.” 

The conceptual content contained in Alisa’s explanation above is similar to the 
conceptual contain of the example for the reasoning primitive of balancing (discussed on 
p. 47).  However, the above example is coded as the symbolic form of balancing, because 
Alisa makes explicit reference to an equation.  The symbolic form of balancing and the 
reasoning primitive of balancing are different in one fundamental aspect:  The symbolic 
form of balancing incorporates the symbol template, = .  Symbolic forms have two 
components: a symbol template and a conceptual schema.  As mentioned earlier, the 
conceptual schema is similar to a reasoning primitive, so it is natural that the symbolic 
form of balancing is conceptually similar to the reasoning primitive of balancing.  But 
Alisa’s explanation above involves explicit reference to an equation.  That is, Alisa 
associates one side of an equation with one force and the other side with another force, 
which she claims should be equal because the system is in “equilibrium.”  The conceptual 
idea of balancing is associated with the symbol template, = .  This suggests that Alisa 
is using the symbolic form of balancing in her explanation, rather than the reasoning 
primitive of balancing.  

Canceling  0− =  

The canceling symbolic form is viewed as a process of two influences acting toward 
mutually exclusive goals, yielding no resultant effect.  It is different from balancing in 
that canceling is view as the active process of one influence negated the effect of another, 
and is associated with the symbol template 0− = .  Monica uses canceling when 
explaining to Amy what it means to have the ‘ma term be negligible’ in the Paramecium 
Problem (Appendix A, #12):   

Amy: How can you have any – I'm just curious – how can you have any 
force at all if you don't have, if you don't have any ma? 

                                                 
12 Although the student uses the phrase ‘cancel each other out,’ it is associated with the symbol template 
= .  Also, terms like ‘equilibrium’ and ‘equal’ are explicit clues that the balancing symbolic form is 

activated, rather than the canceling symbolic form. 
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Monica: Well, they're just saying it's so small that when, if you bring one to 
the other, if you bring one of the forces to the other side it'll cancel 
[the other force] out.  

Monica’s explanation of what it means for ma to be ‘so small,’ i.e. nearly zero, seems 
to involve a process.  In this case, the process is to bring one of the forces to the other 
side of the equation; i.e. this process involves the symbol template − .  The result of 
this process is that the two forces will ‘cancel out,’ yielding a very small ma term. 

Comparing Symbolic Forms and the Principle-based Representation Model 

A different theory describing students’ understanding of physics equations was 
developed by Larkin (1983).  According to Larkin, students’ ability to understand and 
write physics equations involves the generation and interpretation of two different 
representations: the naïve representation and the physical representation.  Below I 
contrast Larkin’s approach, which I call the principle-based representation model, with 
that of symbolic forms.  Although I ultimately argue in favor of symbolic forms, there are 
aspects of the principle-based representation model that are useful.  In fact, I believe a 
complete description of expert use and understanding of physics equations involves 
aspects of both symbolic forms and the principle-based representation model. 

Succinctly, the naïve representation is the student’s mental representation of the 
situation in terms of objects that are familiar from everyday life.  This representation 
involves the student’s “envisionment” (Larkin, 1983) of the process in question – the 
ability to visualize what will happen.  The processes governing this visualization are not 
based on any physical principles.   

In contrast, the physical representation involves physical principles (like Newton’s 
2nd Law and conservation of energy) and entities (like forces and energies).   Qualitative 
relationships between physical entities are developed based on physical principles.  From 
these qualitative relationships quantitative relations can be written.  So, according to 
Larkin, students’ generation and understanding of equations are strictly guided by physics 
principles and stems from their physical representation of the particular situation.  For 
these reasons I call Larkin’s approach a principle-based representation model of student 
understanding of physics equations.   

Sherin’s description of student understanding of physics equations is fundamentally 
different from Larkin’s: students’ generation of physics equations, in Sherin’s 
description, does not necessarily involve formal physics principles.  For example, the 
symbolic form of balancing involves reasoning primitive of balancing – two mutually 
exclusive influences in equilibrium – and the symbol template of = .  It can be the case 
that a student may identify forces as influences that balance to write an equation like 

21 FF = , but the theory of symbolic forms does not require that the influences be forces.  
In contrast, according to Larkin, if a student writes an equation like 21 FF = , this action is 
necessarily guided by the student thinking about Newton’s second law: amF

i
i

rr
=∑ . 

Reexamining Alisa’s explanation for why she set the two forces equal in the Three 
Charge Problem (Appendix A, #15), she says:  

Because they're equal [forces].  Like these two have to cancel each other 
out for this to be in that equilibrium. 
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The interpretation of Alisa’s equation, according to the principle-based representation 
model involves four steps.  First, Alisa identifies Newton’s 2nd Law as the relevant 
physics principle in this problem.  Second, she sums up all the forces acting on the 
charge, q3, and places that on the left side of the equation.  Third, the acceleration of q3 is 
set equal to zero, and therefore the right side of the equation is zero.  Fourth, she brings 
one of the forces that was on the left side of the equation over to the right side, to 
conclude that the forces are equal.   

According to the theory of symbolic forms, Alisa’s explanation can be understood as 
the activation and use of the symbolic form of balancing.  That is, Alisa associates two 
mutually exclusive influences that are in equilibrium with two sides of an equation.  In 
this particular case, the influences that Alisa identifies are forces. 

Looking back at Alisa’s explanation, she does not make explicit reference to 
Newton’s second law.  The principle-based representation model requires that the 
generation of a physics equation be guided by physics principles (like Newton’s 2nd 
Law).  In contrast, according to the theory of symbolic forms, the generation of a physics 
equation is guided by the students’ intuitive sense of physical mechanism.  In addition, 
Alisa’s reason seems to be self-explanatory to her:  “these two have to cancel each other 
out for this to be in that equilibrium” (emphasis added).  As I mentioned earlier, 
reasoning primitives are used in a self-explanatory fashion (p. 45).  Since Alisa’s 
explanation does not involve explicit reference to physics principles and her reasoning 
seems to be self-explanatory to her, it seems that the generation of the equation is better 
understood in terms of symbolic forms, rather than Larkin’s principle-based 
representation model.   

Although I argue in favor of symbolic forms, there are two important aspects in the 
principle-based representation model that cannot be overlooked.  First, students (and 
experts) do use formal physics principles in their discussions about and interpretations of 
physics equations.  Aspects of students’ use and understanding of physics equations must 
be associated with physics principles.  So, symbolic forms cannot be the entire story for 
describing expert symbol use.  Second, constructivism teaches that students have a wealth 
of previous experience that they bring into the physics classroom. The connection 
between everyday experience and physics principles is often not emphasized in models of 
student thinking.  However, the principle-based representation model attempts to 
understand the mapping between everyday experience and physics principles.  In the next 
section I will describe how students apply “everyday” reasoning strategies to extract 
information from physics equations. 

Reasoning strategies for interpreting physics equations: Interpretive Devices  

Symbolic forms cannot be the entire story for how students understand and interpret 
equations.  Students (and experts) appear to have compiled strategies for extracting 
information from physics equations.  I follow Sherin (1996, 2001) and call these 
compiled interpretive strategies interpretive devices.13  Sherin identifies three different 
classes of interpretive devices – Narrative, Static, and Specific Moment – that students in 
his data corpus use to interpret physics equations.  In addition to these three, I propose a 
fourth class of interpretive devices: intuitive interpretive devices.  (Table 9 lists the 
                                                 
13 In his dissertation, Sherin uses the term representational devices instead of interpretive devices. 
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different interpretive devices according to class.)  The interpretive devices in the 
Narrative, Static, and Specific Moment classes all derive from and rely on the formal 
properties of equations.  Therefore, I will lump all of these classes into one class, which I 
call formal interpretive devices.  In contrast, intuitive interpretive devices are reasoning 
strategies that are abstracted from everyday reasoning and applied to physics equations. 

Narrative Static 
Changing Parameters∗ Specific Moment 

Physical Change Generic Moment 
Changing Situation Steady State 

Special Case Static Forces 
Restricted Value Conservation 
Specific Value Accounting 
Limiting Case Intuitive14 

Relative Values Feature Analysis* 

 Ignoring* 
Table 9.  List of interpretive devices by class 

Formal versus intuitive interpretive devices 

Feature Analysis 

I use an example episode of four students working on the Colliding Gliders Problem 
(Appendix A, #3) to illustrate the difference between formal and intuitive interpretive 
devices.  In particular, in Arielle’s first attempt to solve this problem it appears that she 
actives the formal interpretive device of changing parameters to conclude the change in 
momenta must be the same.  However, she later uses the intuitive interpretive device of 
feature analysis to conclude that the momenta are different.   

The students’ first attempt seems correct: 
Arielle:  So then the Fnet for A, the Fnet for M.  This is a big mass and this 

is a little mass and [the ∆t] are equal, so this has got to be a big, 
what is it, a big velocity and this has got to be a small velocity.  So, p 
for A and p for m – the change in velocity here has got to be sort of 
bigger.  Big velocity little mass. Big mass little velocity.  But [the net 
forces] are equal. 

Tommy:  Right. 
Betty:  Right. 
Arielle:  So the momentums got to be the same, right? 

It seems that Arielle is using prop+: the mass and the velocity are directly 
proportional to the net force.  In addition, it appears that she is using a particular strategy 
for extracting meaning from this equation – in this case, the formal interpretive device 
called changing parameters.  Changing parameters is an interpretive device in which “a 
quantity, usually corresponding to an individual symbol in the expression, is imagined to 
                                                 
∗ Discussed below. 
14 Class of interpretive devices not identified by Sherin. 
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vary while other quantities are held fixed” (Sherin, 1996, p. 467).  Arielle imagines how 
changing a parameter on the right side of the equation (i.e. mass and change in velocity) 
will affect quantities on the left (i.e. the net forces).  Since glider A has a smaller mass 
than glider M she imagines changing the values of the change in the velocities to 
maintain the equality between the forces.  (Figure 7 shows this reasoning schematically.) 

 

MtMvMmM
netF ∆∆= /AtAvAmA

netF ∆∆= /

“big mass”
“little mass” 

“big velocity”

“these are equal”

“little velocity” 

“these are equal”
 

Figure 7. Schematic view of interpretation of equation using the  
formal interpretive device of changing parameters. 

At first glance Arielle’s reasoning appears to be very good.  However, she is not 
satisfied with the conclusion that the momenta should be the same, so she continues the 
discussion: 

Arielle:  I don’t know…  No, this is not right. 
Betty:  It’s right.  But—I think it’s right, but it’s like-- 
Tommy:  No, I think that’s correct. 
Betty:  ...but see you have the subset so you have the change—the change in 

momentum... 
Arielle:  But the change in velocities are not the same though. 
Betty:  The change—  
Tommy:  Yeah, the change in velocities aren’t the same.  And also— 
Arielle:  Yeah, that’s the problem, I was thinking they were the same. 

The first line in this set of quotations indicates that Arielle is uncertain about the 
conclusion that the momenta would be the same.  However, at first glance it appears that 
the last line in this set of quotations is in direct contradiction with what Arielle had said 
in the first set of quotations.  In the first set of quotations she had said that the change in 
velocity for glider A had to be large, while the change in velocity for glider M had to be 
small; now, however she’s stating that she was thinking the change in velocities were the 
same.  This seems like a contradiction; however, what she says later helps clear up this 
apparent contradiction. 

Tommy:  Momentum might—could be the same.  It could be. 
Arielle:  ...All right...they’re in opposite directions. 
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Tommy:  Wait, wait, wait.  They’re in opposite directions but they could be 
the same. 

Arielle:  Opposite directions—how could they be the same?  If the masses 
are different and the change in velocities are different the 
momentums can’t be the same. 

It appears that Arielle is using a different interpretive device than she was before to 
conclude that the momenta cannot be the same.  I suggest that she’s using the intuitive 
interpretive device of feature analysis – a  form of pattern recognition in which the 
features of a stimulus are evaluated individually.  That is, she is comparing the features of 
the individual momenta (the features of the momenta are the masses and change in 
velocities).  The more features that are different between the two momenta the easier it is 
to tell that the two momenta are different.  (See Figure 8 for a schematic of her 
reasoning.)  Feature analysis is an intuitive interpretive device that can be abstracted 
from such situations as determining if two faces are different (Figure 9).   

 

AvAmAp ∆=∆ MvMmMp ∆=∆

“change in velocities 
are different” 

“masses are different”

“the momentums can’t be the same”

 
Figure 8. Schematic view of interpretation of equation using the  

intuitive interpretive device of feature analysis. 

This interpretation of Arielle’s reasoning makes sense of her seemingly contradictory 
statement from the second set of quotations: “Yeah, that’s the problem, I was thinking 
they were the same.”  In the first line of that set of quotations she indicates that she is 
uncertain about the conclusion that the change in momenta would be the same.  I propose 
that at this time she started to search through her mind for different reasoning strategies 
that she could employ to corroborate the conclusion that the change in the momenta 
would be the same.  Feature analysis could be a possible reasoning strategy that was 
tacitly cued.  If one reasons with feature analysis the only way the momenta could be the 
same is if the change in velocities were also the same.  This may be why she claims “I 
was thinking they were the same,” even though in the first set of quotes she says “the 
change in velocity [for A] has got to be sort of bigger.” 
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Eyes are different Noses are different

Faces can’t be the same

 
Figure 9.  Feature analysis is possibly abstracted from situations like determining if two faces are the same.  
The more features that are different on the two faces the easier it is to determine that the faces are different. 

Ignoring 

In addition to feature analysis, I have identified another intuitive interpretive device 
that students use to extract information from physics equations: an intuitive interpretive 
device I call ignoring.  When using the intuitive interpretive device of ignoring, students 
simply neglect certain terms or symbols in an equation.  

It appears that Mary uses ignoring when working on part (b) of the Speed versus Pace 
Problem (Appendix A, #14).  Mary is attempting to find the speed, in miles per hour, of a 
person walking on a treadmill at a pace of 17 minutes per mile.  She explains her 
approach to me (I happened to be the teaching assistant in the course center at the time):  

Mary: 'Cause you see if you have to end up with miles per hour, it has to be 
that way.  That's the only way you're going to get those units on top 
and those on the bottom.  Is by reversing [17 minutes per mile] at 
the beginning.   

So, Mary thought she had to “flip” 17 minutes per mile, i.e. write 
minutes17
mile 1 .  From 

Mary’s “flipping” procedure she had written the following expression: 

minutes 17
mile 1

hour 1
minutes 60

× .  Mary then described how she operationally interpreted this 

expression: 
TA:  How did you calculate this number 3.5?  What did you put into your 

calculator?   
Mary:  60 divided by that, 'cause the 1s just like aren't there.  60 divided by 

17.  And, then you're left over with miles per hour (emphasis added). 
From Mary’s words it appears that she simply ignores the presence of the ones.  She 

doesn’t say, “60 times 1 is just 60, so it’s like we can ignore the 1.”  She openly states, 
“the 1s just like aren’t there.” 
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Summary 

In this chapter I discussed how the theoretical framework I propose describes 
students’ knowledge base.  According to my theoretical framework, students’ knowledge 
base is described in terms of mathematical resources.  I identify four different kinds of 
mathematical resources that contribute to students’ knowledge base: intuitive 
mathematics knowledge, reasoning primitives, symbolic forms, and interpretive devices.   

Intuitive mathematics knowledge is mathematics knowledge that is innate or learned 
at a very early age.  This aspect of students’ previous knowledge can be used by 
instructors to bridge the gap toward the more sophisticated and formal mathematics used 
in college level physics.  Reasoning primitives are knowledge elements about physical 
phenomena that are abstracted from everyday experience.  These reasoning primitives if 
correctly coordinated and organized could help lead to expert understanding.  Symbolic 
forms offer a cognitive description of students’ conceptual understanding of equations in 
physics.  Lastly, there are both formal and intuitive interpretive devices, which are 
reasoning strategies that students employ to extract meaning from physics equations. 

This chapter focused only on the mathematical resources to describe how students 
understand mathematics in physics.  In the next chapter I focus on collections of 
mathematical resources to describe how students actually use mathematics in physics.
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Chapter 5: Understanding the process of students’  

mathematics use in physics:  An introduction to  

Epistemic Games and Frames 

Introduction and Motivation 

In the previous chapter I discussed the ontological component of mathematical 
problem solving in physics.  That is, I introduced the cognitive “stuff” that can be used to 
describe students’ mathematical thinking, which – in the theoretical framework that I 
propose – is made of resources (e.g. intuitive mathematics knowledge, reasoning 
primitives, symbolic forms, and interpretive devices).  In this chapter I discuss the 
process component of mathematical problem solving in physics – i.e. how the students 
actually activate, combine, and use these resources to solve problems in physics. 

Previous research tends not to focus on students’ different problem solving approaches  

The actual path that students follow during problem solving in physics varies from 
problem to problem and student to student, yet this fact is rarely addressed in two key 
areas of the research literature: (1) observational studies of students’ problem solving, 
and (2) cognitive models of mathematical problem solving.  Many of the observational 
studies of problem solving compare students to experts, not students to students – for the 
purpose of understanding students’ problem solving (Larkin et al, 1980; Reif & Allen, 
1992).  For example, by observing students solving mathematics problems, Schoenfeld 
(1985) develops a representation depicting the amount of time students spend on different 
aspects of the problem solving process.  However, he uses this representation to compare 
the differences between students’ and experts’ problem solving approaches; he does not 
emphasize the various different approaches that students employ.   

Many of the cognitive models of problem solving and problem comprehension rely 
on idealizations of the problem solving process, not on the different approaches that 
students actually use during problem solving.  As discussed in chapter 4, Larkin develops 
a cognitive model of physics problem solving based on the coordination of different 
mental representations (the naïve representation and the physical representation).  In a 
similar vein, Nathan et al (1992) develops a model of algebra word-problem 
comprehension that is based on three components: an understanding of the problem 
statement, a qualitative understanding of the particular situation, and a quantitative 
understanding of the particular situation that “captures the algebraic problem structure.”  
I argue later in this chapter that these models are normative, not descriptive.  That is, they 
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adequately model ideal student problem solving approaches, but they do not describe all 
the different approaches that students actually use during problem solving in physics. 

My attempt to describe the students’ different problem solving approaches  

   Through an observational categorization of students solving problems in physics, I 
identify two important aspects in their activities: (1) there seem to be collections of 
student activities that are associated, and (2) students’ expectations about physics 
problems and problem solving factor into how they use mathematics in physics.  To 
describe the associations of activities I introduce epistemic games.15  To describe 
structures of student expectations I introduce frames.16  Epistemic games and frames, 
taken together, help us understand the process component of students’ mathematical 
thinking and problem solving in the context of physics.   

In the next section I give an introduction to epistemic games.  In the third section I 
discuss the epistemic games that account for the different problem solving approaches 
that appear in the data.  In section four I discuss how the epistemic games I identify are 
different from previous attempts at understanding mathematical thinking and problem 
solving.  The fifth section offers an introduction to frames and how they can be used to 
understand why students (usually tacitly) choose to play particular epistemic games.  I 
conclude with a summary and some closing remarks. 

Introduction to Epistemic Games 

Epistemic games (or, e-games, for short) were introduced by Collins and Ferguson 
(1993) to describe expert scientists’ approaches to scientific inquiry – expert scientists 
across all scientific disciplines.  According to Collins and Ferguson, each epistemic game 
has an accompanying epistemic form.  The epistemic game is the complex “set of rules 
and strategies the guide inquiry,” whereas the epistemic form is the “target structure that 
guides scientific inquiry.”  The difference between these two concepts is best articulated 
by Collins and Ferguson: 

The difference between forms and games is like the difference between the 
squares that are filled out in tic-tac-toe and the game itself.  The 
game consists of rules, strategies, and different moves that players 
master over a period of time.  The squares form a target structure 
that is filled out as any particular game is played (Collins and 
Ferguson, 1993, p. 25). 

Epistemic games were introduced by Collins and Ferguson to describe expert 
scientific inquiry across all scientific disciplines.  The students in introductory physics 
courses are far from experts.  Using scientists’ approaches to inquiry as a norm by which 
to describe students’ inquiry would therefore be problematic.  For this reason, I 
generalize epistemic games to be descriptive rather than normative.  I use the main 
characteristics that Collins and Ferguson attribute to epistemic games to identify a set of 
games that introductory, algebra-based physics students play while solving problems in 
                                                 
15 Adapted from Collins and Ferguson (1993). 
16 Adapted from a term proposed by psychoanalyst Gregory Bateson (1972) and anthropologist Irving 
Goffman (1997), and used by socio-linguist Deborah Tannen (1993). 
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physics.  The epistemic games that I identify can be used to describe and analyze 
introductory students’ use of mathematics in physics.  

The definition I use for an epistemic game comes from Redish (2004): 
A coherent activity that uses particular kinds of knowledge and processes 
associated with that knowledge to create knowledge or solve a problem. 

The name ‘epistemic game’ is used to capture the most important aspects of the 
pattern of activities that it describes. The activities are ‘epistemic’ in the sense that 
students engage in these activities as a means to construct new knowledge.  I use the 
word ‘games’ in a very real sense; a particular game (like checkers or chess) is a coherent 
activity that has an ontology (players, pieces, and a playing board) and structure (a 
beginning and an end, rules), which makes it distinguishable from other activities or 
games.  In the same way, a particular epistemic game has an ontology and structure that 
makes it distinguishable from other activities or epistemic games.   

In the next two subsections, in order to describe the ontology and structure of 
epistemic games, I use the simplest epistemic game identified by Collins and Ferguson:  
list making.  (Table 10 summarizes the ontological and structural components of all 
epistemic games.)  Every list is implicitly an answer to a question.  Some examples are: 
“What do I need from the grocery store?”; “What are the fundamental forces of nature?”; 
and, “What are the constituents of all matter?”   

Ontology of Epistemic Games 

Epistemic games have two ontological components: the knowledge base and the 
epistemic form.  An epistemic game is not simply a cognitive structure; it’s a pattern of 
activities that can be associated with a collection of resources.  The collection of 
resources that an individual draws on while playing a particular epistemic game 
constitutes the knowledge base.  To answer a question like, “What are the fundamental 
forces of nature?” one needs to have some requisite knowledge to list the forces.  The 
knowledge base for the epistemic games I identify below consists of all the resources that 
I introduced in chapter 4: intuitive mathematics knowledge, reasoning primitives, 
symbolic forms, and interpretive devices.   

The epistemic form is a target structure that helps guide the inquiry during an 
epistemic game.  For example, the epistemic form in the list making game is the list 
itself.  The list is an external representation that cues particular resources and guides the 
progression of the inquiry.   

Structure of Epistemic Games 

Epistemic games have two structural components: the entry and ending condition, and 
the moves.  The entry and ending conditions specify the beginning and the ending of the 
game.  As I mentioned above, one may enter into the list making game as a means to 
answer a question.  When solving physics problems, students’ expectations about physics 
problems determine the entry and ending conditions.  These expectations can depend on 
real-time categorizations of physics problems and/or on preconceived notions about the 
nature of problem solving in physics. Research by Hinsley and Hayes (1977) indicates 
that students can quickly categorize large classes of physics problems very shortly after 
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reading the statement of the problem – often these categorizations can be made after 
reading the first sentence!  The students’ ability to very quickly categorize physics 
problems may stem from their expectations about physics problem solving, and vice 
versa.  These expectations, and categorizations, of physics problems affect which 
epistemic game the students (tacitly) choose to play.  In contrast, students’ preconceived 
epistemological beliefs about problem solving in physics can affect their expectations.  If 
students believe that problem solving in physics involves rote memorization of physics 
equations, then that can affect what strategy they employ (i.e. epistemic game they play) 
and what they believe an answer in physics is (i.e. how they know they are done playing 
a particular game).  I say more about students’ expectations and epistemic games in the 
discussion about the interplay between epistemic games and frames later in this chapter. 

The second structural component of epistemic games is the moves.  The moves are 
the steps that occur in an epistemic game.  In the list making game the moves may be to 
add a new item, combine two (or more) items, substitute an item, split an item, and 
remove an item. 

Ontological Components Structural Components 

Knowledge 
Base 

Cognitive resources 
associated with the 

game. 

Entry and 
ending 

conditions

Conditions for 
when to begin and 

end playing a 
particular game. 

Epistemic 
Form 

Target structure that 
guides inquiry. Moves

Activities that 
occur during the 
course of an e-

game. 
Table 10.  The ontological and structural components of all epistemic games. 

Epistemic games students play in introductory, algebra-based physics 

In this section I discuss all the epistemic games that are necessary to account for the 
different problem solving strategies seen in my data. From an observational 
categorization, I identify six different epistemic games that students play while using 
mathematics in the context of problem solving in physics (see Table 11).  These six 
games span the different problem solving approaches seen within the data.  I do not claim 
that this list spans all the possible problem solving approaches that could be employed 
during problem solving in physics.  If I had examined a different population of students 
or a different domain, the list of epistemic games would most certainly be different.  
However, the list contained below is sufficient for describing the problem solving 
approaches that introductory, algebra-based physics students employ in my data set.  
Each of these games is described in more detail below; however, I do not discuss the 
entry conditions for each game in the next subsections.  This subject is discussed in the 
section on frames and framing.  For each epistemic game I give a brief introduction, 
discuss its ontology and structure, and then I give an example of students playing that 
game.   
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List of epistemic games 
Mapping Meaning to Mathematics 
Mapping Mathematics to Meaning 

Physical Mechanism Game 
Pictorial Analysis 

Recursive Plug-and-Chug 
Transliteration to Mathematics 

Table 11. List of epistemic games identified in my data set. 

Mapping Meaning to Mathematics 

The most intellectually complex epistemic game that I identify is Mapping Meaning 
to Mathematics.  The name is derived from the structural nature of this game.  Students 
begin from a conceptual understanding of the physical situation described in the problem 
statement, and then progress to a quantitative solution.  There are five basic moves in 
Mapping Meaning to Mathematics (see Figure 10): (1) develop a story about the physical 
situation, (2) translate quantities in the physical story to mathematical entities, (3) relate 
the mathematical entities in accordance with the physical story, (4) manipulate symbols, 
and (5) evaluate solution.   

The knowledge base for this game (as with all the games I identify) comes from the 
set of physics and mathematics resources; however, in general, different resources are 
activated during the different moves of the game.  During the development of the 
conceptual story (move 1), reasoning primitives are most often activated.  That is, 
students often rely on their own conceptual understanding to generate this story – not on 
fundamental physics principles.  Translating the conceptual story into mathematical 
entities (move 2) is one of the most difficult moves in the entire game for most students.  
Intuitive mathematics knowledge, symbolic forms, and interpretive devices are usually 
activated during this move.  Relating the mathematical entities to the physical story 
(move 3), again is difficult for students, and relies on intuitive mathematics knowledge, 
symbolic forms, and interpretive devices.  Once the physics equations are written, the 
symbolic manipulations (move 4) usually goes by without a hitch; most introductory 
physics students have had ample practice manipulating symbols.  The evaluation of the 
story (move 5) can occur in many different ways: checking the solution with a worked 
example (or solution in the back of the book), checking their quantitative answer with 
their conceptual story, or checking their solution against an iconic example. 

The epistemic form for Mapping Meaning to Mathematics is the collection of 
mathematical expressions that the students generate during moves (2) and (3).  These 
expressions lead the direction of the inquiry. 
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Evaluate story 

Manipulate symbols 

Develop story about physical situation 

Translate quantities in physical 
story to mathematical entities 

(mathematical ontology)

Relate mathematical entities in accordance with 
physical story (interpretive devices) 

 
Figure 10. Schematic diagram of students’ moves with Mapping Meaning to Mathematics. 

An example of Mapping Meaning to Mathematics: Three Charge Problem 

An example of a student playing Mapping Meaning to Mathematics comes from the 
Three Charge Problem (Appendix A, #15).  Alisa summarizes her solution to this 
problem as Bonnie and Darlene listen.  In move (1), Alisa develops a conceptual story: 

Alisa:  All right, so because [q3] isn't moving the two forces that are acting 
on it are equal.  The push and the pull.   

Alisa’s story for why q3 isn’t moving seems to rely on the reasoning primitive of 
balancing.  She identifies two influences (“the push and the pull”), which she correctly 
classifies as forces that are exactly “equal.” 

In move (2), Alisa translates the influences in the conceptual story into mathematical 
entities: 

So, the F--I don't know if this is the right F symbol—but, the F q2 on q3 is 
equal to this.  And, then the F q1 on q3 is equal to this, because the 
distance is twice as much, so it would be four d squared instead of d 
squared.  

That is, Alisa uses the identity form,  = …, along with Coulomb’s Law to write the 

equations 24
3

31 d

kxQq
qqF =→  and 2

3
32 d

kQq
qqF =→ .  That is, she identifies the forces on 

the left side of the equation with the appropriate arrangement of charges and distance 
according to Coulomb’s Law.  She continues to explain why she wrote the equations the 
way she did.  She appears to use the symbolic form of scaling, x ,   

Alisa:  And, then I used x q like or you can even do—yeah—x q for the 
charge on q1, because we know in some way it's going to be related 
to q like the big q we just got to find the factor that relates to that. 
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In move (3), Alisa relates the mathematical entities she derived in (2) with the 
conceptual story she developed in (1): 

Then, I set them equal to each other… 
In move (4), she manipulates her equation to arrive at a solution. 

…and I crossed out like the q2 and the k and the d squared and that gave me 
q equals x q over four.   And, then x q equals four q, so x would have 
to be equal to four.  That's how you it's four q. 

In move (5), Bonnie and Darlene critique Alisa’s approach; however, Alisa’s final 
comment makes it fairly clear that Alisa is confident in her conclusion. 

Bonnie:  Well, shouldn't it be--well equal and opposite, but... 
Alisa:  Yeah, you could stick the negative. 
Bonnie:  Yeah. 
Darlene:  I didn't use Coulomb's equation, I just--but it was similar to that. 
Bonnie:  That's a good way of proving it. 
Darlene:  Uh-huh. 
Bonnie:  Good explanation. 
Alisa:  Can I have my A now? 

Figure 11 is a schematic diagram that displays how Alisa’s activities match with the 
moves in Mapping Meaning to Mathematics.  

“because this isn't moving the  
two forces that are acting on it 
are equal.”  

F1 = kxQq3/d2 
F2 = kQq3/(4d2) 

Evaluate story 

Manipulate symbols 

Develop story about physical situation

Translate quantities in physical story 
to mathematical entities 
(mathematical ontology) 

Relate mathematical entities in accordance 
with physical story  F1 = F2 

“…I set them equal to each other, 
and I crossed out like the… ”  

“Can I have my A 
now?” 

 
Figure 11.  Schematic map of Alisa’s moves within the Mapping Meaning to Mathematics epistemic game. 

An example of Mapping Meaning to Mathematics: Melting Ice Problem 

The previous example illustrates Alisa playing Mapping Meaning to Mathematics 
nearly flawlessly.  However, as I mentioned above, move (2) in this game presents the 
greatest difficulty for most introductory physics students.  Melissa’s approach to the 
Melting Ice Problem (Appendix A, #10) illustrates this point.  Melissa entered the course 
center because she was having trouble with this problem.  The explanation of her 
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approach is consistent with the Mapping Meaning to Mathematics epistemic game (see 
Figure 12).  First, she develops a conceptual story. 

Melissa: I kind of look at it differently than the way [the professor] did it [in 
class].  I calculate the—I separated the components.  I put--I was 
thinking of it as where you put the ice in the cup and then you just 
pour the hot water in, and then finding the temperature of that.  And 
then take that water after the ice melted and combine it with the 100 
grams of water and then find what the temperature is from that. 

Tuminaro:  I am not sure I follow everything there. 
Melissa:  So basically, instead of putting the—cause at that time he said the 

ice and the water are together and their both at zero degrees.  But, I 
separated that I put just the ice by itself.  And, add the hot water 
poured into it to melt it first.  And, then find out the temperature that 
it was after equiltherm—of the thermal equilibrium and then pour 
that water into the other water.  But then it was a totally different 
answer from what he did in class. 

Melissa’s conceptual story involves two steps: 
1. She pours the hot water (100o C) onto the ice cube “to melt it first,” and finds 

the temperature of that mixture. 
2. Then, she combines that mixture with the 100 grams of water that is at 0o C. 

Melissa combines the second and third move of Mapping Meaning to Mathematics in 
one statement. She translates influences in her conceptual story into mathematical entities 
by writing the equation TmcFmL ∆= on the whiteboard.  Her explanation for why she 
wrote this equation follows: 

Melissa:  It's M L F, that heat of fusion to melt the ice—the heat gained by 
the ice.  And then I took M C delta T was the—which is the energy 
that is lost by the hot water.   

In move (4), she then plugs the numbers given in the problem into her equation: using 
25 grams for the mass of ice, 50 grams for the mass of hot water, and “…the initial 
temperature is 100 degrees.”  Finally, she calculates the final temperature of the mixture 
(or, at least that’s what she thinks she is calculating):  

And then I found out what T F was, the final temperature.  Knowing that, 
um, T, the initial temperature is 100 degrees.  And I got nine point 
nine. 

The evaluation in move (5) occurs by her checking her answer against the solution, 
and realizing her answer is different. 
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“I separated that; I put just 
the ice by itself.  And, add the 
hot water poured into melt the 
ice first. And, then find out the 
temperature that it was 
after…thermal equilibrium.” 

Evaluate story 

Manipulate symbols 

Develop story about physical situation

Translate quantities in physical story 
to mathematical entities 
(mathematical ontology) 

Relate mathematical entities in accordance 
with physical story  mLF = mc∆T 

“…I found out what TF was, the 
final temperature.  Knowing that, 
T, the initial temperatiure, is 100 
degress.”… ”  

“But then it was a totally 
different answer from 
what he did in class.” 

mLF is the ”heat of fusion 
to melt the ice.” 
mc∆T  “is the energy that is 
lost by the hot water. 

 
Figure 12.  Schematic map of Melissa’s moves within the Mapping Meaning to Mathematics epistemic 

game. 

What went wrong with her approach?  As I mentioned earlier, many students have 
difficulties with the second and third moves in the Mapping Meaning to Mathematics e-
game; Melissa also has difficulties with moves (2) and (3).   

Melissa makes a few minor oversights in move (2) – she does not interpret the 
mathematical expressions in her equation with the appropriate measure of precision.  The 
term mLF, which appears on the left side of Melissa’s equation, is identified as the “heat 
gained by the ice”; but, more exactly, it is the amount of heat needed to melt the entire 25 
grams of ice.  Mathematically, the amount of heat needed is 

( ) calories 2000gram
calories 80grams 25 =⎟

⎠
⎞⎜

⎝
⎛=FmL .   

Her interpretation of the right side of the equation also lacks the appropriate amount 
of clarity.  She states it is the “energy lost by the hot water.”  However, more exactly, 
each gram of water that contributes to the melting of the ice will necessarily lose 100 
calories.  That is, each drop of hot water that contributes to melting the ice will go from a 
temperature of 100 oC to 0 oC, which is written symbolically as 
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( ) calories 100Co 100
Cog 

cal1gram 1 =⎟
⎠
⎞⎜

⎝
⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=∆Tmc .  Therefore, the maximum amount 

of heat that the hot water can provide to the ice is 50 times that (5000 calories), since 
there are 50 grams of hot water. 

Melissa’s inappropriate interpretations from move (2) get her into trouble in move (3) 
of Mapping Meaning to Mathematics.  Melissa simply equates FmL to Tmc∆ .  
However, as I showed in the previous two paragraphs the maximum amount of heat 
needed to melt the ice is 2000 calories, whereas the maximum amount of heat that all the 
hot water can provide is 5000 calories.  Therefore, all the hot water is not needed to melt 
the ice – only 20 of the 50 grams are needed.  Melissa’s equation and subsequent 
interpretations do not capture that fact. 

This example is one indication that students’ mathematical difficulties may not be 
with the mathematics; rather, it lies in translation of their conceptual understanding into 
physics equations and expressions.  I discuss this point in more detail in chapter 7.    

Mapping Mathematics to Meaning 

The ontological components of Mapping Mathematics to Meaning are exactly the 
same as those in Mapping Meaning to Mathematics.  Both games involve the same kind 
of knowledge base (resources) and epistemic form (physics equation).  However, the 
particular resources and physics equation that are used in each game will vary from 
problem to problem.    

In addition, the structural components of the two games are different.  In Mapping 
Mathematics to Meaning students begin with a physics equation, and then develop a 
conceptual story; whereas, in the Mapping Meaning to Mathematics students begin with a 
conceptual story, which is then translated into mathematical expressions.  The structural 
differences between these two games make them distinguishable from each other. 

There are four moves in this game (see Figure 13): (1) identify target “concept(s),” 
(2) find an equation relating target to other “concepts,” (3) tell a story using this 
relationship between “concepts,” and (4) evaluate story. 

Evaluate story 

Identify target “concept(s)” 

Find an equation relating 
target to other “concepts” 

Tell a story using this relationship 
between “concepts”

 
Figure 13. Schematic diagram of students’ moves with Mapping Mathematics to Meaning. 
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In the remainder of this subsection on Mapping Mathematics to Meaning I give two 
examples of students playing this epistemic game.  In the first example I discuss how 
Monica’s solution to the Jogger Problem (Appendix A, #9) fits the moves of Mapping 
Mathematics to Meaning.  In the second example I discuss how the resources that Arielle 
has active while playing Mapping Mathematics to Meaning leads her to two different 
solutions to the Colliding Gliders Problem (Appendix A, #3). 

The Jogger Problem 

Monica’s approach to the Jogger Problem (Appendix A, #9) follows the moves in 
Mapping Mathematics to Meaning (see Figure 14).  She discusses this problem with one 
of her classmates, named Mike.  In move (1), Monica identifies the target “concept”: 

Monica: So her average velocity going from A to C is...  
Next, consistent with move (2), she finds and equation (in this case she finds two 

equations) relating the target concept to other concepts:  
…both of these equations are going to figure out average velocity. Change 

in distance over change in time, or velocity final plus velocity initial 
divided by two, right? 

In move (3), she tells a story using the relationship between the “concepts”: 
Monica: They're both - so, here... you could do it either way, but, I think if 

you do it this way, like, if you look at her final velocity at C, we said 
was down four point seven. 

Mike: Oh, so that's negative? 
Monica: And, yeah, so it doesn't really matter. So we can say that's 

negative. And this one's up four point seven, divided by- 
Mike: It's going to be z-  
Monica: Two. 
Mike: It's going to be zero. 
Monica: It's going to be zero. So, average velocity, I think, is zero. Because 

the directions cancel each other out. 

Using the relationship in the equation 
2

ivfv
v

+
= , Monica concludes that the average 

velocity will be zero.  (In this case, choosing the equation 
2

ivfv
v

+
=  is incorrect 

because the acceleration is not constant; however, Monica’s problem solving approach is 
still consistent with Mapping Mathematics to Meaning.  It just happens to be the case that 
this particular instantiation of the epistemic game leads to an erroneous solution.  I 
discuss the association between students’ mathematical errors and epistemic games in 
more detail in chapter 7.)   

Lastly, in move (4), she evaluates17 her story: 
Monica: Velocity has to take into account direction. So speed, of course, is 

never changing.  
Mike: Ohhhh. 
Monica: Speed is immutable by direction. 

                                                 
17 I mean “evaluate” to be an umbrella term.  This evaluation can be carried out using several different 
methods.  See discussion of evaluation in Mapping Meaning to Mathematics on page 62 for more. 
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Her evaluation in this case is an acknowledgment that this conclusion seems to contradict 
her understanding of the notion of speed.  She knows the jogger never stops (i.e. “Speed 
is immutable by direction.”), so she simply justifies this apparent contradiction as a 
consequence of the physics concept of velocity. 

“So, her average velocity going from A to C…” 

“Both of these equations 
are going to figure out 
average velocity…” 

t
rv
∆
∆

=
v

v

“her final velocity at C, we said was 
down 4.7…and this one’s up 4.7” 

“Velocity has to take into account 
direction. So speed, of course, is 
never changing. ”  

Tell a story using this 
relationship between 

“concepts” 

Evaluate story 

Identify target “concept” 

Find an equation relating 
target to other “concepts”  

2
ivfv

v
vv

v +
=

“So average velocity, I think, is 
going to be zero. ”  

 
Figure 14. Schematic diagram of Monica’s moves in the Mapping Mathematics to Meaning epistemic 

game. 

The moves in Mapping Mathematics to Meaning make it distinguishable from 
Mapping Meaning to Mathematics.  However, the moves only specify the general 
progression of activities; the moves do not specify exactly what the students do.  The 
particular resources that are activated during the game will dramatically affect the 
outcome of that game.  Arielle’s work on the Colliding Gliders Problem (Appendix A, 
#3) is an extreme example of this fact.  Arielle plays Mapping Mathematics to Meaning 
in two different ways for one single problem.  In her first attempt she arrives at the 
correct answer, whereas in her second attempt she does not. 

The Colliding Gliders Problem 

In the statement of the Colliding Gliders Problem the target “concepts” (force and 
momentum) and equations (Fnet = m∆v/∆t and ∆p = m∆v) are given.  That is, the first 
two moves in Mapping Mathematics to Meaning are already completed for these 
students.  Arielle jumps into this game at move (3), and develops a story using the 
relationship between the “concepts”:  

Arielle:  So then the Fnet for A, the Fnet for M.  This is a big mass and this 
is a little mass and these are equal, so this has got to be a big, what 
is it, a big velocity and this has got to be a small velocity.  So, p for 
A and p for m – the change in velocity here has got to be sort of 
bigger.  Big velocity little mass. Big mass little velocity.  But these 
are equal. 

Tommy:  Right. 
Betty:  Right. 
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Arielle:  So the momentums got to be the same, right?   
Betty:  Yeah, but the change in momentum from glider A— 
Arielle:  I don’t know.  No, this is not right. 

Move (4):  She doesn’t articulate her evaluation of her story; however her comments 
indicate that she at least internally evaluates her story: “I don’t know. No, this is not 
right.”   

Arielle “executes” all the moves in the Mapping Mathematics to Meaning game.  
What resources does Arielle draw on to generate this story?  In chapter 4 I introduced the 
idea of interpretive devices – reasoning strategies for extracting information from 
equations.  In the above example, Arielle draws on the interpretive device of changing 
parameters18 to develop her story from the equation.  That is, she images what will 
happened to the left side of the equation (the force), if a parameter on the right is changed 
(the mass).  (She also images what will happen to the force if the change in velocity is 
varied.) 

“So, the Fnet for A and the Fnet for M…” 

These equations are given in 
the problem. 

t
vmnetF ∆

∆=

“This is a big mass and this is a little 
mass and [the Fnet’s] are equal, so this 
has got to be a big…velocity and this 
has got to be a small velocity.” 

“I don’t know.  No, this is not right.”  

Tell a story using this 
relationship between 

“concepts” 

Evaluate story 

Identify target “concept” 

Find an equation relating 
target to other “concepts”  

vmp ∆=∆

 
Figure 15. Schematic diagram of Arielle’s moves in the Mapping Mathematics to Meaning epistemic game 

when using the interpretive device of changing parameters. 

Later on in the same discussion, Arielle again plays Mapping Mathematics to 
Meaning (beginning at move (3)), but she uses a different interpretive device (feature 
analysis19) to develop a different story: 

Arielle:  Opposite directions—how could [the momenta] be the same?  If the 
masses are different and the change in velocities are different the 
momentums can’t be the same. 

In this instance, because feature analysis is activated, she develops a different story, even 
though she is still playing Mapping Meaning to Mathematics.  That is, she realizes that 
the two features of the momenta, namely the mass and the change in velocity, are both 
different; therefore, she concludes the momenta must be different, as well. 

                                                 
18 See the end of chapter 4 (p. 53) for more on changing parameters. 
19 See the end of chapter 4 (p. 53) for a more complete discussion of feature analysis. 
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To sum up, in both cases Arielle is making the same moves (she identifies the target 
concept, finds an equation, develops a story, and evaluates the story) – i.e. she is playing 
the same epistemic game.  However, in the first case, it appears that changing parameters 
is the resource that is activated during the development of the story; whereas feature 
analysis appears to be the resource activated in the development of the second story.  So, 
the moves of the epistemic game describe the general progression of Arielle’s problem 
solving strategy, but the particular resources that are active during the epistemic game 
dictate how she actually plays the game.  Said another way, the structure of Mapping 
Mathematics to Meaning is always the same (it always involves the same moves); 
however, the ontology (the resources that are active) may vary from problem to problem. 

“How could [the momenta] be the same?” 

This equation is given in the 
problem. 

“If the masses are different and the 
change in velocities are different the 
momentums can’t be the same.” 

Tell a story using this 
relationship between 

“concepts” 

Evaluate story 

Identify target “concept” 

Find an equation relating 
target to other “concepts”  vmp ∆=∆

 
Figure 16. Schematic diagram of Arielle’s moves in the Mapping Mathematics to Meaning epistemic game 

when using the interpretive device of feature analysis. 

Physical Mechanism Game  

In the Physical Mechanism Game students attempt to construct a physically coherent 
and descriptive story based on their intuitive sense of physical mechanism.  The 
knowledge base for this game consists of reasoning primitives.  In this game students do 
not make explicit reference to physics principles or equations.   

The ontology of the Physical Mechanism Game is different than in Mapping Meaning 
to Mathematics and Mapping Mathematics to Meaning.  The epistemic form in the latter 
two games explicitly involves physics equations; however the epistemic form in the 
Physical Mechanism Game does not.   Although the epistemic form is necessarily 
different, the same set of resources (intuitive mathematics knowledge, reasoning 
primitives, symbolic forms, and interpretive devices) may be active in this game as in the 
previous games.  

The structure of the Physical Mechanism Game is similar to the first move in 
Mapping Meaning to Mathematics – i.e. both involve the development of a conceptual 
story.  However, I set these two apart because the Physical Mechanism Game represents a 
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separate, coherent unit of student activities; whereas, in Mapping Meaning to 
Mathematics, after move (1) students go on to move (2), then move (3), etc.  The 
conceptual story developed in the Physical Mechanism Game stands alone.  The activities 
that follow this game do not cohere with the conceptual story – in direct contrast with the 
activities that follow move (1) in Mapping Meaning to Mathematics.  There are only two 
moves in the Physical Mechanism Game: (1) develop conceptual story and (2) evaluate 
story (see Figure 17).  

Evaluate story 

Develop story about physical situation 

 
Figure 17. Schematic diagram of students’ moves within the Physical Mechanism Game. 

 Now that I have given some background about the ontology and structure of this 
game I discuss an example.  In this example, Lynn and Mary discuss their approach to the 
Elevator Problem (Appendix A, #6), while Tony listens.  Lynn and Mary have already 
drawn the appropriate forces for the passenger and the scale when the elevator is at rest 
on the 33rd floor (see Figure 18).   

 

FScale on Person 

WEarth on Scale 

FElevator on Scale 

WEarth on Person 

 
Figure 18.  Lynn and Mary’s free-body diagram for the person and the scale in the Elevator Problem. 

Lynn and Mary are trying to determine which forces, if any, would change if the 
elevator begins to accelerate downward.  To do this they calculate the numeric value for 
the acceleration from the numbers given in the problem, and begin identifying all the 
numeric values of the other quantities given in the problem statement. 

Lynn:  Oh, no.  OK, so we know...they gave us the weights, so we know that 
the person is 80 kilograms and the scale is 7.  And, we determined 
the acceleration. 
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At this point Tony joins the discussion: 
Tony:  Do we even need to do all that calculation? 
Lynn:  I don't know. 
Tony:  I don't know if they're asking for it. 
Lynn:  They don't want numbers, but we couldn't really figure it out so we 

thought maybe numbers would help. 
Tony’s comments indicate that he does not expect that explicit calculations are 

necessary for this problem – conditions that are appropriate for the Physical Mechanism 
Game.  Tony continues along this line of reasoning: 

Tony:  Yeah.  Well, does um, let's see the the [normal force of the person on 
the scale] would—don't you think that'd decrease?  At--initially. 

Mary:  When we're accelerating downward.  The force of the... 
Tony:  Right. You know, it's almost likes you can look at it and like 

exaggerate it--like the elevator pulls away from the person.  And the 
person has to catch up to it. 

Lynn:  Oh.  That makes sense.  And that's why the person would weigh less. 
Tony:  Right. 
Lynn:  Which is what I remember from high school physics. 

An interesting feature about Tony’s explanation is the type of reasoning he uses.  
Formal physical laws and principles are conspicuously absent from his explanation.  He 
does not rely on arguments based on authoritative citations of abstruse physical laws.  
Rather, the support for his assertion rests on the other students “seeing” what he means: 
“Oh. That makes sense.”  This is evidence that he is relying on his intuitive sense of 
physical mechanism to generate this explanation.  In particular, it appears that he images 
the elevator at a specific moment: when the initially starts to accelerate. 

A second interesting feature about this exchange is that after Tony’s explanation this 
activity basically stops.  Lynn seems to think Tony’s explanation “makes sense,” and it 
confirms what she “remembers from high school physics.”  Therefore, there is nothing 
left to do.  Tony’s intuitive explanation answered their question.  That is, the Physical 
Mechanism Game ends with Tony’s explanation.  There is no need to translate this 
conceptual story into mathematical entities.  The explanation in terms of Tony’s intuitive 
sense of physical mechanism represents a coherent unit of activity.   

Pictorial Analysis Game 

In the Pictorial Analysis Game students generate an external spatial, representation 
that specifies the relationship between influences in the problem statement.  Examples of 
students playing the Pictorial Analysis Game are familiar to most readers, even if the 
name is not.  For instance, students that make a cartoon drawing of a physical situation, a 
free-body diagram, or a circuit diagram are all playing the Pictorial Analysis Game.   

In this game, as with all the games previously discussed, the knowledge base consists 
of all the resources listed in chapter 4.  The epistemic form in this game is a 
distinguishing characteristic.  The epistemic form is the cartoon or diagram that the 
students generate.  For example, if the students draw a circuit diagram during their 
inquiry, then that diagram serves as an epistemic form which guides their inquiry; in the 
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same way, a cartoon drawing or free-body diagram could both serve as target structures 
that guide inquiry. 

The moves in this game are largely determined by the particular external 
representation that the students choose to make.  For example, if the students choose to 
draw a free-body diagram, then one move is to determine the forces that act upon the 
object in question; whereas, if the students choose to draw a circuit diagram, then one 
move is to identify the active elements (e.g. resistors, capacitors, batteries, etc.).  So, the 
specific moves in this game vary depending on the external representation that the 
students choose.  There are three moves that are common to all instantiations of the 
Pictorial Analysis Game (see Figure 19): (1) determine the target concept, (2) choose an 
external representation, (3) tell a conceptual story about the physical situation based on 
the spatial relation between the objects, and (4) fill in the slots in this representation.  
Below is an example of students that choose to draw a free-body diagram while playing 
the Pictorial Analysis Game. 

 

Determine the target concept 

Choose an external representation 

Fill in the “slots” in this representation 

Tell a conceptual story based the  
spatial relations between objects 

 
Figure 19.  Moves in the Pictorial Analysis Game. 

Alisa, Patty, Mary, and Emma play Pictorial Analysis while working on the Pulling 
Two Boxes Problem (Appendix A, #13).   They are working on part A, which explicitly 
talks about forces.  So, (1) Emma tacitly identifies force as the important concept, and 
then (2) decides that a free-body diagram is the appropriate external representation. 

Emma:  Like I think it would be a good idea to draw some free-body 
diagrams, but I don't know what—which ones we should draw. 

Alisa:  Well, they want to know the friction between the crate and the floor. 
Alisa confirms Emma’s tacit assumption that force is the important concept; in 

particular, Alisa notes that friction is what they ultimately need to determine.   
Before the students can go to move (4) and begin to fill in the slots in the free-body 

diagram, they must decide what free-body diagram to draw.  In move (3), they decide 
they can treat the two crates on top of each other as one big crate. 

Emma:  Because, I would assume that you could look at these two crates as 
being one unit, and look at it as one thing, like we did in class -- and, 
like we used for an example today. 

Alisa:  OK. 
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Emma:  I mean for this, for this particular question – because, it's like one 
big crate. 

Mary:  Um-huh, just think of it as like one big thing. 
Emma:  But, maybe not, since they're [pushing up with her hands] I mean 

like with the boxes that you're pushing they're next to each other.  
But, when they're kind of of like, you know like this [pushing down 
on each other], it doesn't matter if you're trying to pull it. 

Alisa:  I think it does, because it makes it heavier.  As long as that top box 
isn't stationary. 

Emma:  That's true. 
Alisa:  Or, is stationary, excuse me. 
Emma:  So, maybe it does matter when you're doing them liked stacked like 

that. 
Alisa:  Well, we can try it with both and then we could always ask, I guess. 

Now that the students have decided for what object to draw a free-body diagram, they 
begin filling in the slots of this diagram – i.e. they begin move (4) of Pictorial Analysis. 

Emma:  So.  OK, so like for the crates...they have... 
Alisa:  Well, they have weight. 
Emma:  They have weight from the earth on the crates.   
Alisa:  And, then they have that... 
Emma:  They have ground...acting on the—the normal force of the ground 

up against the, um, crates. 
Patty:  And, then we have the rope.  Does the rope count? 
Emma:  Yeah, the ropes going to be something, I think. 
Alisa:  So then you have friction going [to the left]. 

These students specify four different forces that act on the crates (the weight, the 
normal force of the ground, the pull of the rope, and friction), and after a lengthy 
discussion they decide on the directions of all these forces (see Figure 20).  Ultimately, 
the students do not correctly identify the direction of the tension force from rope on the 
crate.  The students’ activities follow the moves in Pictorial Analysis.  
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M + m 

WEarth on Crates 

TRope on Crates 

NFloor on Crates 

ffloor on Crates 

 
Figure 20.  Recreation of the free-body diagram that the students created  

while playing Pictorial Analysis. 

Recursive Plug-and-Chug 

In the Recursive Plug-and-Chug e-game students plug quantities into physics 
equations and churn out numeric answers, without conceptual understanding the physical 
implications of their calculations. 

Students do not generally draw on their intuitive knowledge base while playing this 
game; they simply identify quantities and plug them into an equation.  Therefore, 
students usually just rely on their syntactic understanding of physics symbols, without 
attempting to understand these symbols conceptually.  That is, their other cognitive 
resources (intuitive mathematics knowledge, reasoning primitives, symbolic forms, and 
interpretive devices) are usually not active during this game.   

The epistemic form in Recursive Plug-and-Chug is similar to that in Mapping 
Meaning to Mathematics and Mapping Mathematics to Meaning: each game has physics 
equations as part of the epistemic form.  As I stated in the previous paragraph, the 
resources that are active (i.e. knowledge base) in Recursive Plug-and-Chug are different 
than in these other games.  Therefore, since the activated resources in Recursive Plug-
and-Chug are different, the rules and strategies that are employed during this game differ 
from those in Mapping Meaning to Mathematics and Mapping Mathematics to Meaning – 
even though the epistemic form (target structure that guides inquiry) is the same in all 
these games.  So, one of the distinguishing feature of Recursive Plug-and-Chug is the 
resources that are activated during this game. 

Because the epistemic forms are similar, the structure of Recursive Plug-and-Chug is 
similar to Mapping Mathematics to Meaning.  First, the students identify the target 
quantity.  This is similar to the first move in Mapping Mathematics to Meaning, but it 
differs in this game in that the students only identify the quantity and its corresponding 
symbol – they do not attempt to understand conceptually what this quantity is.  Second, 
the students identify an equation that relates the target quantity to other quantities.  Third, 
the students identify which quantities are known and which quantities are unknown.  If 
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the target quantity is the only unknown, then they can proceed to calculate the answer.  
However, if there are additional unknowns, then they must choose a sub-goal and start 
this process over – herein lies the ‘recursive’ nature inherent in this game.  Figure 21 
shows a schematic depiction of the moves in this game. 

 

Only the target quantity 
is unknown 

Calculate target quantity 

Identify target quantity 

Find an equation relating 
target to other quantities 

Determine which of the other 
quantities are known 

Some other quantities 
are unknown 

Choose a sub-target 
and start over 

 
Figure 21.  Schematic diagram of students’ moves within Recursive Plug-and-Chug. 

An example of students playing Recursive Plug-and-Chug occurs while Valerie and 
Sarah attempt to solve the Dorm Room Pressure Problem (Appendix A, #5).  Valerie 
identifies ‘pressure’ as the target quantity, and then finds an equation relating pressure to 
other quantities: 

Valerie: Pressure is equal to the radius, times the moles of the gas, times the 
temperature, divided by the volume. So what we need to do – we 
know the pressure…density is equal to… 

Sarah: Are you using PV=nRT? 
Valerie: Huh? 
Sarah: Are you using PV=nRT? 
Valerie: Yeah. Or…yeah. 
Sarah:  Or. 
Valerie:  Or P equals R times N T... 
Sarah:  Over V. 
Valerie:  Over V. 

Two points can be interpreted from this exchange: the equation Valerie has chosen 
will not help them calculate the difference in pressure between the floor and the ceiling, 
and Valerie is not concerned with the conceptual meaning of the symbols in this equation 
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– she incorrectly identifies R as the radius!  The first point is an accidental feature of this 
particular instantiation of Recursive Plug-and-Chug.  Students can play this game and get 
the correct answer.  It just happens to be the case that Valerie chose an equation that 
won’t lead her to the correct answer when playing this game.  The second point, however, 
is an inherent feature of Recursive Plug-and-Chug.  Since the cognitive resources for 
understanding the equations (i.e. symbolic forms and interpretive devices) are not 
activated during this game, conceptual understanding of the equation is not a part of this 
game.  That is, the students need to be able to identify the symbols, but in this game the 
students do not need to understand the concepts that the symbols represent.  The fact that 
Valerie identified R as the radius is an indication that she is playing Recursive Plug-and-
Chug. 

Consistent with the third move in Recursive Plug-and-Chug, Valerie and Sarah 
identify the ‘knowns’ and ‘unknowns’:  

Sarah:  We know the pressure. 
Valerie:  We know the pressure.  But we need to take the density to volume.  

Density is equal to... 
Sarah:  Oh, we have the density. 
Valerie:  Yeah, yeah, but that doesn't matter.  We need the volume. 
Sarah:  Oh, what did I just say? 
Valerie:  Density is equal to volume over what mass, or something? 
Sarah:  Density equals mass over volume. 

If the target quantity (pressure) was the only unknown they could proceed to calculate 
the target quantity.  Since the target quantity is not the only unknown, they must choose a 
sub-target (“we need the volume”) and return to the second move in this game (“Density 
equals mass over volume.”)  

To sum up, although there are some structural similarities (some of the moves are 
similar) between Recursive Plug-and-Chug and Mapping Mathematics to Meaning, the 
ontological components (the set of resources that are active) are different in the two 
games.  Therefore, Recursive Plug-and-Chug represents a distinct set of activities that are 
distinguishable from Mapping Mathematics to Meaning.  One of the distinguishing 
features is that in Recursive Plug-and-Chug, students use symbols without activating 
conceptual understanding. 

Transliteration to Mathematics  

Research on problem solving indicates that students often use worked examples to 
develop solutions to novel problems (Ben-Zeev, 1998).  Transliteration to Mathematics 
is an epistemic game in which students use worked examples to generate a solution, yet 
they do so without developing a conceptual understanding of the worked example.  The 
word ‘transliterate’ means “to represent (letters or words) in the corresponding characters 
of another alphabet.”20  In the Transliteration to Mathematics game students simply map 
the quantities from a target problem into the solution pattern of an example problem.   

Because students use the symbolism in this game without conceptual meaning, 
usually only resources associated with the syntactic structure of equations are active 

                                                 
20 This definition comes from the The American Heritage® Dictionary of the English Language. 
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during this game.  The solution pattern of the target example serves as the epistemic form 
for the Transliteration to Mathematics game. 

The moves in this game are simple: (1) identify target quantity, (2) find a solution 
pattern that relates to the current problem situation, (3) map quantities in current problem 
situation into that solution pattern, and (4) evaluate the mapping (see Figure 22).  Moves 
(2) and (3) are very tricky for many students.  Many times students may find a solution 
pattern that they think relates to the current problem, when in fact it does not. 

Evaluate mapping

Identify target quantity 

Find a solution pattern 
that relates to the current 

problem situation. 

Map quantities in the current 
problem situation into the 

solution pattern. 

 
Figure 22.  Schematic diagram of the moves in Transliteration to Mathematics. 

Darlene, Bonnie, and Alisa play Transliteration to Mathematics while working on the 
Three Charge Problem (Appendix A, #15).  (Figure 23 shows a schematic diagram of the 
students’ moves within Transliteration to Mathematics.)  First, Bonnie identifies the 
target quantities.   

Bonnie:  Yeah.  So, if you double the distance how does that affect the 
charge, like does it--do you have to have the charge twice as big or 
four times big? 

Then, Darlene attempts to map the quantities in the Three Charge Problem into the 
solution from the Force-Distance Two-Charge Problem (Appendix A, #7). 

Darlene:  Where is that other problem [Force-Distance Two-Charge 
Problem]?  Three times as far apart as they were now what is the 
magnitude of the force? 

Bonnie:  I think it should be four times.   
Darlene:  If it's three times as far apart it's...you divide...uh!  I think it's q 

over two. 
Bonnie:  Q over two?  So, if you think of it as half the force of q2. 
Darlene:  Look at this one [the Force-Distance Two-Charge Problem]. 
Bonnie:  Is this one you're talking about? 
Darlene:  Uh-huh.  If you increase the distance that they are from each 

other it's decreasing by the same amount.  I thought it was four (?), 
but they said it was (?).  I don't know why.  Just three times...does it 
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matter? I'm looking this one.  Number three, isn't that like the same 
thing? 

Alisa:  Three was an estimation problem. 
Darlene:  No, no with the q and four q and all that, you know how there was 

this question that asked when you move the charges three times 
further apart than they originally were, what the resulting force is. 

Alisa:  OK. 
Darlene:  And, you said it was—we said it was four (?)--the charge would 

be like q, or nine, but it would got three times as far apart.  Why it's 
not three I don't understand, but that’s all right.  So— 

Alisa:  Well, 'cause in the equation you square this—the distance between 
them.  Like if you're multiplying by three... 

Darlene:  Oh!  So, I would think this one would be q over four—negative q 
over four.  Cause it's twice as far away, opposite charge.  Does that 
make sense? 

Alisa:  But, then it's a smaller charge than this. 
Bonnie:  Yeah. 
Alisa:  So, I don't understand how it would be pushing three or pulling three 

whatever it's doing.  
Darlene identifies the Force-Distance Two-Charge Problem (FDTCP) as being 

similar to the Three Charge Problem (TCP): “isn't that like the same thing?”  The solution 

in the former problem has the epistemic form 
squared  distance

quantitytarget  , which becomes 
9
F  

because of the situation in the FDTCP.  Darlene attempts to use the same epistemic form 
as a target structure to guide her inquiry in the TCP.   She simply maps the ‘charge’ in as 
the ‘target quantity’ and uses the distance specified in the Three Charge Problem: “Oh!  
So, I would think this one would be q over four—negative q over four.  Cause it's twice 
as far away, opposite charge.”   
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Evaluate mapping

Identify target quantity 

Find a solution pattern 
that relates to the current 

problem situation. 

Map quantities in the current 
problem situation into the 

solution pattern. 

“double the distance 
how does that 
affect the charge” 

“Where is [the Force-
Distance Two-Charge 
Problem?” 

“I would think this one 
would be…negative q over 
four, because it's twice 
as far away, opposite 
charge.” 

“But, then it's a smaller 
charge than this.” 

 
Figure 23.  Darlene, Bonnie, and Alisa’ moves in Transliteration to Mathematics. 

An additional piece of evidence that indicates that Darlene is playing Transliteration 
to Mathematics comes from her admission that she doesn’t understand the solution in the 
FDTCP: “I don't understand how it would be pushing three or pulling three whatever it's 
doing.”  One of the distinguishing features of Transliteration to Mathematics is that 
students can play this game without conceptual understanding of the solutions patterns.  
Darlene admits she doesn’t understand the FDTCP, but according to her “that’s all right.” 

Why students (tacitly) choose to play a particular e-game: Introduction to Frames 

The introductory students in my study played six different epistemic games while 
using mathematics in physics.  But why would a student choose to play any one particular 
e-game?  My answer to this question is that the (tacit) decision to play a particular 
epistemic game is determined by a student’s real-time and/or preconceived expectations 
about problem solving in physics.  To describe students’ expectations I introduce the 
concept of frames.  

Background and history of Frames 

The concept of frames has a long history across many different disciplines.  Frames 
were proposed by the psychoanalyst Gregory Bateson (1972) and the anthropologist 
Irving Goffman (1997), and used by socio-linguist Deborah Tannen (1993).  A frame is 
an individual’s interpretation of a situation or event based on her expectations of the 
situation or event.  The gerund, framing, is used to describe an individual’s moment to 
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moment parsing of a particular situation. That is to say, an individual’s framing helps her 
answer the question, “what kind of activity is this?” 

An example of a frame (the restaurant frame) comes from Tannen’s (1993) 
discussion of a story by Schank and Abelson (1977), which reads: 

John went into the restaurant.  He ordered a hamburger and a coke.  He 
asked the waitress for the check and left. 

Tannen discusses how Schank and Abelson’s story illustrates the existence of frames 
in knowledge structures.  Schank and Abelson’s use of the term “script” in the following 
passage is synonymous with Tannen’s use of the term “frame”: 

One might ask how the story can refer to “the” waitress and “the” check 
“just as if these objects had been previously mentioned.”  The fact 
that they can is evidence of the existence of a script [or frame] which 
“has implicitly introduced them by virtue of its own introduction” 
(p.18). 

  
That is, the waitress and the check don’t need to be formally introduced in the story, 
because the reader has the expectation that waitresses and checks are present in 
restaurants; i.e. waitresses and checks are part of the restaurant frame. 

So, if frames exist, then how do we know one when we ‘see’ it?  Tannen identifies16 
different linguistic cues that indicate an individual’s structures of expectations: (1) 
omission, (2) repetition, (3) false starts, (4) back tracks, (5) hedges and other qualifying 
words or expressions, (6) negatives, (7) contrastive connectives, (8) modals, (9) inexact 
statements, (10) generalizations, (11) inferences, (12) evaluative language, (13) 
interpretation, (14) moral judgment, (15) incorrect statements, and (16) addition.  I 
describe and use these cues in my categorization of the different frames involved in 
mathematical problem solving in introductory physics. 

Frames and students’ use of mathematics in physics 

As articulated by Redish (2004), an individual’s framing has many components: a 
social component (“Who will I interact with and how?”), a physical component (“What 
material will I be using?”), a skills component (“What will I actually be doing?”), an 
affect component (“How will I feel about what I’m going to be doing?”), and an 
epistemological component (“How will I learn / build new knowledge here?”).  I draw on 
the skills and epistemological components to categorize epistemic games into three 
different frames: rote equation chasing, qualitative sense-making, and quantitative sense-
making.   

The rote equation chasing frame is students’ expectations that problem solving in 
physics involves appropriately identifying a physics equation from a large memorized 
list, and then “plugging in” the corresponding quantities.  In contrast, the sense-making 
frame is students’ expectations that problem solving in physics should progress through 
the systematic application of common sense or physical principles – i.e. problem solving 
in physics should “make sense.”  In the qualitative sense-making frame students expect 
that the solution does not require formal mathematics; whereas, in the quantitative sense-
making frame students expect that the solution does require formal mathematics.  Table 
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12 shows the different epistemic games organized by frame.  In the next three 
subsections, I discuss each frame in more detail. 

Rote equation chasing frame Qualitative sense-making frame  

Recursive Plug-and-Chug Physical Mechanism Game 

Transliteration to Mathematics Pictorial Analysis 

 Quantitative sense-making frame  

 Mapping Mathematics to Meaning 

 Mapping Meaning to Mathematics 

Table 12.  Epistemic games organized by frame. 

Rote equation chasing frame 

I identify two epistemic games that fall into the rote equation chasing frame: 
recursive plug-and-chug and transliteration to mathematics.  As I alluded to earlier, 
students’ ‘decisions’ to enter into these games is based on their expectations.  These 
expectations can be based on real-time assessments of the problem statement (i.e. 
moment-to-moment activation of epistemological resources) and/or on preconceived 
epistemological beliefs about problem solving in physics (i.e. a particular epistemological 
frame).   

Research by Hinsley and Hayes (1989) indicates that students tend to “use a line-by-
line procedure, especially in solving nonstandard problems” (p. 476).  This result 
suggests that if students’ real-time assessment of the problem statement does not cue the 
appropriate knowledge that would allow the students to make sense of the problem, then 
they may be nudged into the rote equation chasing frame.  That is, if the problem 
statement does not cue the appropriate mathematical resources for making sense of the 
problem, then students may resort to an equation hunting technique.  So, the students 
enter the rote equation chasing frame based on a moment-to-moment framing of the 
problem statement.   

Alternatively, if the students believe that problem solving in physics is simply picking 
the correct equation out of the book or a worked example, then they will likely be in the 
rote equation chasing frame.  That is, their preconceived notion about problem solving in 
physics puts them into the rote equation chasing frame.  

There is evidence that indicates that Recursive Plug-and-Chug occurs in a rote 
equation chasing frame.  In particular, there are three pieces of evidence that indicate 
while Sarah and Valerie are playing Recursive Plug-and-Chug to solve the Dorm Room 
Pressure Problem (Appendix A, # 5) they are in the rote equation chasing frame.  First, 
the question asks for the difference in pressure between the floor and the ceiling in a 
dorm room.  They simply identify the pressure as the target quantity and the equation that 
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they find (“
V

nRTP = ”) cannot help them find the difference in pressure between the floor 

and the ceiling – a fact that they don’t seem to give a second thought.   
Second, Valerie identifies R in the equation as the “radius.”  When it is brought to her 

attention that R does not represent the ‘radius,’ she is not fazed at all, in fact this pleases 
her: “Is it a constant?...Awesome, one less thing for us to find!”  Valerie is not concerned 
with the semantic content contained within the equation; she’s simply using the equation 
as a calculating tool, without thinking about what the equation or the symbols mean.   

The recursive nature of this game is the third indication that it occurs in a rote 
equation chasing frame.  Valerie realizes that in order to solve for the target quantity 

using the equation 
V

nRTP = , she needs to determine the volume.  The equation she finds 

to relate the volume to other quantities is 
V
mD = .  From this she realizes that the volume 

is unknown and the mass is unknown.  Therefore, she identifies the ‘mass’ as the new 

sub-target.  The equation she finds to relate the ‘mass’ to other quantities is 
V
mD = .  

However, the ‘volume’ is unknown and the ‘mass’ is unknown.  This leaves her in a 
recursive loop, because in order to find the ‘volume’ she needs the ‘mass,’ but in order to 
find the ‘mass’ she needs the ‘volume.’  The recursive nature of this game is inconsistent 
with sense making – another indication that Recursive Plug-and-Chug occurs in a rote 
equation chasing frame. 

In addition to Recursive Plug-and-Chug, Transliteration to Mathematics occurs in the 
rote equation chasing frame. As I discussed above, Darlene plays Transliteration to 
Mathematics in an attempt to solve the Three Charge Problem – she attempts to map the 
solution pattern from the Force-Distance Two-Charge Problem into the Three Charge 
Problem.  Darlene’s comments show that she does not have conceptual understanding of 
how the solution was obtained in the FDTCP: “Why it's not three I don't understand, but 
that’s all right” (emphasis added).  Her use of the contrastive connective ‘but’ is 
particular telling.  Tannen (1993) argues that “an oral narrative uses the word ‘but’ to 
mark the denial of an expectation not only of the preceding clause but of an entire 
preceding set of statements or of narrative coherence in general” (p. 44).  So, Darlene’s 
use of the word ‘but’ in the above statement can be taken as evidence of her expectation 
that conceptual understanding is not at all necessary in her problem solving approach.  
Since I categorize her approach as Transliteration to Mathematics, then it follows that 
she expects that conceptual understanding is not necessary in Transliteration to 
Mathematics; i.e. this game occurs in the rote equation chasing frame.  

To sum up, in the rote equation chasing frame, students can play Recursive Plug-and-
Chug or Transliteration to Mathematics without conceptual understanding of the 
mathematics used in the problem solving process.  In these two games students simply 
use the syntactic structure of the mathematics as cues for how to generate an answer.   
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Qualitative sense-making frame 

I identify two distinct epistemic games in the qualitative sense-making frame: 
physical mechanism game and pictorial analysis.  I use the qualifier ‘qualitative’ when 
describing this frame, because the games do not rely on formal mathematical procedures 
or equations.  However, these games may involve informal, intuitive mathematical 
reasoning. 

There is evidence from Tony’s comments on the Elevator Problem that the Physical 
Mechanism Game occurs in the qualitative sense-making frame.  Lynn and Mary’s initial 
approach to this problem involves numerous calculations and equations – they are not in 
a qualitative sense-making frame.  Tony makes many hedges and qualifying statements in 
an attempt to nudge them into a different frame.  Tannen (1993) states “by qualifying or 
modifying a word or statement, hedges measure the word or idea against what is 
expected” (p. 43). 

Tony:  Do we even need to do all that calculation? 
Lynn:  I don't know. 
Tony:  I don't know if they're asking for it. 
Lynn:  They don't want numbers, but we couldn't really figure it out so we 

thought maybe numbers would help. 
Tony’s initial comment is an indication that he doesn’t expect that calculations are 

necessary for this problem – one indication that his approach to this problem (Physical 
Mechanism Game) occurs in the qualitative sense-making frame.  A second interesting 
feature about Tony’s comments is how he uses hedges to negotiate a frame shift with the 
other students. 

Tony:  Yeah.  Well, does um, let's see the the [normal force of the person on 
the scale] would—don't you think that'd decrease?  At--initially. 

Mary:  When we're accelerating downward.  The force of the... 
Tony:  Right. You know, it's almost likes you can look at it and like 

exaggerate it--like the elevator pulls away from the person.  And the 
person has to catch up to it. 

Lynn:  OH!  That makes sense.  And that's why the person would weigh less. 
Tony:  Right. 
Lynn:  Which is what I remember from high school physics. 
    

  Initially, Lynn and Mary attempt to use formal mathematics and physics principles 
(which they do not appear to understand) in their efforts to produce a solution.  Tony’s 
approach to this problem (the Physical Mechanism Game) stands in stark contrast to 
Lynn and Mary’s collective approach.  Lynn and Mary appear to have been in a rote 
equation chasing frame.  Tony wants to play the Physical Mechanism Game, which is in 
the qualitative sense making frame.  Tony’s many hedges serve to mitigate the transition 
between the two frames.  He makes many starts and stops and repetitions of words before 
offering his intuitive explanation: “Yeah.  Well, does um, let's see the the…”  These 
linguistic hedges are an indication that Tony intends to shift frames from rote equation 
chasing, the frame Lynn and Mary are initially operating in, to the qualitative sense-
making frame. 
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Quantitative sense-making frame  

I identify two different epistemic games in the quantitative sense-making frame: 
Mapping Mathematics to Meaning and Mapping Meaning to Mathematics.  I use the 
qualifier ‘quantitative’ when describing this frame, because the games in this frame rely 
on formal mathematical procedures or equations.  Students get nudged into this frame 
based on two expectations: the solution to the problem involves explicit calculations and 
the answer should make sense.   

Mary and Emma’s discussion while working on the Paper Towel Problem (Appendix 
A, #10) illustrates the point that Mapping Mathematics to Meaning occurs in the 
quantitative sense-making frame.  Mary and Emma are initially playing the Physical 
Mechanism Game in an attempt to solve this problem. 

Mary:  If you pull it with one hand, so all the force is concentrated in one 
area of the towel, so it causes it to rip.  You know.  But, if you pull it 
with both hands, it's going to be a more equal distribution, maybe.  
So, you could (?), that's what I was thinking.  But, if your hands are 
wet it makes the towel soggy, which makes it weak, so it's more likely 
to rip. 

Emma:  It might make it more likely to rip, but still that's better than pulling 
it with one hand. 

Mary:  Yeah, if both your hands--like (?) yeah. 
The students are attempting to develop a coherent, physical story without reference to 

formal physics principles or equations.  Then, Emma voices her expectation that this type 
of approach is insufficient. 

Emma:  Is that all we're supposed to do with that?  I feel like (?).  Like, I 
feel like it should have something to do with like not just force.  I 
feel like it should have something to do with what we've learned like 
recently.  Having to do with like water and pressure  (?) 

The linguistic cues about Emma’s expectations come from her use of negative 
statements and modals.  Tannen (1993) states that “in general, a negative statement is 
made only when its affirmative was expected” (p. 44), and the modals “‘must’ and 
‘should’…reflect the speaker’s judgment according to her own standards and experience” 
(p. 45).  Emma’s comments indicate she has the expectation that they need to use a 
concept that they have “learned like recently.”  It’s not that Mary’s explanation doesn’t 
make sense; it’s just that Emma has that expectation that the explanation should involve 
the concept of “pressure.” 

Emma parlays this expectation into an opportunity to play Mapping Mathematics to 
Meaning.  (1) She identifies the target concept (‘pressure’), and (2) finds an equation 
relating the target to other concepts: 

Emma:  Well pressure was force over surface area or something, right? 
Mary:  Pressure equals F over A, yeah. 

Then, (3) she develops a story that uses the relationship between the target and the 
other concepts: 

Emma:  So like, you know, you could be exerting the same force but you’re 
doing it over like a larger area, so it's one (?), less pressure on the 
towel it doesn't rip. 
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Mary:  That's true.  So, we could use that. So, what did you say, if you use 
the same amount of force each time, but over—you use a larger 
surface? 

Emma:  When you pull (?). 
Tony:  Fifty newtons of force and you apply it over five centimeters you have 

ten, ah, newtons or whatever in pressure.  But, if you had fifty and 
you apply it over ten then you have five thingamabobers of pressure. 

Mary:  Oh, OK.  
Finally, (4) Emma evaluates her story by referring to a particular physical example: 

Mary: So, is that it?  I'm just going to add a thing that says... 
Emma:  Yeah, because if you have a paper towel and you want to see how 

strong they are (?), you hold it at the sink and it's all wet and you put 
like a thing of grapes like in the middle of it, it's going to rip through 
the middle.  But, if you put it over like all of it might not. 

Mary:  Uh-huh. 
Emma:  Spread out...  

The new explanation that Emma generates by playing Mapping Mathematics to 
Meaning still makes sense to her, and it also fulfills her expectation that the answer 
should involve concepts they had learned more recently. 

Discussion about epistemic games and frames 

The astute reader may have noticed that there is considerable overlap between the 
moves in some games.  For example, both Mapping Meaning to Mathematics and 
Recursive Plug-and-Chug involve mathematical manipulations.  For this reason, some 
readers may contend that Mapping Meaning to Mathematics ends after the conceptual 
story is translated into mathematical entities (i.e. after move (3)), and that the 
manipulation of symbols (i.e. move (4)) is a different epistemic game.  The basis for this 
contention is that mathematical manipulations are the essential component of the 
Recursive Plug-and-Chug game.   

However, my assertion is that simply because a move is in one game (e.g. 
mathematical manipulation occurs in Recursive Plug-and-Chug) it doesn’t mean that 
same move cannot appear in a different epistemic game (e.g. mathematical manipulations 
occur in Mapping Meaning to Mathematics).  My reasons for this assertion are threefold:  

1. Empirical.  Epistemic games are an observational categorization of coherent 
units of activity.  In order for two problem solving activities (epistemic 
games) to be the same, they must contain all the same sub-activity (move), 
and the sub-activities must occur in the same order.  In Mapping Meaning to 
Mathematics, the mathematical manipulations occur after the conceptual story 
is translated into mathematics; whereas, in Recursive Plug-and-Chug the 
mathematical manipulations occur after all the ‘knowns’ and ‘unknowns’ are 
identified.  Although both games include mathematical manipulations, the 
moves before and after these manipulations are different in the two games.  
(See Figure 13 and Figure 21 to compare the moves in Mapping Mathematics 
to Meaning and Recursive Plug-and-Chug, respectively.) 
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2. Pedagogical.  Allowing the same move to occur in different epistemic games 
can help educators and researchers distinguish between seemingly similar 
expert and novice problem solving behavior.  Students often use the symbols 
in a physics equation without conceptual understanding (e.g. Valerie identifies 
R as the radius in the equation PV = nRT, p. 84).  Experts’ often have 
conceptual understanding of the symbols that they manipulate.21 

3. Theoretical. Frames are a larger theoretical construct, than epistemic games – 
epistemic games occur within a particular frame.  The mathematical 
manipulations in Recursive Plug-and-Chug occurs in the rote equation 
chasing frame; whereas, the mathematical manipulations in Mapping Meaning 
to Mathematics occur in the quantitative sense-making frame. 

Alternative frameworks that address process component  

Any observational study of the process component of students’ use of mathematics in 
physics leads to an obvious conclusion: the actual path that students follow during 
problem solving in physics varies from problem to problem and student to student.  This 
fact is largely overlooked in many cognitive models of student problem solving (Larkin, 
1983; Kintsch & Greeno, 1985; Nathan, Kintsch, & Young, 1992).  Many of these 
cognitive models of mathematical problem solving are normative, not descriptive.  That 
is, they adequately model ideal student problem solving approaches, but they do not 
describe all the different approaches that students actually use during problem solving in 
physics.  I discuss the model of algebra word problem comprehension introduced by 
Nathan, Kintsch, and Young (1992).  In particular, I show that the Nathan et al model can 
adequately model an ideal problem solving approach, but it can not be used to describe 
some non-ideal student problem solving activities. 

Nathan et al (1992) argue that any model of problem solving must include the aspect 
of language comprehension.  According to their model there are three components to 
algebra word problem comprehension: a textbase, a situation model, and a problem 
model.  The textbase consists of a network of propositions, generated by the problem 
solver, which captures the meaning of the problem statement.  The reader’s mental 
representation of the actions in the text, described in terms of everyday terms and objects, 
is called the situation model.  The problem model consists of quantitative algebraic 
relationships between entities, which are generated from “problem schema” or “templates 
for organizing problem-relevant information.”  According to Nathan et al, the “textbase is 
organized into a (qualitative) situation model and mapped into a (quantitative) problem 
model that captures the algebraic problem structure” (p. 332).   

This model adequately describes an ideal student solution; however, students use 
mathematics in physics in ways that are less than ideal.  Epistemic games and frames 
offer more descriptive language for analyzing students’ actual use of mathematics in 
physics.  I explicitly identify six different approaches, or games, that students attempt 
during problem solving in physics.  Nathan et al acknowledge that there is not one path 
that students must follow during problem solving: “We do not propose a stage theory, 
however, in which situational understanding must precede the formation of the problem 
                                                 
21 There is additional discussion about how this framework helps distinguish between expert and novice 
problem solving behavior in Chapter 6. 
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model” (p. 337).  The go on to say, “we find a mutually supporting relationship in which 
situational understanding helps students realize the episodic meaning of a formal problem 
model, and reciprocally, sensitivity to the requirements of a problem schema aids in the 
construction of a suitable situation model” (p. 337).  According to the language of 
epistemic games, this is simply the difference between Mapping Meaning to Mathematics 
and Mapping Mathematics to Meaning.  Additionally, however, epistemic games offer a 
language to describe students’ non-ideal use of mathematics – when they use 
mathematics without conceptual understanding. 

Summary 

Two theoretical constructs describe the process component of students’ use of 
mathematics in physics: epistemic games and frames.  Students play six different kinds of 
epistemic games while using mathematics in the context of physics: Mapping Meaning to 
Mathematics, Mapping Mathematics to Meaning, Physical Mechanism Game, Pictorial 
Analysis, Recursive Plug-and-Chug, and Transliteration to Mathematics.  Three different 
frames correspond with students’ expectations about problems and problem solving in 
physics: quantitative sense-making, qualitative sense-making, and rote equation chasing.  
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Chapter 6: A case study illustrating the use of mathematical resources, 

epistemic games, and frames in the analysis of  

students’ mathematical thinking 

Introduction  

Constructivism (student construction of knowledge) is the dominant paradigm in 
modern educational theory.   The educator’s role in the constructivist paradigm is to help 
students construct new knowledge from their existing knowledge.  In order to assist the 
students, the educator needs to be able to determine what the students are thinking and 
why they make the mistakes that they do.   In chapters 4 and 5 I described the three major 
components used in my theoretical framework for analyzing and describing students’ use 
of mathematics in physics: mathematical resources, epistemic games, and frames.  In this 
chapter, through a detailed analysis of a one-hour student problem solving session, I 
show how my theoretical framework offers educators and researchers a technical 
language capable of describing students’ (correct and incorrect) use of mathematics in 
physics.  That is, this framework offers a vocabulary (definition of the relevant cognitive 
structures) and grammar (relationship between the cognitive structures) for understanding 
the nature and origin of students’ mathematical thinking in physics.   

In the next section I give the specific context in which the case study is derived: I 
describe the students, the time and setting in which the students worked, and the 
particular homework problem under investigation.  In section three I discuss how the 
problem solving session is parsed for analysis.  In section four, I give detailed analysis of 
the problem solving session in terms of the theoretical framework that I have developed.  
Finally, in section five, I give a summary and some closing remarks. 

The context of this case study: Three Charge Problem 

The episode for this case study involves four students working on an electrostatics 
problem: The Three Charge Problem (Appendix A, #15).  Three of the students are 
female (pseudonyms, Alisa, Bonnie, and Darlene) and one of the students is male 
(pseudonym, Edgar).  Edgar very rarely speaks during the entire 60 minute video record 
of these students working on this problem.  In fact, in the excerpts of the problem solving 
session that follow, he does not speak at all.     

This episode occurs in the first week of the second semester in a two semester 
introductory, algebra-based physics course.  (A more complete description of the 
particular introductory physics course appears in chapter 3.)  All the students in the group 
had been in the reformed, non-traditional introductory course the first semester.  
Therefore, they were familiar with the ‘peculiarities’ of this course.  In particular, they 
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were familiar with the typical interaction style between students and teaching assistants in 
the course center, and the type of homework problems that were typically assigned in this 
course.  Most importantly, they were cognizant of the fact that the instructor expected the 
students to spend about an hour on each homework problem – during which time they 
were expected to generate solutions to the questions that ‘made sense to them.’  The 
students’ familiarity with these aspects of the course will become particular important 
when I discuss their framing of the problem solving episode. 

The particular problem that the students work on in this episode is the Three Charge 
Problem, which reads as follows: 

q1 q2 q3 

dd

 
In the figure above three charged particles lie on a straight line and are 

separated by distances d.  Charges q1 and q2 are held fixed.  Charge 
q3 is free to move but happens to be in equilibrium (no net 
electrostatic force acts on it).  If charge q2 has the value Q, what 
value must the charge q1 have? 

  An ideal solution to this problem involves straight-forward balancing of forces and 
Coulomb’s Law.  The parenthetic comment in the problem states there is “no net 
electrostatic force” acting on charge q3.  Symbolically, this becomes 

03132 =→+→ qqFqqF
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.  Manipulating this equation, and defining the positive 

î direction to be to the right, yields: 
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Canceling similar terms on both sides of the equation and setting q2 = Q yields the 
result: Qq 41 −= . 

I went through the details of the solution to illustrate that there are several inferences 
and steps involved in generating this solution.  However, in spite of the multiple steps 
involved, most readers would solve this problem in less than fifteen seconds.  An 
interesting aspect about the students’ problem solving approach is that it takes so long.  
The students work for nearly 60 minutes before arriving at a solution – 240 times longer 
than the typical reader!  Does this mean that the typical reader is 240 times smarter than 
these students?  To boost my own ego, I’d like to say ‘yes’; however, I don’t believe this 
is the case.  Rather, according to the theoretical framework developed in this dissertation, 
the typical reader probably has a broader mathematical knowledge base (i.e. a larger 
collection of compiled mathematical resources) and richer collection of problem solving 
strategies (i.e. an assortment of epistemic games for solving problems in physics).  For 
the typical reader, the problem statement immediately cues the appropriate resources and 
epistemic game; whereas, the students’ mathematical resources do not exist in compiled 
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form.  The difference in the reader and the students’ knowledge structure could account 
for the difference in the speed of the problem solution. 

Analysis of phenomena at different grain-sizes 

Often researchers distinguish between different scales in order to ‘chunk’ phenomena 
into manageable pieces.  I discuss an example from particle physics (mass scale of the 
unobserved right-handed neutrino) and an example from educational theory (time scales 
of interest for understanding mathematical thinking and problem solving).   

Mass scales of interest in explanation of neutrino mass 

In particle physics the heavy mass scale of the unobserved right-handed neutrino field 
is used to explain the light, but non-zero mass of the observed left-handed neutrino field.  
The conventional mechanism to explain the apparent lightness of the mass of the 
observed left-handed neutrino is the see-saw mechanism of SO(10) grand unified theories 
(GUTs). In these models there is a neutrino doublet, N , consisting of the left-handed 

( Lν ) and right-handed (N) neutrino fields; i.e. ( )TNL ,ν=N  . The mass term for this 

neutrino doublet is of the form MNNT , with the mass matrix given by ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Mm
m0

Μ . 

The entry m arises from the standard Yukawa coupling which appears due to the 

electroweak breaking, so ⎟
⎠
⎞⎜

⎝
⎛ GeV 210~m . However, M comes from the Majorana mass 

of the right-handed singlet N, and arises from the breaking of the SO(10) GUT symmetry. 
Due to the scale of the GUT symmetry breaking it is believed that M ~ 1016 GeV.  
Diagonalizing the mass matrix, the two mass eigenvalues are obtained 

.42
2
1

⎟
⎠
⎞

⎜
⎝
⎛ +±=± mMMλ   Since m << M the two mass eigenvalues can be written as 

.and
2

M
M
m

≈+−≈− λλ   The linear combination corresponding to the light mass 

eigenvalue, −λ , is taken to be the physical light neutrino. So the presence of the heavy 
mass scale M serves to explain the small but non-zero mass of the physical light neutrino. 

Time scales of interest in understanding students’ use of mathematics 

In education research distinguishing between different time scales can be instructive. 
Time scales of interest for understanding students’ use of mathematics are (adapted from 
Sherin, 1996): 

1. The learning time scale (~ 1 year).  During a two semester course we would hope 
that some of our students would learn some physics. 

2. The problem solving time scale (~ 1 hour).  Students were expected to spend 
about an hour on the homework problems in this study.  In fact, it was often the 
case that students spent at least an hour on these problems. 
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3. The problem heuristics time scale (~ 10 minutes).  As shown by Schoenfeld 
(1985), students (and experts) engage in different problem solving strategies, or 
heuristics, during the course of solving a single problem. 

4. The thought time scale (~ 1 second).  This time scale is associated with the time it 
takes a student to look at an equation (or graph) and then say something about 
it. 

As discussed in chapter 3, I do not systematically examine the practices of 
mathematics use in physics across different classrooms, and I do not perform a 
longitudinal study of how students change during the course of the semester.  Therefore, I 
do not have anything to say about time scale (1).  However, time scales (2), (3), and (4) 
are nicely accommodated by the theoretical framework I have described.  A students’ 
frame (and moment to moment framing) will shape the problem solving process – i.e. 
time scale (2).  The particular epistemic games the students play will partially determine 
the problem solving heuristic the students employ – i.e. time scale (3).  Lastly, the 
particular mathematical resources that are activated at a given moment help us 
understand the students’ mathematical thinking – i.e. time scale (4).  So, the three 
different aspects of the theoretical framework can be seen as parsing the students’ use and 
understanding of mathematics at different time scales.  In the remainder of this chapter, I 
use the notion of these different time scales to parse the students’ problem solving 
process in the Three Charge Problem.  

Analysis of the Three Charge Problem 

In my analysis that follows, I start with time scale (2): I examine how the students 
frame this problem solving process.  Then, I probe the students’ mathematics use on the 
problem heuristics time scale: I break the students’ problem solving process into different 
epistemic games.  Lastly, during my discussion of the different epistemic games that the 
students play, I examine the students’ mathematics use on the thoughts time scale. 

Analysis in terms of Frames 

Alisa, Bonnie, and Darlene had all been in the non-traditional, reformed introductory 
physics course in the first semester.  They were familiar with the types of homework 
problems, and the typical kinds of interactions between the students and the teaching 
assistant in the course center.   

I suggest that the students’ familiarity with these aspects of the course caused them to 
frame this problem solving session in a particular manner, which is evidenced by their 
behavior during the problem solving process.  First, the students spend nearly an hour 
working on this problem.  Many typical introductory students expect to spend less than 
10 minutes on a problem.  If they don’t find a solution in this time they either give up 
trying, or ask for assistance.  This leads into the second piece of evidence of the students’ 
framing of this problem solving session: Alisa, Bonnie, and Darlene proceed with very 
little guidance or assistance from me (the teaching assistant).  The majority of the work 
and progress comes from the students.  The only direction I offer these students is to 
draw a picture. 
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These two points taken together suggest that the students seem to be in a sense 
making frame.  In particular, they start in a qualitative sense making frame and end in a 
quantitative sense making frame.  This is not to say that at any one time that all the 
students are in the same frame.  For example, Darlene makes a digression at one point 
during the problem solving session and slips into a rote equation chasing frame. 

Analysis in terms of epistemic games and mathematical resources 

The students do not follow a straight forward approach to solving this problem.  
However, these students’ various problem solving approaches are easily understood in 
terms of epistemic games.  I identify five different epistemic games that are played 
during this problem solving session: Physical Mechanism Game, Pictorial Analysis, 
Mapping Mathematics to Meaning, Transliteration to Mathematics, and Mapping 
Meaning to Mathematics. 

Physical Mechanism Game 

The students’ initial attempt to solve this problem follows a less formal path than the 
ideal solution outlined above.  Throughout this entire clip the students are drawing on 
intuitive reasoning primitives to explain and support their conclusions.  The students do 
not draw on any formal mathematics or physics principles to support their claims.  They 
use reasoning that makes sense to them.  This first clip occurs about 7 minutes into the 
problem solving process. 

Darlene: I'm thinking that the charge q1 must have it's...negative Q. 
Alisa:   We thought it would be twice as much, because it can't repel q2, 

because they're fixed.  But, it's repelling in such a way that it's 
keeping q3 there. 

Bonnie:  Yeah.  It has to-- 
Darlene: Wait say that. 
Alisa:   Like— q2 is— q2 is pushing this way, or attracting—whichever.  

There's a certain force between two Q, or q2 that's attracting.   
Darlene: q3. 
Alisa:   But at the same time you have q1 repelling q3. 
  

Darlene initiates the conversation by asserting that the charge on q1 must be ‘negative 
Q’; the negative sign in this case signifies that q1 will have the opposite effect on q3 than 
q2.  Alisa elaborates on this point by articulating that q2 exerts an influence on q3, which 
she identifies as a force, that is either repelling or attracting, and that q1 exerts the 
opposite influence on q3.  The semantic content contained in Alisa’s explanation can be 
summarized in the following facet: ‘the attractive effect of q2 on q3 cancels the repulsive 
effect of q1 on q3.’ The abstract reasoning primitive underlying this facet is canceling.  
That is, the influences in this problem get mapped onto the abstract reasoning primitive 
of canceling resulting in the facet articulated above.  In this case, canceling is an 
appropriately mapped primitive, because in fact the two forces acting on q3 do cancel, 
which results in there being no net force on q3. 

In addition, from Alisa’s initial cursory comment (“we thought [the charge on q1] 
would be twice as much [than the charge on q2]”) it appears that she has the reasoning 
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primitives more is more and balancing activated.  That is, since the two influences acting 
on q3 balance, then q1 must have more charge because there is more distance between q1 
and q3 then there is between q2 and q3.   

It cannot be confirmed whether Alisa has more is more and balancing activated, 
because the direction of the conversation changes.  Darlene contends with the other 
students, because it appears she has a different reasoning primitive activated: blocking. 

 Darlene: How is it repelling when it's got this charge in the middle? 
Alisa:   Because it's still acting.  Like if it's bigger, than q2 it can still, 

because they're fixed.  This isn't going to move to its equilibrium 
point.  So, it could be being pushed this way.   

Darlene: Oh, I see what you're saying.  
Alisa:   Or, pulled.  You know, it could be being pulled more, but it's not 

moving. 
Darlene: Um-huh. 

  
The orientation of the charges cues the reasoning primitive of blocking, because q2 is 

in between q1 and q3.  That is, the presence of q2 “blocks” the effect of q1 on q3.  From the 
superposition principle we know the effect of q1 on q3 does not get blocked by the 
presence of q2, so the activation of blocking is an unnecessary distraction for these 
students.  In contrast to the reasoning primitive of canceling that was activated earlier in 
this clip, blocking does not get mapped into a productive facet for solving this problem.  
This is not to say that blocking is ‘wrong’; rather, in this particular instance the activation 
of blocking does not lead to a productive facet.   

Bonnie continues Alisa’s line of reasoning by explaining why the value of q1 has to 
be twice as big as that of q2.  

Alisa:   So, we—we were thinking it was like negative two Q or something 
like that. 

Bonnie:   Yeah.  Cause it has to be like big enough to push away. 
Darlene: Push away q3. 
Bonnie:   Yeah, which we—which I figured out negative two. 
Darlene: Cause it's twice the distance away than q2 is? 
Bonnie:   Yeah. 
Darlene: I agree with that.  

It appears that Bonnie draws on overcoming when she explains that ‘[q1] has to be 
like big enough to push away [q3].’  That is, q1 has to have enough charge to overcome 
the influence of q2.  The tacit conclusion from this assertion is that the charge of q1 must 
have a larger magnitude than that of q2.  Bonnie and Darlene quantify this conclusion by 
using the reasoning primitives of more is more and dependence (which has the symbol 
template  = […x…]) to assert that the charge on q1 has to be twice the magnitude of q2.   
More is more and dependence get mapped into the facet twice the distance is twice the 
charge. 

The students’ problem solving activities during this entire clip have the ontology of 
the Physical Mechanism epistemic game.  The ontological components of the Physical 
Mechanism Game are the knowledge base and the epistemic form.  While playing this 
game the students are drawing on an intuitive knowledge base rather than formal 
knowledge to support their claims.  There is evidence, as I tried to indicate above, that the 
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students use various reasoning primitives during this clip.  And, at no point during their 
discussion do they mention any formal mathematics or physics principles.  The epistemic 
form in the Physical Mechanism Game involves a coherent, physical description that is 
either verbal or imagistic.  These students are actively seeking physical causes for the 
effects that are described in the problem. 

The structural aspects of the students’ problem solving activities are also consistent 
with the Physical Mechanism Game.  The fact that these students engage in this activity 
to solve a problem sets it apart from other “everyday” activities.  This discussion has a 
beginning and an end, which makes it distinguishable from everyday activities.  In 
addition, there are certain “moves” in this game.  For one, all assertion must be supported 
with reasons.  For example, Alisa makes the assertion that q1 is “like negative two Q.”  
The support for this assertion is that “it's twice the distance away than q2.” 

In this clip, the ontology and structure of the students’ problem solving activity 
suggest that they are playing the epistemic game of Physical Mechanism.  Playing this 
game helps the students become oriented to this problem, but the solution to this problem 
necessarily involves physics equations (in particular Coulomb’s Law).  Since Physical 
Mechanism does not include mathematical expressions or equations (like Coulomb’s 
Law), it cannot ultimately lead them to the correct answer.  In the next clip, I help them 
reframe this problem, in an attempt to activate other resources they have and epistemic 
games they already know how to play. 

Pictorial Analysis 

In the last clip we saw the students making sense of the problem by using their 
intuitive reasoning primitives in the context of the Physical Mechanism epistemic game.  
It appears that the students have difficulty focusing their collective attention.  To assist 
the students I offer a suggestion.   

 Darlene:  I think they all have the same charge. 
Bonnie:   You think they all have the same charge?  Then they don't repel 

each other.   
Darlene:  Huh? 
Bonnie:   Then they would all repel each other. 
Darlene:  That's what I think is happening. 
Bonnie:   Yeah, but q3 is fixed.  If it was being repelled— 
Alisa:  No, it's not.  q3 is free to move. 
Bonnie:   I mean, q3 is not fixed.  That's what I meant. 
Darlene:  Right. 
Bonnie:   So, like... 
Darlene:  So, the force of q2 is pushing away with is only equal to d. 
Bonnie:   Yeah, but then... 
Darlene: These two aren't moving. 
Bonnie:   Wouldn't this push it somewhat? 
Alisa:  Just because they're not moving doesn't mean they're not exerting 

forces. 
Darlene:  I know. 
Alisa: What do you think? 
Tuminaro:  Can I make a suggestion?   
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Darlene: Uh-huh. 
Tuminaro:  You guys are talking about like a lot of forces and stuff.  And, 

one thing I've suggested in previous semesters, if you write it down 
and say, what forces do you think are acting here, you can all talk 
about it. 

Darlene: Where did the marker go? 
Tuminaro:  That's a suggestion—a general suggestion—that I might make.  

In the first few lines above, it seems as though the students take a step back in terms 
of progress on this problem.  Earlier the students appeared to have established the major 
aspect of the problem:  two influences act on q3, which exactly cancel each other. In this 
clip, the students restate the set up of the problem (“these two are moving”) and recite 
remembered facts (“just because they’re not moving doesn’t mean they’re not exerting 
forces”).  While these things are important to keep straight, this discussion does not 
appear to push the problem solving process forward.   

To assist the students I offer a suggestion, which has two effects.  First, it nudges the 
students into playing a different epistemic game: Pictorial Analysis.22  Second, the 
introduction of this new epistemic game reframes the students’ interactions and helps 
them focus their collective attention on one external representation.  

Alisa attempts to make an external representation of this problem on the white board 
while Bonnie and Darlene offer their assistance:  

Darlene:  You're trying to figure out what q1 is, right? 
Bonnie:  Oh, yeah. 
Alisa:  Because this is in equilibrium, there's some force... 
Darlene: Pulling it that way and some force pulling ex—equally back on it. 
Bonnie:   Yeah. 
Alisa:   And, they’re equal? 
Bonnie:   Yes.  
Darlene: Same with up and down.  Not that that matters, really. 
Bonnie:  We'll just stick with... 
Darlene: Horizontal. 
Bonnie:  Yeah, one dimension. 
  

In this clip the students are deciding which features mentioned in the problem should 
be included in their diagram.  That is, the students are playing the Pictorial Analysis 
epistemic game.  The structure of this game is similar to Physical Mechanism; however, 
the ontological components of Physical Mechanism and Pictorial Analysis are slightly 
different.  The epistemic form in Pictorial Analysis involves a coherent, physical 
description and an external representation; the epistemic form for Physical Mechanism 
only involves a coherent, physical description. 

The external representation generated in the Pictorial Analysis epistemic game cues 
additional resources in the students, which help them better understand this problem.  In 
particular, the students draw on the interpretive device of physical change to conclude 
that q1 and q2 have to have opposite charges.   

                                                 
22 At the time of the instructional intervention, I was not consciously attempting to nudge “the students into 
playing a different epistemic game.”  It is only in the analysis, not in the actual event, that I used the 
concept of epistemic games to describe this episode.   
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Alisa:   So, maybe this is pushing... 
Darlene: That's [q2] repelling and q1's attracting? 
Bonnie:  Yeah, it's just that whatever q2 is, q1 has to be the opposite.  Right? 
Alisa:   Not necessarily. 
Darlene: Yeah. 
Bonnie:  OK, like what if they were both positive? 
Alisa:   Well, I guess you're right, they do have to be different, because if 

they were both positive... 
Bonnie:  Then, they'd both push the same way. 
Alisa:   And, this were positive it would go zooming that way. 
Darlene: They would both push. 
Alisa:   And, if this were negative it would go there. 
Bonnie:  It would go zooming that way. 
Alisa:   And, if they were negative... 
Darlene: It would still—they'd all go that way. 
Alisa:   It would be the same thing.  

Bonnie makes a claim that the charge on q1 has to be the opposite of q2, but the others 
don’t initially agree.  Bonnie’s suggestion to verify, or falsify, her claim involves the 
interpretive strategy of physical change.  That is, she considers the affect of an actual 
physical alteration to the system (“OK, like what if they were both positive?”).  From this 
move the students almost immediately conclude that the charges on q1 and q2 must be 
different, or else q3 would go ‘zooming’ away.  

Switching to Pictorial Analysis turns out to be a very effective problem solving 
strategy.  By decomposing the forces in space and creating on external representation, the 
students are able to physically justify why q1 and q2 have to have opposite charge.  This 
clip also illustrates that the students’ problem does not stem from lack of knowledge or 
skills; rather, the epistemic game the students play in their initial approach (Physical 
Mechanism) does not help adequately articulate the physical relationship between the 
charges.  The external representation they collectively generate in Pictorial Analysis cues 
resources they already possess (physical change), which helps them make progress on 
this problem (i.e. conclude that q1 and q2 have opposite charges). 

Although the students’ external representation and conclusion marks progress, they 
have yet to solve the problem.  In fact, they have not even identified the necessary 
physics principle: Coulomb’s Law.  That’s exactly what happens in the next clip. 

Mapping Mathematics to Meaning 

So far the students have drawn a diagram representing which forces act and in what 
direction, and they have concluded that q1 and q2 have opposite charges; however, they 
have not yet solved this problem.  In this clip we see Alisa spontaneously reframe the 
problem solving process by drawing on a new set of resources: formal mathematics 
knowledge. 

Alisa:  Are we going to go with that? 
Bonnie:  I think it makes sense. 
Darlene: That makes... 
Alisa:  Well, I don't know, because when you're covering a distance you're 

using it in the denominator as the square.  
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Bonnie:  Oh!  Is that how it works? 
Alisa:  And (?) makes a difference. 
Bonnie:  Yeah, you're right. 
Tuminaro:  So, how do you know that? 
Darlene: From the Coulomb's Law. 
Bonnie:  So, it should actually be negative four q?  Or what?  Since it has… 
Alisa:  Cause we were getting into problems in the beginning of the problem 

with two A A, because I thought that like if you move this a little bit 
to the right the decrease for this would make up for the increase for 
this.  But, then we decided it didn't.  So, that's how I know that I 
don't think it would just increase it by a factor of two. 

  
Alisa is not only attempting to introduce a new epistemic game, she is negotiating a 

frame shift.  All the previous reasoning relied on intuitive reasoning primitives, without 
any explicit reference to physics principles or equations.  The students played Physical 
Mechanism and Pictorial Analysis within the qualitative sense making frame. Alisa’s 
introduction of Coulomb’s Law is the first mention of a physics principle during this 
entire problem solving process.  In addition, it’s the first time any one explicitly makes 
reference to an equation (“when you cover a distance you use it in the denominator as the 
square”).   Alisa’s use of formal physics principles and explicit reference to equations is 
an attempt to nudge the other students into the quantitative sense making frame.  In 
particular, she is (tacitly) asking them to play Mapping Mathematics to Meaning.23 

Alisa’s discussion follows all the moves within Mapping Mathematics to Meaning (see  

Figure 24).  One, the distance and force are identified as the relevant concepts in this 

problem.  Two, she identifies Coulomb’s Law ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=
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r

qkq
F as an equation that relates 

the target concept to other concepts.  Third, she develops a story using this relationship 
between concepts: “When you’re covering a distance you’re using it in the denominator 
as the square.”  Fourth, she evaluates the validity of her story by referencing a previous 
problem.  She acknowledges that her intuitive reasoning had failed her on the previous 
problem, which justifies the need for Coulomb’s Law on this problem: “I thought that 
like if you move this a little bit to the right the decrease for this would make up for the 
increase for this.  But, then we decided it didn't.”   

                                                 
23 Admittedly, Alisa would not describe her comments as an invitation to play Mapping Mathematics to 
Meaning.   
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Evaluate story 

Identify target “concept” 

Find an equation relating target 
to other “concepts” 

Tell a story using this relationship 
between “concepts” 

Distance and Force 

F = kq1q2/r2 

“…when you're covering a 
distance you're using it in the 
denominator as the square. …” 

“Cause we were getting into getting 
into problems in the beginning of the 
problem with two A A, ” 

 

Figure 24.  Schematic map of Alisa’s moves within Mapping Mathematics to Meaning. 

Alisa’s use of Coulomb’s Law is significant progress on this problem, but all the 
other students don’t know how to apply this new piece of information.  In fact, the 
introduction of Coulomb’s Law cues Darlene to play a new epistemic game. 

Transliteration to Mathematics 

Although it appears the students are making progress on this problem, they take a 
detour and attempt to use another problem as a prototype for solving this problem.  Alisa 
has suggested that Coulomb’s Law is an important concept.  It appears that Darlene does 
not initially know how to apply this new information.  She attempts to find a different 
problem that uses Coulomb’s Law in its solution, and then map the solution pattern from 
the other problem to the Three Charge Problem.  The problem that Darlene identifies as 
using Coulomb’s Law in the solution is the Force-Distance Two-Charge Problem 
(Appendix A, # 7). 

Darlene:  Where is that other problem?  Three times as far apart as they 
were now what is the magnitude of the force? 

Bonnie:   I think it should be four times.   
Darlene: If it's three times as far apart it's...you divide...uh!  I think it's q 

over two. 
Bonnie:  Q over two?  So, if you think of it as half the force of q2. 
Darlene: Look at this one. 
Bonnie:  Is this one you're talking about? 
Darlene: Uh-huh.  If you increase the distance that they are from each other 

it's decreasing by the same amount.  I thought it was four (?), but 
they said it was (?).  I don't know why.  Just three times...does it 
matter? I'm looking at this one.  Number three, isn't that like the 
same thing? 

Alisa:   Three was an estimation problem. 
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Darlene: No, no with the q and four q and all that, you know how there was 
this question that asked when you move the charges three times 
further apart than they originally were, what the resulting force is. 

Alisa: OK. 
Darlene: And, you said it was—we said it was four—the charge would be 

like q, or nine, but it would get three times as far apart.  Why it's not 
three I don't understand, but that’s all right.  So—  

Alisa: Well, 'cause in the equation you square this—the distance between 
them.  Like if you're multiplying by three... 

Darlene: Oh!  So, I would think this one would be q over four—negative q 
over four.  Cause it's twice as far away, opposite charge.  Does that 
make sense? 

Alisa:  But, then it's a smaller charge than this. 
Bonnie:   Yeah. 
Alisa:  So, I don't understand how it would be pushing three or pulling three 

whatever it's doing. 
  

In the Force-Distance Two-Charge Problem, the students had found that if the force 
between two charges for a given distance is F, tripling the distance results in a force 
between the two charges that is decreased by a factor of nine (see Appendix A, #7), in 
compliance with Coulomb’s Law.  Darlene is attempting to match the quantities in the 
Three Charge Problem with quantities from the Force-Distance Charge Problem, so the 
solution pattern can be transferred; i.e. she is playing the Transliteration to Mathematics 
epistemic game.  

Q Q

Q Q 

d 

3d 

9
F  

F F 

9
F  

 
Figure 25. Displays the difference between the forces on two charges  

when the distance between the charges is tripled. 

One obvious piece of evidence that Darlene is playing Transliteration to Mathematics 
comes when she says, “Why it’s not three I don’t understand, but that’s all right.”  
Darlene is explicitly meta-cognitive indicating that she doesn’t understand the previous 
problem, but conceptual understanding is not terribly important in the Transliteration to 
Mathematics epistemic game.  All that is important in this game is that the problems have 
enough similar features that the solution from one problem can be transferred to the 
other.   
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Darlene’s metacognitive statement (“Why it’s not three I don’t understand, but that’s 
all right.”) stands in stark contrast to Alisa’s meta-cognitive statement (“I thought that 
like if you move this a little bit to the right the decrease for this would make up for the 
increase for this.”). Darlene simply admits she doesn’t understand and slavishly transfers 
the solution pattern from the previous problem anyway.  Alisa’s metacognitive statement 
leads to her justification for using Coulomb’s Law.   

This difference between Darlene and Alisa’s metacognitive statements is an iconic 
example of the difference between the two frames in which these statements are couched.  
Darlene’s statement occurs while playing Transliteration to Mathematics in the rote 
equation chasing frame.  Conceptual understanding is not a necessary component of the 
rote equation chasing frame.  Alisa’s comment occurred while playing Mapping 
Mathematics to Meaning in the quantitative sense making frame.  Conceptual 
understanding is a necessary component of the quantitative sense making frame. 

Darlene’s Transliteration to Mathematics approach doesn’t help her with the Three 
Charge Problem.  She says, “If you increase the distance that they are from each other it's 
decreasing by the same amount.”  The problem with Darlene’s approach is that she is 
unaware of the two meanings that she attributes to the pronoun ‘it.’  In the previous 
problem the pronoun stands for ‘force,’ so that the statement would read, “If you increase 
the distance that they are from each other, then the force is decreasing by the same 
amount.”  However, Darlene tacitly maps this into the statement, “If you increase the 
distance that they are from each other, then the charge is decreasing by the same 
amount.”  The Transliteration to Mathematics game is not helpful in this case because 
force and charge are not related to distance in the same way in Coulomb’s Law.  This is 
not to say that the Transliteration to Mathematics game is wrong; it doesn’t work in this 
situation because of Darlene’s inappropriate mapping of force and charge. 

Mapping Meaning to Mathematics 

In this clip the students finally come to the solution of the problem.  Alisa 
summarizes her final solution as the other students and I listen.   

Alisa’s problem solving activities follow the Mapping Meaning to Mathematics 
epistemic game (see Figure 11).  First, she develops a conceptual story describing the 
physical situation.  This conceptual story relies heavily on the reasoning primitives of 
balancing.     

Tuminaro:  What did you do there? 
Alisa:  What did I do there? 
Tuminaro:  Yeah, can I ask? 
Alisa:  All right, so because this isn't moving the two forces that are acting 

on it are equal:  the push and the pull.   
Alisa correctly maps ‘force’ as the two influences that balance in this physical situation. 

Second, Alisa uses the identity symbolic form, which has the symbol template  = …, 
to translate her conceptual story into mathematical expressions: 

So, the F—I don't know if this is the right F symbol—but, the F q2 on q3 is 
equal to this (see Equation 1).  And, then the F q1 on q3 is equal to 
this (see Equation 2), because the distance is twice as much, so it 
would be four d squared instead of d squared.  
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2
3

32 d
kQq

F qq =→  

       Equation 1 

2
3

31 4d
kxQq

F qq =→  

       Equation 2  

Alisa explains why she wrote the charge on q1 as ‘xQ,’ by drawing on the reasoning 
primitive of scaling, which has the syntax x . 

And, then I used x Q like or you can even do—yeah—x Q for the charge on 
q1, because we know in some way it's going to be related to Q like 
the big Q we just got to find the factor that relates to that. 

  
The third step in the Mapping Meaning to Mathematics, Alisa relates the 

mathematical entities that she derived in step 2 with her conceptual story that she 
developed in step 1: 

Then, I set them equal to each other… 
Fourth, she manipulates the mathematical expression to arrive at the desired solution: 

… and I crossed out like the q2 and the k and the d squared and that gave 
me Q equals x Q over four.   And, then x Q equals four Q, so x would 
have to be equal to four.  That's how you know it's four Q. 

Fifth, the other students evaluate Alisa’s problem solving approach and conclusion. 
Bonnie:  Well, shouldn't it be—well equal and opposite, but... 
Alisa:  Yeah, you could stick the negative. 
Bonnie:  Yeah. 
Darlene:  I didn't use Coulomb's equation, I just—but it was similar to that. 
Bonnie:  That's a good way of proving it. 
Darlene:  Uh-huh. 
Bonnie:  Good explanation. 
Alisa:  Can I have my A now? 

Darlene admits that is not the way she arrived at a solution, but acknowledges that Alisa’s 
approach is consistent with her own.  Bonnie makes a single critique (“shouldn’t it 
be…equal and opposite”), yet admits Alisa’s approach is “a good way of proving it.”  In 
fact, Alisa must realize that this is a good way to prove this, since she audaciously asks 
for an “A now.”   
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“because this isn't moving the  
two forces that are acting on it 
are equal.”  

F1 = kxQq3/d2 
F2 = kQq3/(4d2) 

Evaluate story 

Manipulate symbols 

Develop story about physical situation

Translate quantities in physical story 
to mathematical entities 
(mathematical ontology) 

Relate mathematical entities in accordance 
with physical story  F1 = F2 

“…I set them equal to each 
other, and I crossed out 
like the… ”  

“Can I have my A 
now?” 

 
Figure 26.  Schematic map of Alisa’s moves within the Mapping Meaning to Mathematics epistemic game. 

Instructional implications 

Earlier in this chapter, I made the assertion that the typical reader would probably 
solve the Three Charge Problem in about fifteen seconds – 240 times faster than these 
students.  This lead to a slightly whimsical question: Does this mean that the typical 
reader is 240 times smarter than these students?  My answer to this question was, and 
still is, no.  I made the claim then that the difference in the reader and the students’ 
knowledge structure could account for the difference in the speed of the problem 
solution.  That is, the reader’s knowledge exists in compiled form; whereas, the students 
knowledge does not.  Therefore, it takes the student a longer amount of time to execute 
the same operations as the reader. 

The typical reader may not be aware of all the knowledge and reasoning that goes 
into solving this problem, since the solution comes so easily and quickly.  Decomposing 
the students’ problem solving session in terms of frames, epistemic games, and resources 
allows us to ‘see’ and examine all the knowledge and reasoning that is involved in this 
problem.  With increased understanding of the knowledge and reasoning involved in such 
a seemingly simple problem, instructors and educators can begin to develop teaching 
environments and interventions that more effectively and efficiently cue the appropriate 
resources and epistemic games.  This in turn could help students become better and more 
efficient problem solvers.  

Conclusion 

 One can use the theoretical framework that I have developed in this dissertation to 
make sense of students’ use of mathematics in physics.  In particular, this framework 
introduces the relevant cognitive structures (mathematical resources) and the relationship 
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between these structures (epistemic games and frames) for describing and analyzing 
mathematical thinking and problem solving.  Students’ use of mathematics in physics can 
be broken into the problem solving time scale (~ 1 hour), the problem heuristic time scale 
(~ 10 minutes), and the thought time scale (~ 1 second), which are described by frames, 
epistemic games, and mathematical resources, respectively.  
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Chapter 7: Understanding Student Mathematical Errors  

in Terms of Resources, Epistemic Games, and Frames 

Introduction 

Galileo wrote that “the book of nature is written in the language of mathematics.”  So, 
it seems natural that in order for students to understand physics they must be fluent in this 
mathematical language.  However, it’s often the case that students perform poorly on 
mathematical problem solving tasks in the context of physics.  There are at least two 
possible, distinct reasons for this poor performance:  (1) students simply lack the 
mathematical knowledge and skills needed to solve problems in physics, or (2) students 
do not know how to apply the mathematical skills they have to particular problem 
situations in physics.   While many students do lack the requisite mathematical skills, 
research in mathematics education suggests that many of students’ mathematics errors 
arise from erroneously learned rules – not simply lack of mathematics knowledge (Ben-
Zeev, 1996, 1998; Matz, 1982; Silver 1986; VanLehn, 1983, 1986).  Analyzing students’ 
mathematical errors in physics in terms of resources, epistemic games, and frames 
suggests that some students’ errors arise because they fail to use or interpret their 
mathematics knowledge and skills correctly in the context of physics – in accordance 
with reason (2).   

In this chapter I discuss students’ mathematical errors in the context of physics.  First, 
I discuss Ben-Zeev’s taxonomy of rational mathematical errors that can be used to 
classify student mathematical errors in the context of mathematics.  In particular, Ben-
Zeev identifies three classes of rational errors: critic-related failures, syntactic errors, and 
semantic errors.  In section three I review previous research about student mathematical 
errors, and I discuss how this research can help make sense of students’ inappropriate use 
of mathematical symbolism.  That is, this previous research helps make sense of students’ 
critic-related failures and syntactic errors.  In section four I analyze students’ 
mathematical errors in physics in terms of resources, epistemic games, and frames.  In 
particular, I show that resources, epistemic games, and frames help make sense of 
students’ semantic math errors in the context of physics. 

A taxonomy of rational mathematical errors: REASON 

Erroneous symbolic manipulations are not the only types of errors that students 
produce while using mathematics.  To get a handle on the many different kinds of errors 
that students produce while using mathematics, Ben-Zeev (1996, 1998) developed a 
taxonomy of rational mathematical errors, which she calls Rational Errors As Sources Of 
Novelty (or REASON).  The word ‘rational’ indicates that these errors do not arise out of 
carelessness on the students’ parts; rather, these errors arise from (often times 
sophisticated) mathematical thinking that is applied in an inconsistent or inappropriate 
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manner.  For example, the students that produce the error 
5
2

2
1

3
1

=+  are not simply being 

lazy or careless; they are systematically applying a rule in which they add the numerator 
and denominator (Silver, 1986). 

Ben-Zeev identifies three major categories of rational errors: critic-related failures, 
syntactic induction, and semantic induction.  Critic-related failures and syntactic 
induction are errors associated with erroneous symbolic manipulations.  Semantic 
inductive errors arise from inappropriate conceptualization of the mathematical 
symbolism.  I discuss each of these classes of errors in turn.   

Critic-related failures in REASON 

A critic is a meta-cognitive knowledge structure.  Critic-related failures arise from a 
lack of meta-cognitive monitoring during the mathematical problem solving process.  An 
informal definition of a critic is that it is a metacognitive resource, which monitors the 
current problem state and fires when a violation occurs.  Ben-Zeev formally defines a 
critic in terms of production rules (see Anderson, 1983; Anderson and Thompson, 1989; 
Anderson, 1993).  In short, a production rule is an algorithm for solving problems.  A 
production rule has the form “If B, then A,” where B is a particular problem state and A is 
the algorithm that can be implemented to arrive at a solution for the problem in state B.  
Critics are associated with production rule that have the form “If C, then ?”.  If state C is 
reached a critic will fire, because there is no algorithm that can be implemented to arrive 
at a solution for problem state C.   

Ben-Zeev articulates three mechanisms by which this class of error can occur: absent 
critic, weak critic, and constraint satisfaction.  An absent critic is a critic that simply 
doesn’t exist.  A weak critic is a critic that is in competition with a previously learned 
rule.  Constraint satisfaction occurs if a ‘fix’ is spontaneously generated to stop the critic 
from firing.  One type of ‘fix’ involves altering the state C, so the critic associated with 
the production rule “if C, then ?” stops firing.  Ben-Zeev calls this type of fix a negation.  
Figure 27 shows a schematic diagram showing the different kinds of critic-related 
failures. 

 

Critic-related failures 

Absent Critic Weak Critic Constraint 
Satisfaction 

Negation 
Competition 

 
Figure 27:  Schematic diagram of the kinds of critic-related failures  

(Ben-Zeev, 1996, p. 70). 

Absent critic  
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Many introductory physics students don’t differentiate between symbols that look the 
same but represent different physical quantities.  For example, many students in my study 
did not distinguish between ∆v (the change in velocity) and v  (the average velocity) 
when solving problems, even though the symbols represent distinct physical quantities. 
According to Ben-Zeev, if the students simply ignore the difference between the symbols 
∆v and v  while solving problems, and if they are not immediately corrected, then they 

may fail to develop the appropriate critic to signal a difference between ∆v and v .  In 
this case the students would have an absent critic.   

Weak critic 

Alternatively the critic to distinguish between ∆v and v could present, but it is 
competition with a prior knowledge rule – i.e. it’s a weak critic.  That is, the critic to 
signal a difference between ∆v and v  may not be strong enough to take precedence 
over a previously learned rule for manipulating symbols.  “The strength of the rule is 
primarily affected by how successfully the rule has performed in the past problem-
solving episodes” (Ben-Zeev, 1998, p.372).   

Constraint satisfaction 

A third mechanism for a critic-related error is that the students negate or alter the 
situation that caused the critic to fire in the first place.  Recall that a critic fires when a 
production rule of the form “if C, then ?” is reached.  If the situation C is negated to ~C 
or altered in some way, then the critic will stop firing and the algorithm associated with 
~C can be implemented.  Considering the example with ∆v and v  again, it may be the 

case that students have a critic that fires when they see the symbols ‘∆’ and ‘ .’  By a 
tacit mental removal of these symbols, the students may be able to adequately alter the 
situation so that the critic no longer fires.  Therefore, they don’t need to distinguish 
between ∆v and v  anymore, because they have tacitly removed  ‘∆’ and ‘ ’ – so, they 
are left with v and v, which are obviously the same.   

Syntactic Induction in REASON 

According to REASON, inductive failures arise when a student over-generalizes or 
over-specializes a rule or worked example.  Syntactic induction is a type of inductive 
error that arises from inappropriate use of mathematical symbolism. Figure 28 shows a 
schematic overview of the mechanisms by which students may generate inductive errors 
when faced with an unfamiliar problem situation: partial matching, mis-specification, and 
spurious correlation.  Each of these mechanisms is discussed below.   
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Syntactic Induction 

Mis-specification 
Spurious 

Correlation Partial 
Matching  

Figure 28: Schematic diagram showing the mechanisms by which syntactic inductive errors occur (Ben-
Zeev, 1996, p.70). 

Partial Matching 

The partial matching mechanism arises when students focus on surface feature 
similarities between two examples.  Research by Hinsley and Hayes (1977) indicates that 
experts tend categorize physics problems according to the physics principles used to 
solve the problem, whereas students tend to categorize problems by the objects described 
in the problem statement.  Students’ attention to surface feature similarities can be 
translated into the language of production rules.  For a given production rule of the form 
“If C, then ?”, if C can be thought of as C = C1 and C2 and … and Cn, then the students 
may search for a Ci that partially matches the current problem state, C, and execute the 
production rule associated with Ci. 

Misspecification 

The misspecification of the constraints of the problem is the second mechanism by 
which syntactic rational errors occur.  In this case, students either use an under- or over-
specialized schema for solving problems.  For example, students in my study made the 
following error: 

2
2

2 r

qk
r

qqkelF ⇒= . 

(The “⇒ ” symbol is used to denote an invalid equality statement.)  This error can be 
understood as the over-generalization of a schema.  Matz (1982) says that students 
generalize the distributive law of multiplication, ACABCBA +=+ )( , into the following 
schema: yxyx ∆=∆ )( , where the symbol ∆ can stand for any binary operation.  If 
the students map  into  it leads to the error that BABA +=+ .  In the example 
given above, the students generalize the expression AAA 2=+  into AAA 2=∆ , and then 
map ∆→× yielding the incorrect conclusion that AAA 2=× . 

Spurious correlation 

The spurious correlation error occurs when students focus on a particular feature of a 
problem situation and correlate that feature with a specific algorithm.   

An example for the case of subtraction comes from Brown and VanLehn’s (1980) 
repair theory for describing students’ erroneous symbolic manipulations.  Brown and 
VanLehn argue that students do not quit when faced with a subtraction problem they 
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don’t know how to solve; rather, students create algorithms that help them solve the 
problems.  Often times these algorithms are filled with “bugs” – i.e. the algorithms are 
spuriously correlated with a particular feature of a problem situation.  The 
implementation of these “buggy” algorithms results in erroneous solutions. 

VanLehn (1986) identifies the bug N-N-Causes-Borrow, which can be used to explain 
the following subtraction error: 

012

23
261

5

−
/

 

In VanLehn’s explanation, a student that commits the N-N-Causes-Borrow bug has 
correctly learned to borrow when the top digit is less than the bottom digit, and not when 
the bottom is less than the top.  However, when the top and bottom are equal the student 
incorrectly implements the borrowing procedure, which results in the type of error 
illustrated above. 

Semantic Induction in REASON 

Critic-related failures and syntactic inductive errors are the result of erroneous 
symbolic manipulations.  In contrast, semantic inductive errors result from erroneous 
performance based on conceptual aspects of a problem situation.  Ben-Zeev offers two 
mechanisms by which semantic inductive failures occur (see Figure 29). 

Mis-specification 

Semantic Induction 

Analogy  
Figure 29: Schematic diagram showing the mechanism for semantic inductive errors  

(Ben-Zeev, 1996, p.70). 

Analogical Breakdown Due to Linguistic Effects 

In analogical breakdown the analogy that the student uses to generate a solution may 
simply lack the necessary features to help the student arrive at the correct answer.  An 
example that Ben-Zeev offers comes from the following algebraic error: 

XmnmXn )( +⇒+ .  She claims that students may generate this error by making an 
analogy from linguistics statements, such as “three apples plus four gives seven apples.”  
In this case the analogy to the linguistic statement breaks down, and leads to an erroneous 
conclusion. 

Analogical Breakdown Generated from Real-World Situations 

A second mechanism that Ben-Zeev offers as a semantic inductive error arises from 
analogy from real-world situations.  A common error that students make in mathematics 
is to conclude that 00 =n .  One reason why students might make this conclusion is that 
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they erroneously conceptualize 0n  as “n multiplied by itself zero times, so it has to be 
zero,” since doing nothing equals nothing.  Doing nothing equals nothing is a natural 
argument that stems from real-world experience, however it leads to erroneous 
conclusions when used in the conceptualization of 0n .  

Discussion about previous research and REASON 

Research on understanding students’ mathematical errors spans across many different 
domains of mathematics:  addition and subtraction (Carpenter and Moser, 1983; Riley, 
Greeno, and Heller, 1983; VanLehn, 1983, 1986; Kintsch and Greeno, 1985; Fuson, 
1992), multiplication and division (Greer, 1992; Vergnaud, 1983, 1988; Schwartz, 1988), 
the equals symbol (Herscovics and Kieran, 1980; Kieran, 1981), and algebraic equations 
(Clement, Lochhead, and Monk, 1981; Matz, 1982; Nathan, Kintsch, and Young, 1992).   

In particular, there has been significant progress on understanding students’ errors 
associated with incorrect symbolic manipulations.  For instance, I have already discussed 
two examples from the literature that help us make sense of students’ syntactic 
mathematics errors: Brown and VanLehn’s (1980) repair theory for describing students’ 
subtraction errors in terms of “buggy” algorithms (e.g. the N-N-Causes-Borrow bug 
identified by VanLehn, 1986); and, Matz’s (1982) explanation of the square root error 
( )BABAei +=+..  in terms of an underspecified schema ( )yxyxei ∆=∆ )(..  
that is incorrectly generalized from the distributive law of multiplication: 

ACABCBA +=+ )( .   
These two examples of symbolic mathematical errors are in no way an exhaustive list.  

I simply include them as representatives of the kinds of explanations that exist in the 
research literature for describing students’ syntactic mathematics errors.  For a more 
thorough review of research on symbolic mathematics errors see Ben-Zeev (1996), and 
for a general overview of mathematics education research see Reed (1998).  

Although there has been significant progress on understanding students’ syntactic 
mathematics errors (i.e. the critic-related and syntactic inductive errors in REASON), a 
comparable understanding of students’ conceptual mathematics errors has not been 
realized (i.e. semantic inductive errors in REASON).  More germane to the issue of 
mathematics in physics is the fact that the conceptual mathematics errors in the context of 
mathematics are different from those in the context of physics.  One virtue of the 
theoretical framework that I propose in this dissertation is that it helps make sense of 
students’ conceptual mathematics errors in the context of physics.  In particular, 
analyzing students’ mathematics errors in physics in terms of resources, epistemic games, 
and frames suggests that most students’ errors arise because they fail to use or interpret 
their mathematics knowledge and skills correctly in the context of physics. 

Analysis of students’ mathematical errors in terms of Resources, Epistemic Games, 

and Frames 

The framework that I propose has three major theoretical components: resources, 
epistemic games, and frames.  Students’ conceptual-mathematical errors usually arise 
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through a complex interplay of all these theoretical constructs.  I discuss each of these 
kinds of errors below. 

Errors associated with resources 

Students’ knowledge base for mathematical thinking and problem solving can be 
modeled as collections of resources (see chapter 4).  In particular, there are four classes 
of resources that are germane to the issue of mathematics in the context of physics: 
intuitive mathematics knowledge, reasoning primitives, symbolic forms, and interpretive 
devices.  There are two mechanisms by which errors associated with resources can arise: 
(1) the appropriate resource is cued, but the entities in the problem situation are 
inappropriately mapped into the problem situation; or, (2) an inappropriate resource is 
cued. 

Appropriate resource, but inappropriate mapping 

Resources are abstract cognitive structures that are neither right nor wrong.   It is not 
until a resource is mapped into a particular problem situation that the correctness of its 
usage can be determined.  Therefore, errors can occur in which an appropriate resource is 
activated, yet it is inappropriately mapped into a particular problem situation.   

For example, the situation of an object in motion may cue the abstract reasoning 
primitive of agent causes effect.  If ‘agent’ is mapped onto ‘force’ and ‘effect’ is mapped 
onto ‘velocity,’ then the resulting facet is force causes velocity – which is incorrect.  
However, if ‘agent’ is mapped onto ‘force’ and ‘effect’ is mapped onto ‘change in 
velocity,’ then the resulting facet is force causes changes in velocity – which is correct.  
In this example the same abstract reasoning primitive can be mapped into an incorrect 
(force causes velocity) or a correct (force causes changes in velocity) facet (see Figure 
30).24   

agent causes effect

Force causes 
velocity 

Force causes 
change in velocity 

Reasoning 
Primitive 

Facet 

incorrect correct 
 

Figure 30.  Two possible instantiations of the same abstract reasoning primitive  
(see Elby, 2001). 

An example of an appropriately cued resource, but an inappropriate mapping occurs 
while Alisa, Bonnie, and Darlene work on the Three Charge Problem (Appendix A, #15).  
These students correctly realize that the “effect” (force) of q1 on q3 must cancel the 
                                                 
24 The idea that one reasoning primitive can be mapped into a correct or incorrect facet can be used in 
instruction: Andy Elby uses this idea when developing curriculum (Elby, 2001).  Redish calls two different 
facets that result from the same underlying reasoning primitive Elby-Pairs. 
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“effect” (force) of q2 on q3.  Therefore, they correctly conclude that since q1 is farther 
away that is must have more charge, but they quantify this conclusion incorrectly.   

Alisa:  So, we—we were thinking it was like negative two Q or something 
like that. 

Bonnie:  Yeah.  Cause it has to be like big enough to push away. 
Darlene:  Push away q3. 
Bonnie:  Yeah, which we—which I figured out negative two. 
Darlene:  Cause it's twice the distance away than q2 is? 
Bonnie:  Yeah. 
Darlene:  I agree with that.  

It seems these students use the abstract reasoning primitives of closer means stronger 
(or farther means weaker) and prop+, along with the fact that the distance between q1 
and q3 is twice as big as the distance between q2 and q3, to conclude that the charge on q1 
must be twice as big (and opposite in sign) as the charge on q2 .  Although this is a great 
piece of intuitive reasoning, this is an example of appropriately cued resources that are 

mapped incorrectly.  According to Coulomb’s Law ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

2
21

r

qkq
F there is not a linear 

relationship between distance and force.  Therefore, while farther means weaker and 
prop+ are appropriately cued resources in this case, the distance is inappropriately 
mapped into a linear relationship with the force leading the students to an incorrect (albeit 
intuitively appealing) conclusion.  

Inappropriate resource 

Students’ conceptual mathematics errors can also occur from an inappropriately cued 
resource.  That is, the resource that is cued cannot be mapped into a useful facet for the 
particular problem situation under investigation. 

An example of an inappropriately cued resource occurs while Alisa and Darlene 
discuss the Three Charge Problem (Appendix A, #15).  Alisa is explaining to Darlene her 
interpretation of the physical situation, but the activation of the reasoning primitive of 
blocking distracts Darlene:  

Alisa:   Like—q2 is—q2 is pushing this way, or attracting--whichever.  
There's a certain force between two Q, or q2 that's attracting.   

Darlene: q3. 
Alisa:  But at the same time you have q1 repelling q3. 
Darlene: How is it repelling when it's got this charge in the middle? 

In this particular problem situation the activation of blocking does not help the 
students make progress on this problem.  The Coulomb force of q1 on q3 is not blocked 
by the presence of q2.  The resource of blocking is inappropriately cued.   Such an 
inappropriately cued resource can lead to an error. 

Errors associated with epistemic games and frames 

Epistemic games and frames can be used to model the process component of 
students’ use of mathematics in physics.  Therefore, I call errors associated with 
epistemic games and frames process errors.  There are two mechanisms by which 
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process errors may occur: (1) students play the appropriate epistemic game, but make 
inappropriate move within that game; or, (2) students frame the problem situation 
inappropriately, and therefore play an inappropriate epistemic game.  

Appropriate epistemic game, but wrong move within that game 

The major structural component of an epistemic game is the moves.  The moves in a 
particular epistemic game are always the same.  For example, there are four moves in 
Mapping Mathematics to Meaning: (1) identify target concept(s), (2) find an equation 
relating target to other concepts, (3) tell a story using this relationship between concepts, 
and (4) evaluate story.  Although the moves in a particular game are always the same, the 
particular problem situation and resources that are active can vary from problem to 
problem resulting different instantiations of a particular epistemic game.  Students can 
play an appropriate epistemic game, but make an inappropriate move along the way 
because of an inappropriately activated resource.  For instance, a student can play an 
epistemic game that is appropriate for solving a particular problem, but use an 
inappropriate interpretive device (i.e. make an inappropriate move within an epistemic 
game), resulting in a process error.   

An example of this type of error occurs while Arielle and Tommy work on the 
Colliding Blocks Problem (Appendix A, #3).   At first Arielle plays Mapping 
Mathematics to Meaning to arrive at the correct conclusion: 

 Arielle:  So then the Fnet for A, the Fnet for M.  This is a big mass and this 
is a little mass and [the forces] are equal, so this has got to be a big, 
what is it, a big velocity and this has got to be a small velocity.  So, p 
for A and p for m—the change in velocity here has got to be sort of 
bigger.  Big velocity little mass, big mass little velocity.  But these 
are equal. 

Tommy:  Right. 
Arielle:  So the momentums got to be the same right?  

In this case Arielle plays the Mapping Mathematics to Meaning epistemic game.  She 
(1) identifies the target concept (the momentum) and (2) finds an equation relating the 

target quantity to other concepts (
t
vmnetF

∆
∆

= ).  Then, (3) she tells the story that since 

block m has a larger mass it must have a smaller velocity.  In particular, it appears that 
Arielle uses the interpretive device of changing parameters by considering how the 
expression for the momenta would change if the velocity and the mass varied.  That is, 
she has the mathematical expression BBAA vmvm ∆=∆ and she considers how changing 
the value of the parameters on the left will affect the value of the parameters on the right. 

Using the changing parameters interpretive device within the Mapping Mathematics 
to Meaning epistemic game Arielle correctly concludes that the momenta would have to 
be the same.  Consistent with the fourth move in Mapping Mathematics to Meaning, she 
evaluates her story and is not satisfied with its conclusion.  So, she continues to discuss 
this problem: 

How could [the momenta] be the same?  If the masses are different and the 
change in velocities are different the momentums can’t be the same. 
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In this case Arielle is again playing the Mapping Mathematics to Meaning epistemic 
game, but this time it appears that she uses the interpretive device of feature analysis.  
That is, she considers the features of momentum (namely, the velocity and the mass) and 
concludes that if two momenta have different features than they can’t be the same (in 
much the same way that two faces with different features can’t be the same face).   

This example illustrates that in the context of an appropriate epistemic game 
(Mapping Mathematics to Meaning) the same student uses an inappropriate interpretive 
devices (feature analysis) leading to the incorrect conclusion (“…the momentums can’t 
be the same.”).  In the first instantiation of Mapping Mathematics to Meaning it appears 
that changing parameters is activated, which leads her to the correct conclusion that the 
momenta are the same.  However, in the second instantiation it appears that feature 
analysis is activated, which leads to the incorrect conclusion that the momenta are 
different.  The epistemic game does not lead to Arielle’s incorrect conclusion; it is the 
particular resource that is activated during that game that leads to the incorrect 
conclusion.   

Inappropriate framing leading to an inappropriate epistemic game 

In chapter 5 I discussed how a students’ expectations, or framing, determine which 
epistemic game they tacitly choose to play.  That is, the entry conditions for a particular 
epistemic game are determined by how a student frames the particular problem situation.  
If the student inappropriately frames the problem situation, then it can lead him to play an 
inappropriate epistemic game. 

An example of this type of error occurs while Valerie and Sarah work on the Dorm-
Room Pressure Problem (Appendix A, #5). 

 Valerie:  Pressure's equal to the radius times the moles of the gas times the 
temperature divided by the volume.  So, what we need to do, we 
know the pressure find the volume from this.  Density is equal to... 

Sarah:  Are you using PV equals N R T? 
Valerie:  Huh? 
Sarah:  Are you using P V equals N R T? 
Valerie:  Yeah, or yeah. 
Sarah:  Or. 
Valerie:  Or P equals R times N T... 
Sarah:  Over V. 
Valerie:  Over V. 
Sarah:  We know the pressure. 
Valerie:  We know the pressure.  But we need to take the density to volume.  

Density is equal to... 
Sarah:  Oh, we have the density. 
Valerie:  Yeah, yeah, but that doesn't matter we need the volume.  

As I discussed in chapter 5, it appears that these students are playing the Recursive 
Plug-and-Chug epistemic game.  There are two errors that the students commit in solving 
this problem.  The first, and most obvious, error is that they choose an equation (or 
relationship) that simply cannot help them solve this problem.  The ideal gas law 
( nRTPV = ) could help them determine the pressure of the air in the dorm room, but not 
the difference in pressure between the floor and the ceiling.  So, we could say that these 
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students are not playing the Recursive Plug-and-Chug game well, because they pick an 
inappropriate equation.  The second error is that this is the wrong epistemic game to be 
playing to solve this problem; slavishly playing this game will not lead to the correct 
answer.  Even if the students had chosen an appropriate equation ( )ghPPge ρ+= 01.. , 
they could not simply determine the unknowns and solve for the target quantity.  At some 
point the students need to estimate the height of a dorm room, which is not a move within 
the Recursive Plug-and-Chug game. 

It’s not just the case that the students chose the wrong equation; the problem is worse 
than that.  In fact, these students are stuck in the wrong process – they are playing the 
wrong epistemic game.  The only way these students can solve this problem is if they 
play a different epistemic game (like Mapping Mathematics to Meaning).  The reason 
these students are stuck is that they framed this problem situation inappropriately, which 
lead them to play an inappropriate epistemic game.  This is not to same that Recursive 
Plug-and-Chug is necessarily wrong; it just happens to be the case that in this instance 
this game does not lead the students to the correct answer. 

Conclusions 

In this chapter I discussed students’ mathematical errors in the context of physics.  I 
introduced Ben-Zeev’s taxonomy of mathematical errors, called REASON, and I showed 
how previous research on mathematical errors helps us understand students’ syntactic 
mathematics errors.  Then I showed how the theoretical framework that I propose in this 
dissertation helps us understand students’ semantic mathematics errors in the context of 
physics.  Semantic mathematics errors can be associated with resources, epistemic games, 
or frames.  In particular, I identify four different kinds of errors: (1) inappropriate 
resource, (2) appropriate resource, but inappropriate mapping, (3) appropriate epistemic 
game, and (4) inappropriate framing leading to an inappropriate epistemic game.
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Chapter 8: Summary and speculations for future research 

Summary of cognitive framework 

Physics is a difficult subject.  Mathematical problem solving in the context of physics 
has proven to be a considerable challenge for students attempting to learn physics.  From 
this general notion that students do not perform well on mathematical problem solving 
tasks in physics, I attempt to answer two specific questions:  (1) What are the cognitive 
tools involved in formal mathematical thinking in physics?  And:  (2) why do students 
make the kinds of mistakes they do when using mathematics in physics?   

Through observation and analysis of students solving homework problems, I develop 
a cognitive framework that can be used to analyze and describe students’ use and 
understanding of mathematics in the context of physics.  In particular, this cognitive 
framework can be used to answer questions (1) and (2) from above.  That is, this 
framework helps us understand the ontological and process components of students’ use 
of mathematics in physics.   

The ontological component of students’ use of mathematics in physics:  

 Mathematical Resources 

In chapter 4 I introduce the notion of mathematical resources (e.g. intuitive 
mathematics knowledge, reasoning primitives, symbolic forms, and interpretive devices) 
to address the ontological component of students’ use and understanding of mathematics 
in the context of physics.  Mathematical resources are the cognitive tools that are 
activated in formal mathematical thinking in physics.   

Intuitive mathematics knowledge: a collection of primitive cognitive capacities that 
are required for and involved in advanced and abstract mathematical thinking.  I identify 
four different pieces of intuitive mathematics knowledge from my data: subitizing, 
counting, pairing, and ordering.  Subitizing is the ability to distinguish between sets of 
one, two, and three objects.  Counting is the ability to enumerate a series of objects.  
Pairing is the ability to group two objects for collective consideration.  And lastly, 
ordering is the ability to rank relative magnitudes of mathematical objects. 

Reasoning primitives: abstract cognitive elements that describe students’ intuitive 
sense of physical mechanism.  Reasoning primitives are abstracted from the notion of 
phenomenological primitives (diSessa, 1993).    The appropriate coordination of these 
abstract cognitive elements can lead to expert understanding.  In my data set I identify 
and discuss four different abstract reasoning primitives: blocking, overcoming, balancing, 
and more is more.  Blocking is the abstract notion that inanimate objects are not active 
agents in any physical scenario.  Overcoming is the abstract notion that two opposing 
influences attempt to achieve mutually exclusive results, with one of these influences 
beating out the other.  Balancing is the abstract notion that two opposing influences 
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exactly cancel each other out to produce no apparent result.  More is more is the abstract 
notion that more of one quantity implies more of a related quantity.  This is not an 
exhaustive list; it represents a sample of a large set of reasoning primitives.  There may 
be dozens of reasoning primitives, but not thousands. 

Symbolic forms: are cognitive elements that describe students’ intuitive 
understanding of physics equations.  Symbolic forms were introduced by Bruce Sherin 
(1996).  In his dissertation, Sherin identifies 21 different symbolic forms; I discuss three 
of these symbolic forms that are prevalent in my data set: proportionality plus, balancing, 
and canceling.  Proportionality plus is the combination of the abstract notion more is 
more combined with the symbol template of [ ]......x= .  The symbolic form of balancing 
combines the abstract notion that two opposing influences are exactly equal with the 
symbol template  = .  Lastly, the symbolic form of canceling combines the abstract 
notion that two opposing influences exactly cancel out with the symbol template  = . 

Interpretive devices:  resources that when activated determine how students interpret 
physics equations.  Interpretive devices were also introduced by Bruce Sherin (1996).    
He identifies three different classes of interpretive devices: narrative, static, and special 
case.  Interpretive devices in the narrative class project the physics equation in an 
imaginary process in which some type of change occurs.  The static class consists of 
interpretive devices that map the physics equation into a static situation.  Conclusions 
drawn from interpretive devices in the special case class are based on the values of the 
physics equations being somehow restricted.   

I identify a class of interpretive devices that Sherin did not: intuitive class.  
Interpretive devices in the intuitive class are reasoning strategies that are abstracted from 
everyday reasoning and applied to physics equations.  In particular, I identify feature 
analysis and ignoring as belonging to the class of intuitive interpretive devices.  Feature 
analysis is a reasoning strategy in which one analyzes the features  in a physics equation 
(e.g. symbols or terms) – in much the same way that one could analyze the features of 
two faces (e.g. eyes or noses).  Ignoring is an interpretive strategy in which some aspects 
of the physics equation are simply ignored. 

These four classes of mathematical resources (intuitive mathematics knowledge, 
reasoning primitives, symbolic forms, and interpretive devices) represent the cognitive 
tools that students use during mathematical thinking and problem solving in physics.  
That is, mathematical resources are my answer to the first research question:  What are 
the cognitive tools involved in formal mathematical thinking in physics? 

The process component of students’ use of mathematics in physics 

In chapter 5 I introduce epistemic games and frames, which, taken together, help us 
understand the process component of students’ mathematical thinking and problem 
solving in the context of physics. 

Epistemic games:  Epistemic games were introduced by Collins and Ferguson (1993) 
to describe expert scientific inquiry across all scientific disciplines.  I generalize Collins’ 
and Ferguson’s notion of an epistemic game to be descriptive rather than normative; i.e. 
the epistemic games I identify describe how students actually use mathematics in physics, 
in contrast to how we would want them to use mathematics in physics.  I use the main 
characteristics that Collins and Ferguson attribute to epistemic games to identify a set of 
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games that introductory, algebra-based physics students play while solving problems in 
physics.   

Epistemic games have ontological and structural components.  The ontological 
components are the knowledge base and the epistemic form.  The knowledge base is the 
collection of mathematical resources (e.g. intuitive mathematics knowledge, reasoning 
primitives, symbolic forms, and interpretive devices) that students use during the 
epistemic game.  The epistemic form is a target structure that guides the inquiry in the 
epistemic game.  The structural components of an epistemic game are the entry 
conditions and the moves.  The entry conditions are the reasons and conditions that lead 
students to play a particular epistemic game.  (The entry conditions are based on the 
students’ frames and framing.)  The moves are the activities that occur during the course 
of an epistemic game. 

I identify six different epistemic games that introductory students play while using 
mathematics in the context of physics: Mapping Meaning to Mathematics, Mapping 
Mathematics to Meaning, Physical Mechanism Game, Pictorial Analysis, Recursive Plug-
and-Chug, and Transliteration to Mathematics.  Mapping Meaning to Mathematics is an 
epistemic game in which students start with a conceptual understanding of a physical 
situation that they then translate into physics equations.  In Mapping Mathematics to 
Meaning, students begin with a physics equation, which they use to make sense of a 
particular physical situation or physics problem.  In the Physical Mechanism Game 
students develop a physical sense of mechanism for a particular physical situation or 
physics problem based on their intuitive conceptual understanding.  Pictorial Analysis is 
an epistemic game in which students create an external representation that captures the 
spatial relationship between the various (relevant) entities in a physics problem.  
Recursive Plug-and-Chug is an epistemic game that does not involve conceptual 
understanding; rather, students simply plug numbers or symbols into physics equations, 
in a recursive manner, to calculate an answer.  And lastly, Transliteration to Mathematics 
is an epistemic game in which students use worked examples to generate a solution; 
however, they do so without developing a conceptual understanding of the worked 
example.   

Frames:  It’s not just the elements of a student’s knowledge structure that are relevant 
to understanding their behavior; it’s how that knowledge is organized and accessed.  A 
useful structure in helping us understand these issues is framing.  A frame is an 
individual’s interpretation of a situation or event based on her expectations of the 
situation or event.  That is, frames help the individual answer the question, “what kind of 
activity is this?”   

Frames help us understand why a student plays a particular epistemic game in a 
particular situation.  A student’s real-time assessment of a particular problem and/or 
preconceived epistemological beliefs about physics problem solving in general determine 
how she interprets that problem – i.e. how she frames the problem.  For example, if a 
student reads a problem and determines that the problem is about forces, then she may 
decide to play Pictorial Analysis (i.e. draw a free-body diagram) based on her real-time 
assessment of the problem.  Alternatively, if the student has the epistemological belief 
that problem solving in physics involves plugging in numbers into memorized equations, 
then she may choose to play Recursive Plug-and-Chug – without attempting to 
understand the problem conceptually.     
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The ontological and process components help us understand students’ mathematical 

thinking and problem solving 

Mathematical resources, epistemic games, and frames, taken together, represent my 
attempt to answer the second research question:  Why do students make the kinds of 
mistakes they do when using mathematics in physics?  In chapter 6 I offer an in-depth 
analysis in terms of mathematical resources, epistemic games, and frames of a one-hour 
problem solving session.  This analysis shows how mathematical resources, epistemic 
games, and frames offer educators and researchers a technical language capable of 
describing students’ (correct and incorrect) use of mathematics in physics.   

In chapter 7 I show how this framework can be used to understand students’ semantic 
math errors in the context of physics.  In particular, I identify four different kinds of 
semantic math errors: (1) an appropriate resource with an inappropriate mapping, (2) an 
inappropriately cued resource, (3) an appropriate epistemic game with an inappropriate 
move within that game, and (4) an inappropriate framing leading to an inappropriate 
epistemic game.   

Results of this study 

The major result of this dissertation is the construction of a theoretical framework that 
offers educators and researchers a vocabulary (ontological classification of cognitive 
structures) and grammar (relationship between the cognitive structures) for understanding 
the nature and origin of students’ use of mathematics in the context physics.  The 
cognitive structures are mathematical resources, and epistemic games and frames 
describe how students associate and coordinate these mathematical resources when using 
mathematics in physics.   

In addition to offering educators a more thorough understanding of students’ use of 
mathematics, this dissertation synthesizes previous research.  The theoretical framework 
presented here pulls together phenomenological primitives (diSessa, 1993), symbolic 
forms and interpretive devices (Sherin, 1996), epistemic games (Collins and Ferguson, 
1993), and frames (Goffman, 1974; Tannen, 1993) into one coherent theoretical 
framework for describing how students’ understand and use mathematics in physics.   

Instructional implications 

Since this theoretical framework offers researchers and educators a more thorough 
understanding of mathematical thinking and problem solving it has instructional 
implications.  In particular, this theoretical framework can be used as a diagnostic tool, a 
guide for instructional intervention, or a guide for curriculum development.   

A diagnostic tool 

One important result of this theoretical framework is that it can help researchers and 
educators distinguish between seemingly similar expert and novice problem solving 
behavior.  As an example, consider the similarities and differences between Mapping 
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Mathematics to Meaning and Recursive Plug-and-Chug.  Experts often play Mapping 
Mathematics to Meaning while solving problems in the context of physics.  There are 
five moves in this epistemic game: (1) identify the target concept, (2) identify a physics 
equation relating the target concept to other concepts, (3) develop a conceptual story 
relating the physical objects in accordance with the physics equation, (4) manipulate the 
symbols in the equation and solve for the target, and then (5) evaluate the solution.  
Students often play Recursive Plug-and-Chug, which, at first glance, may appear to be 
the same as Mapping Mathematics to Meaning; but, there are some important, subtle 
differences between the two games.  Some of the moves in Recursive Plug-and-Chug are 
similar to the moves in Mapping Mathematics to Meaning:  (1) identify the target 
quantity, (2) identify an equation that relates the target quantity to other quantities, and 
then (3) identify which quantities are known and which quantities are unknown.  If the 
target is the only unknown quantity, then the student can proceed to calculate the target 
quantity; however, if there are other unknowns, then the student must choose a sub-target 
and loop back to move (2) mentioned above.   

Although some moves in the two games are similar (i.e. the structural components of 
the two games are similar), the mathematical resources activated in the two games are 
different (i.e. the ontological components of the two games are different).  While experts 
play Mapping Mathematics to Meaning there are conceptual and epistemological 
resources that are active that help the experts make sense of the symbolic equations – the 
experts use the equations to organize and coordinate their conceptual knowledge.  In 
contrast, while playing Recursive Plug-and-Chug, the students don’t have the conceptual 
and epistemological resources active that would help them make sense of the 
mathematical symbolism involved in the physics equations – the students use the 
equations without making sense of the mathematical symbolism.  So, while some of the 
moves are similar in Mapping Mathematics to Meaning and Recursive Plug-and-Chug 
(they both involve the identification of a target concept and an equation, and 
mathematical manipulations), the cognitive and epistemological resources that are active 
in the two games are different.   

To summarize, the theoretical framework offers educators and researchers a language 
to help tease apart these seemingly similar behaviors. 

A guide for instructional interventions  

An investigation of the instructional practices used to teach mathematical problem 
solving in physics was not the central theme of my dissertation research; however, the 
cognitive framework that I have developed does have implications for instructional 
interventions. 

For example, since Recursive Plug-and-Chug and Mapping Mathematics to Meaning 
have similar structures, instructors of physics may mistake students’ novice behavior (e.g. 
playing Recursive Plug-and-Chug) with expert-like behavior (e.g. playing Mapping 
Mathematics to Meaning) – even though the two behaviors involve different underlying 
cognitive structures.  This mis-diagnosis can have negative ramifications for the students’ 
learning.   

If the instructors do not realize that the students are using the mathematical 
symbolism without conceptual understanding, then they may encourage the students’ rote 
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problem solving behavior.  That is, research suggests that if students are not corrected 
early and often enough after making mathematical errors, then they might not develop the 
appropriate (internal) critics to adequately monitor their own problem solving behavior 
(Ben-Zeev, 1996).  If the instructors don’t realize that the students are engaging in rote 
problem solving behavior, then they won’t be able to correct the students appropriately.  
Without correction from the instructor, the students might not develop the appropriate 
monitoring skills (or critics) to distinguish between rote symbol manipulation and 
mathematical problem solving that includes conceptual understanding.  Therefore, they 
may continue using mathematics in physics without conceptual understanding.   

Conversely, if an instructor is aware of the difference between these two problem 
solving behaviors, then she can potentially help those students who engage in rote 
symbolic manipulations (e.g. play Recursive Plug-and-Chug) shift to a more conceptually 
meaningful problem solving approach (e.g. Mapping Mathematics to Meaning).  Since, 
according to this theoretical framework, this two problem solving behaviors occur in 
different frames, the instructor must be able to affect the students’ expectations about 
problem solving in physics – i.e. shift the students from a rote equation chasing frame to 
a quantitative sense making frame.  Exactly how this can be accomplished becomes a 
research question for a future research project; however, this theoretical framework could 
serve as a guide for such a research project – which leads into a discussion about physics 
curriculum. 

A guide for physics curriculum 

As discussed in chapter 3, understanding the instructional and learning practices is 
important in any inquiry about mathematical thinking and problem solving.  The 
theoretical framework developed in this dissertation can be used as a guide for 
researchers and educators attempting to create physics curriculum that could improve 
students’ use of mathematics in physics. 

As discussed above, one possible approach to improve students’ use of mathematics 
in physics may be to nudge them from a rote equation chasing frame into a quantitative 
sense-making frame.  In attempts to achieve this frame shift, Professor Redish 
implemented two different instructional methods.  First, he used class time to model how 
conceptual information can be interpreted from physics equations.  For example, he has 
written the equations in “idea form.”  That is, he replaced the algebraic symbols with the 

semantic content that they represent, so that an equation like 
t
xv

∆
∆

=  becomes 

( ) ( )
( )in time change

positionin  change
 velocityaverage = .  Second, he asks both conceptual and 

quantitative questions, about a given physical situation, in attempts to get the students to 
coordinate their conceptual and quantitative knowledge while solving physics problems – 
i.e. he attempts to nudge them into a quantitative sense-making frame.  Preliminary, 
anecdotal evidence suggests that these changes in the teaching style and curriculum have 
led to modest improvements.     
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Future research 

Three possible research projects that could derive from this dissertation are 
extensions of this framework to larger populations, investigations of the cognitive 
ontology involved in understanding different mathematical objects, and the development 
of computer models based on this theoretical framework. 

Extensions to larger populations 

The theoretical framework derives from an investigation of how students in an 
introductory, algebra-based physics course use and understand mathematics in physics.  
If I had investigated a different population of students the cognitive structures would 
most certainly be different.  For example, many physics majors have trouble with the 
transition from introductory physics course, which are generally taken in the freshmen 
and sophomore years, to the more advanced physics courses that are take in the junior 
and senior years.   A common belief held by many physics faculty is that the students’ 
difficulties stem from the level of mathematical sophistication required in the junior and 
senior level physics courses.  It is this belief that has led many physics departments to 
offer mathematical physics courses.  For example, the physics department at the 
University of Maryland offers PHYS 374 entitled “Intermediate Theoretical Methods.”  
Does the students’ problem solely lie in the mathematical formalism?  Or, could the 
problem stem from the students’ difficulty with mapping physical meaning onto 
sophisticated mathematics?  The work in this dissertation can serve as a potential starting 
point for investigations to improve the intermediate physics majors’ mathematical skills 
and understanding. 

Investigations of the cognitive ontology of different mathematical objects 

Physics is a subject matter that uses many different kinds of mathematical objects.  
There are numbers, variables, vectors, operators, tensors, and matrices to name a few.  I 
call these different mathematical objects the mathematical ontology of physics.  A 
possible extension of the theoretical framework developed in this dissertation could 
include the aspect of the many different mathematical objects used in physics.  Since 
most introductory, algebra-based physics courses only use numbers and variables (and 
sometimes vectors) this is not the ideal population for examining differences in 
mathematical ontology.  In fact, my data was not rich in student discussions about the 
mathematical ontology of physics; however, I imagine a quantum mechanics or 
theoretical dynamics course would have extensive discussions of such topics.  These 
courses could provide sufficient data to extend the theoretical framework I developed in 
this dissertation, so that it incorporates the mathematical ontology of physics.    

Development of computer models based on theoretical framework 

In addition to the instructional implications, the cognitive framework developed in 
this dissertation can be used to create computer models, which could help us better 
understand students’ use of mathematics.  I have identified the relevant cognitive 
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structures (mathematical resources) and how they associated and coordinated during 
mathematical problem solving in physics (epistemic games and frames).  My 
classification of the ontological and process component of mathematical thinking – in 
terms of mathematical resources, epistemic games, and frames – can be used as a 
blueprint in the construction of such computer models. 

In particular, these models could be programmed in an object-oriented programming 
language like C++.  The mathematical resources could be created as a class – one class 
for each kind of mathematical resources (intuitive mathematics knowledge, reasoning 
primitives, symbolic forms, and interpretive devices).  Then epistemic games and frames 
could become a derived class that inherits some of the characteristics of the base class of 
mathematical resources.  For example, Mapping Mathematics to Meaning is an epistemic 
game that should inherit all the different mathematical resources, whereas Recursive 
Plug-and-Chug should not inherit these mathematical resources – since this game doesn’t 
involve conceptual understanding as discussed above. 

These ideas for creating computer programs are in the preliminary stages, however 
the theoretical framework seems to be a promising place to start in the construction of 
such models. 

Closing remarks 

In this dissertation I develop a cognitive framework consisting of three major 
theoretical constructs: mathematical resources, epistemic games, and frames.  I try to 
show that mathematical resources, epistemic games, and frames give educators and 
researchers a better understanding of the cognitive structures and processes involved in 
mathematical thinking and problem solving.  Hopefully this increased understanding can 
lead to instructional interventions, classroom environments, and curriculum that will 
improve introductory students’ use and understanding of mathematics in the context of 
physics.
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Appendix A: Homework Problems 

1. Air Drag Problem 

For the first part of the problem, let's figure out what the drag force has to look like as a 
function of the possible variables using dimensional analysis. Consider a sphere of radius 
R and mass m moving through the air at a speed v. Assume the air has a density ρ 
(measured in kg/m3) 

• The force the air exerts on the sphere is independent of the sphere's mass. Discuss 
why this is plausible. (Hint: consider the case of the sphere held fixed and the air 
blowing past it at a speed v.) 

• From the quantities R, ρ, and v use dimensional analysis to show that there is only 
one possible combination of these variables that produces a quantity with the 
dimension of force. 

2. Colliding Carts (Representation Translation) Problem 

Two identical carts labeled A and B are 
initially resting one thee air track.  The 
coordinate system for describing the system 
is shown.  The cart on the right, cart B is 
given a push to the left and is released.  The 
clock is then started.  At t = 0, cart B moves 
in the direction shown with a speed v0.  
They hit and stick to each other.  

The graphs below describe some of the variables associated with the motion as a 
function of time.  For the experiment described and for each item in the list below, 
identify which graph is possible display of the variable as a function of time assuming 
a proper scale.  “The system” refers to carts A and B together. 

1. the momentum of cart B ______ 
2. the force of cart A ______ 
3. the total momentum of the system ______ 
4. the kinetic energy of cart B ______ 
5. the total kinetic energy of the system ______ 
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3. Colliding Gliders (Algebraic) Problem 

The mass of glider A is one-half that of glider M (i.e. mM = 2mA).  Apply 
Newton’s second law (Fnet = m∆v/∆t) to each of the colliding gliders to 
compare the change in momentum (∆p=m∆v) of gliders A and M during the 
collision.  Discuss both magnitude and direction.  Explain. 

 

A 
M 

vAi 
vMi= 0  

                               
                                        vMf = ? 
  vAf  = 0        

A 

 

4. Conversion Problem 

Discuss the question: “Is 500 feet big or small?” Before you do so, carry out the 
following estimates. 
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a) You are on the top floor of a 500 ft tall building. A fire breaks out in the building 
and the elevator stops working. You have to walk down to the ground floor. 
Estimate how long this would take you. (Your stairwell is on the other side of the 
building from the fire.) 

b) You are hiking the Appalachian Trail on a beautiful Fall morning as part of a 10 
mile hike with a group of friends. You are walking along a well-tended, level part 
of the trail. Estimate how long it would take you to walk 500 feet. 

c) You are driving on the New Jersey Turnpike at 65 mi/hr. You pass a sign that 
says "Lane ends 500 feet." How much time do you have in order to change lanes? 

5. Dorm Room Pressure Problem 

Estimate the difference in pressure between the floor and the ceiling in your 
dorm room. 

6. Elevator Problem 

A passenger is standing on a scale in an elevator. The building has a 
height of 500 feet, the passenger has a mass of 80 kg, and the scale has a 
mass of 7 kg. The scale sits on the floor of the elevator. You may take g 
= 10 N/kg. 
 

(a) Draw free-body diagrams for the passenger and the scale while 
the elevator is sitting at rest on the 33rd floor. Be sure to identify: 

(1) the type of force, (2) the object causing the force, and (3) the object feeling the 
force somewhere in your diagram or labeling.  Indicate which (if any) two 
individual forces in these diagrams have the same magnitude. 
 

(b) The elevator now begins to descend. Starting from rest, it takes the elevator 6 
seconds to get up to its downward speed of 8 m/s. Assuming that it is accelerating 
downward at a uniform rate during these 6 seconds, which of the forces in your 
diagram for (a) will change? For each force that changes, specify whether it will 
become bigger or smaller.  
 

(c) While it is accelerating downward, which of the forces in your diagrams have the 
same magnitude? For each equality you claim, explain why you think they are 
equal. 
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(d) While it is accelerating downward, what does the scale read?  

7. Force-Distance Two-Charge Problem  

Two small objects each with a net charge of Q (where Q is a positive number) 
exert a force of magnitude F on each other.  We replace one of the objects with 
another whose net charge is 4Q.  If we move the Q and 4Q charges to be 3 times 
as far apart as they were. Now what is the magnitude of the force on the 4Q?  
  (a) F/9  (b) F/3  (c) 4F/9  (d) 4F/3  (e) other 

Q Q

4Q Q 

d 

3d 

F
9
4  

F F 

F
9
4  

  

8. Fuel Efficiency Problem 

In America, we measure fuel efficiency of our cars by citing the number of miles you can 
drive on one gallon of gas (mi/gal). In Europe, the same information is given by quoting 
how many liters of gas it takes to go 100 km (l/100 km).  

a. My current car gets 21 mi/gal in highway travel. What number (in li/100 km) 
should I give to my Swedish friend so that he can compare it to his Volvo?  

b. The car I drove in England last summer needed 6 liters of gas to go 100 km. How 
many mi/gal did it get?  

c. If my car has a fuel efficiency, f, in miles/gallon, what is its European efficiency, 
e, in liters/100 km? (Write an equation that would permit an easy conversion.) 

9. Jogger Problem 

A jogger runs around a circular track of 30 m radius shown 
in the figure at the right.  She runs at a constant speed in a 
clockwise direction and completes one lap in 40 seconds. 
What is her average velocity from A to C? 
 

10. Melting Ice Problem 

y (m) 

x (m)A C 

B 
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An experiment on the melting of ice is being done in an insulated calorimeter set up so no 
heat is exchanged with the outside environment. The calorimeter contains a mass m1 of 
water and a block of ice having a mass m2, is floating in the water. Both the ice and the 
water are at a temperature of 0 ºC. 

a) What mass of boiling water, m3, must be added to the system to produce only water at 
0 ºC?  Express your answer in terms of symbols, defining symbols for any heat capacities 
you require. 

b) Suppose m1 = 100 grams, m2 = 25 grams, and I add 50 grams of boiling water. When 
the system comes to thermal equilibrium, will there be any ice left? If there is none, what 
will the final temperature of the water be? 

The following numbers may be of some use:1 cal/gram-ºC, 80 cal/gram, 540 cal/gram. 

11. Paper Towel Problem 

In public restrooms there are often paper towel 
dispensers that require you to pull downward on 
the towel to extract it. If your hands are wet and 
you are pulling with one hand, the towel often 
rips. When you pull with both hands, the towel 
can be extracted without tearing. Explain why. 

12. Paramecium Problem 

Unicellular organisms such as bacteria and protists are small objects that live 
in dense fluids. As a result, the resistive force they feel is large and viscous. 
Since their masses are small their motion looks very different from motion 
in a medium with little resistance.  Paramecia move by pushing their cilia 
(little hairs on their surface) through the fluid. The fluid (of course) pushes 
back on them. We will call this back force of the fluid on the cilia of the 
paramecium "the applied force,” F (since it wouldn't happen if the 
paramecium didn't try to move its cilia). 

• Write Newton's second law for a paramecium feeling two forces: the applied force 
and the viscous force. 

• If the mass is small enough, for most of the time the term "ma" can be much 
smaller than the two forces, which are large and nearly cancel. Write what the 
equation for N2 turns into if we ignore the "ma" term. Describe what the motion 
would be like and how it would appear different from a low or no resistance 
example. 

Suppose the paramecium is starting from rest and starts to move, coming quickly to a 
constant velocity.  Describe how the three terms in the full N2 equation behave, 
illustrating your discussion with graphs of x, v, a, Fnet, F, and Fviscous. 
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13. Pulling Two Boxes 

 

(a) A worker is pulling a pair of heavy crates along the floor with a rope. The rope is 
attached to the lower crate, which has a mass M. The upper crate has a mass m and the 
coefficient of friction between the crate and the floor is µ. If the rope is held at an angle 
θ, what is the maximum force F that can be exerted without the box beginning to slide?  

(b) The worker knows that the lower crate has a mass of 50 kg and the upper a mass of 10 
kg. She finds that if she pulls with a force of 120 N at an angle of 60º she can keep the 
crates sliding at a constant speed. Can you use this information to find the coefficient of 
friction between the lower crate and the floor? If you can, do it. If you can't, explain why 
not.  

(c) In a different situation, she finds that she can pull a lower crate of mass 30 kg and an 
upper crate of mass 7.5 kg with a constant velocity of 50 cm/s pulling at an angle of 45º. 
Can you use this information to find the coefficient of friction between the lower crate 
and the floor? If you can, do it. If you can't, explain why not.  

14. Speed versus Pace Problem 

When we drive a car we usually describe our motion in terms of a speed or velocity. A 
speed limit, such as 60 miles/hr, is a speed. When runners or joggers describe their 
motion, they often do so in terms of a pace — how long it takes to go a given distance. A 
4-minute mile (or better, "4 minutes / mile") is an example of a pace. 

a) Express the speed 60 mi/hr as a pace in minutes/mile. 
b) I walk on my treadmill at a pace of 17 minutes/mile. What is my speed in 

miles/hour? 
c) If I travel at a speed, v, given in miles/hr, what is my pace, p, given in 

minutes/mile? (Write an equation that would permit easy conversion.) 
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15. Three Charge Problem  

q1 q2 q3 

dd

 
In the figure above three charged particles lie on a straight line and are 
separated by distances d.  Charges q1 and q2 are held fixed.  Charge q3 is free to 
move but happens to be in equilibrium (no net electrostatic force acts on it).  If 
charge q2 has the value Q, what value must the charge q1 have? 
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Appendix B: List of Epistemic Games 

QUANTITATIVE SENSE MAKING FRAME 

Mapping Meaning to Mathematics (p. 62) 

Description:  Translation of conceptual understanding of a situation into rigorous, 
quantitative mathematical expression.  This game involves identifying and naming 
mathematical entities (numbers, constants, variables, etc.) and expressing their 
relations to each other mathematically. 
Identification:  Usually occurs after PICTORIAL ANALYSIS or PHYSICAL 
MECHANISM GAME, since the students need to have a conceptual understanding of 
the physical situation before they can play this game. 
Moves:  See Figure 31. 
Knowledge Base:  All mathematical resources. 
Epistemic form:   Mathematical expressions relating physical quantities. 

Evaluate story 

Manipulate symbols 

Develop story about physical situation 

Translate quantities in physical 
story to mathematical entities 

(mathematical ontology)

Relate mathematical entities in accordance with 
physical story (interpretive devices) 

 
Figure 31. Schematic diagram of students’ moves with  

Mapping Meaning to Mathematics. 
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Mapping Mathematics to Meaning (p. 67) 

Description:  Students begin with a physics equation, and then develop a conceptual 
story.  
Identification:  Analysis involves formal mathematical expressions.  The 
mathematical expression is usually written, however explicit verbal reference to a 
formal mathematical expression can occur.   
Moves:  See Figure 32. 
Knowledge Base:  All mathematical resources. 
Epistemic forms:  The equation, which is found in move (2), that relates the target to 
other concepts. 

Evaluate story 

Identify target “concept(s)” 

Find an equation relating 
target to other “concepts” 

Tell a story using this relationship 
between “concepts”

 
Figure 32. Schematic diagram of students’ moves with  

Mapping Mathematics to Meaning. 

QUALITATIVE SENSE MAKING FRAME 

Physical Mechanism Game (p. 71) 

Description:  Analysis of physical phenomena involving only “common-sense” 
reasoning.  
Identification:  Utterances involve common speech, without any reference to formal 
mathematics/physics principles or reference to formal mathematical machinery to 
support conclusions. 
Moves:  See Figure 33. 
Knowledge Base:  Reasoning primitives and intuitive mathematics knowledge. 
Epistemic forms:  A coherent, physical description; verbal or imagistic. 
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Evaluate story 

Develop story about physical situation 

 
Figure 33. Schematic diagram of students’ moves within the  

Physical Mechanism Game. 

Pictorial Analysis Game (p. 73) 

Description:  Analysis of quantities or entities in a problem in terms of their spatial 
relation to each other, involving explicit generation or use of an external 
representation.  Similar to PHYSICAL MECHANISM, however the spatial relation 
of the quantities must be specified.  Physical situation must be simplified, resulting in 
some information being ignored.  This game does not include mathematical 
expressions.   
Identification:  Students will identify the entities, by either gesturing or making 
reference to an external representation, and then articulate how these entities are 
spatially related to each other.   
Moves:  See Error! Reference source not found.. 
Knowledge Elements: Reasoning primitives, intuitive mathematics knowledge, and 
syntactic knowledge. 
Epistemic forms:  The external representation that is generated or referenced (e.g. a 
free-body diagram, a circuit diagram, or a cartoon picture). 

 

Determine the target concept 

Choose an external representation 

Fill in the “slots” in this representation 

Tell a conceptual story based the  
spatial relations between objects 

 

Figure 34. Schematic diagram of the moves in Pictorial Analysis. 

ROTE EQUATION CHASING FRAME 
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Recursive Plug-and-Chug (p. 76) 

Description:  Rote application of the “plug-and-chug” problem solving method. 
Identification:  Students use the mathematical machinery without understanding of 
concepts that the symbols represent.   
Moves:  See Figure 35. 
Knowledge Elements:  Intuitive mathematics knowledge and symbol template. 
Epistemic form:  Standard solution form found at the back of most textbooks. 

 

Only the target quantity 
is unknown 

Calculate target quantity 

Identify target quantity 

Find an equation relating 
target to other quantities 

Determine which of the other 
quantities are known 

Some other quantities 
are unknown 

Choose a sub-target 
and start over 

 
Figure 35.  Schematic diagram of students’ moves within  

Recursive Plug-and-Chug. 

Transliteration to Mathematics (p. 78)  

Description:  Directly mapping solution from reference example to a target example.  
This game works very well when reference and target examples are isomorphic. 
Identification:  Often students will play this game without conceptual understanding; 
instead they focus attention on syntactic similarities between the reference and target 
examples. 
Moves:  See Figure 36. 
Knowledge Elements:  Intuitive mathematics knowledge and symbol template. 
Epistemic form:  The solution pattern from the reference example. 
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Evaluate mapping

Identify target quantity 

Find a solution pattern 
that relates to the current 

problem situation. 

Map quantities in the current 
problem situation into the 

solution pattern. 

 
Figure 36.  Schematic diagram of the moves in  

Transliteration to Mathematics. 
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