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 A perception exists that physics and engineering students experience difficulty in 
applying mathematics to physics and engineering coursework.  While some curricular 
projects aim to improve calculus instruction for these students, it is important to specify 
where calculus curriculum and instructional practice could be enhanced by examining the 
knowledge and understanding that students do or do not access after instruction.  This 
qualitative study is intended to shed light on students’ knowledge about the integral and 
how that knowledge is applied to physics and engineering. 
 In this study, nine introductory-level physics and engineering students were 
interviewed about their understanding of the integral.  They were interviewed twice, with 
one interview focused on and described as problems similar to those encountered in a 
mathematics class and the other focused on and described as problems similar to those 
found in a physics class. 
 These students provided evidence for several “symbolic forms” that may exist in 
their cognition.  Some of these symbolic forms resembled the typical interpretations of 
the integral: an area, an addition over several pieces, and an anti-derivative process.  
However, unique features of the students’ interpretations help explain how this 
knowledge has been compiled.  Furthermore, the way in which these symbolic forms 
were employed throughout the interviews shows a context-dependence on the activation 
of this knowledge.  The symbolic forms related to area and anti-derivatives were more 
common and productive during the mathematics interview, while less common and less 
productive during the physics interview.  By contrast, the symbolic form relating to an 
addition over several pieces was productive for both interview sessions, suggesting its 
general utility in understanding the integral in various contexts. 
 This study suggests that mathematics instruction may need to provide physics and 
engineering students with more opportunities to understand the integral as an addition 
over several pieces.  Also, it suggests that physics and engineering instruction may need 
to reiterate the importance, in physics and engineering contexts, of the integral as an 
addition over several pieces in order to assist students in applying their knowledge about 
the integral. 
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CHAPTER 1:  RATIONALE AND SIGNIFICANCE 
 
Introduction 
 
 If one walks into a first or second semester calculus class what will one see?  
Most likely one will see a large number of students from varied disciplines funneled into 
a “generic” calculus course.  From these courses the students are expected to learn the 
essential elements of mathematics that they need to bring back to their own fields of 
study for use (Terrell, 2007; Mustoe, 2002).  One may encounter students from physics, 
engineering, chemistry, mathematics, or biology together in this classroom.  This 
provides a ripe space for research where studies can seek to learn about how students 
understand the mathematics they need in their field of study. 

This study specifically considers the mathematical understanding of physics and 
engineering majors.  In order to establish a picture of previous research, the following 
literature review is organized along three main questions addressing the usage and 
understanding of mathematics in physics and engineering.   

1. What are possible difficulties in applying mathematics to physics and engineering 
courses? 

2. What is known about the knowledge and understanding students activate when 
applying mathematics to physics and engineering problems? 

3. What is the significance of studying student understanding of mathematics in 
physics and engineering contexts? 

 
1.1 What are possible difficulties in applying mathematics to physics and 
engineering courses? 
 
 In their 100- and 200-level calculus courses, mathematics departments have the 
challenge of educating students from various fields of study, many of whom need to 
apply mathematical content in their chosen disciplines.  This is not unique to mathematics 
departments; one can also find students from various disciplines in a basic English or 
history course.  However, mathematics departments must face the challenge that many 
students in calculus courses need to use mathematics regularly in their field of study and 
that their success depends in part on their mathematical ability (Cardella, 2004; Maloney, 
1994).  Therefore, many students enroll in mathematics not simply to gain appreciation 
for calculus, but because these courses are required and will be needed if students are to 
apply mathematical procedures and concepts in physics, engineering, chemistry, and 
biology.   

This can potentially prove difficult for students who are attempting to apply 
mathematics to their field of study (Redish, 2005).  There is growing evidence of a 
perception among physics and engineering educators that students are often unable to 
apply their mathematical knowledge successfully to their science courses (Baggi, 2007; 
Gainsburg, 2006; Hoffmann, 2004; Fuller 2002; Clement, Lochhead, & Monk, 1981).  
Some instructors “are often surprised by how little math [their] students seem to know, 
despite successful performances in their math classes” (Redish, 2005, p. 1).  It is 
important to note from this quote that many of these students, those who are having 
difficulties accessing mathematical knowledge in their physics courses, are perceived to 
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have done well in their mathematics classes.  If there is merit to this perception, it seems 
that there is more at play than simply remembering the mathematics.  Some educators 
claim that “students can often perform mathematical operations correctly in the context of 
a math problem, but are unable to perform the same operations in the context of a physics 
problem” (Redish, Steinberg, & Saul, 1996, p. 1).  Is it the case then, that calculus 
courses are successfully providing students with one type of knowledge, the type needed 
to perform well in their mathematics classes, but not preparing them to use this 
knowledge successfully in their science classes?   

Research has provided some examples of student knowledge and understanding of 
mathematical content that may not be successfully activated in science classrooms.  One 
difficulty physics and engineering students may have in applying mathematical 
knowledge is in translating situations dealing with words, figures, and data tables into 
mathematical terms and equations (McDermott, 1984; Clement, Lochhead & Monk, 
1981).  In a physics or an engineering course, problems are often presented in real world 
contexts, using words, figures, and tables to organize and communicate the situation to be 
solved.  Students are expected to take these situations and to create mathematical 
equations from which they can perform procedures.  Students also need to dissect 
equations and to describe relationships between multiple variables.   

By contrast, in a mathematics course students are often given bare equations and 
asked to perform routine procedures on them (Meel, 1998; Park & Travers, 1996; 
Clement, Lochhead, & Monk, 1981).  While not true of all mathematics courses, there is 
a possibility that students may be taught in such a way that does not require them to 
understand the meaning of symbols (Clement, Lochhead, & Monk, 1981).  This can lead, 
for example, to the common problem of directly mapping words to mathematical symbols 
without attention to their physical meaning.  Clement, Lochhead, & Monk provide the 
well-known example of asking students to write an equation for the statement: “There are 
six times as many students as professors at this university” (p. 288).  If the students are 
not attentive to the meaning of the symbols, they may directly map the words of the 
sentence into the equation     “6S = P,” which resembles the word order of “six, times, 
students, professors.”  This equation is, of course, a reversal of the original statement and 
actually claims that there are six times as many professors as students.  This example 
suggests that when students deal with equations that have physical associations, they may 
need to activate specialized knowledge.  This knowledge is something that is necessary to 
describe.  Though prior research has investigated the cognitive features that will help a 
student work successfully with equations in science courses (Lee & Sherin, 2006; Sherin, 
2001), it has only begun to describe potential knowledge that students may draw upon 
while applying mathematics to a physics or engineering context. 

This leads to another issue in applying mathematics to science courses, which is 
the connection of mathematical symbols to physical meaning.  There is a difference 
between the interpretation of certain symbols in a mathematics classroom and the 
interpretation of those same symbols in a science classroom (Torigoe & Gladding, 2007; 
Gainsburg, 2006; Glazebrook, 2001).  The following example illustrates this difference.  
Consider the equation )(),( 22 yxkyxT  .  The equation shows a function T with two 
variables x and y.  Now imagine showing this equation to mathematicians and to 
physicists asking, “What is ),( rT ?” (Dray & Manogue, 2004b).  With the variables x 
and y changed to r and , what impact does this have on the meaning of the function?  
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While many physicists respond that 2),( krrT  , mathematicians usually argue instead 
that  )(),( 22   rkrT .  To a mathematician, T(x,y) is a function of two variables 
where the variables x and y are placeholders for numeric values.  Changing their names to 
r and  does not change their meaning as placeholders.  Thus it is natural for a 
mathematician to assert that the equation remains the same but with different names for 
the symbols.  That is, )( 22 yxk   becomes )( 22 rk .  

To a physicist, T(x,y) is also a function given in two variables.  However, the key 
difference is that the variables x and y are not simply numbers, nor is T.  They are 
physical quantities representing objects in the everyday physical world.  T is often used to 
denote the temperature of something and x and y most likely denote a two-dimensional 
plane, measured in feet, meters, or inches.  For example, one may see this equation as 
representing the temperature, in Celsius, of a hot plate in a factory.  Thus changing the 
variables from x and y to r and  change the meaning of the equation.  Since the 
temperature, T, will not change at a given point just because the variables are changed, 
the formula required to calculate T must change to accommodate these new variables.  If 
r and  are taken to be polar coordinates, this will prompt the physicist to say that the 
formula is now kr2.  This example highlights the fact that mathematics is different 
depending on the context in which one considers it.  “We speak different languages—but 
the basic vocabulary is the same!” (Dray & Manogue, 2004b, p. 13).  There is a 
difference in the way that mathematics is understood in mathematics courses and the way 
the same mathematics is understood in physics and engineering courses.   
 Physics educators have attempted to propose reasons for these inherent 
differences regarding mathematics in physics courses in contrast to mathematics courses.  
Some have identified several tasks that students potentially need to be able to do in order 
to apply mathematical knowledge and understanding to problems in their science classes.  
For example, students must (1) see symbols as representing physical measurements rather 
than numbers, (2) parse equations to understand the various physical quantities at play, 
(3) coordinate time and space in problems, and (4) treat equations as representations of 
reality (Redish et al, 1996).  It is also necessary in physics to use particular symbols that 
carry ancillary information not otherwise present in the mathematical structure of the 
equation (Redish, 2004). 
 These proposals help us know more about what students should know and 
understand concerning the connection between mathematical symbols and physical 
meaning in order to successfully apply mathematics to their science courses.  However, 
they do not tell us what knowledge students activate when dealing with mathematical 
symbols applied to physical meaning.  While some research has been done to look at how 
mathematical symbols are blended with physical meaning, especially in the context of the 
structure of equations (Lee & Sherin 2006; Sherin, 2001), there is still much work to do 
to describe the knowledge students bring to bear on physics and engineering problems 
with regard to many mathematical symbols systems, such as the symbols used in 
concepts from calculus.  If students encounter a mathematical operation with associated 
physical meaning, such as considering force as the derivative of momentum, what 
knowledge or understanding do they activate to deal with it? 

Many physics and engineering students may indeed be learning from their 
mathematics classes and may be successful at using mathematical concepts within the 
mathematics classroom.  However, there is a growing perception among educators that 
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students may not be applying this knowledge successfully in physics and engineering 
courses (Baggi, 2007; Hoffmann, 2004; Fuller 2002; Clement, Lochhead, & Monk, 
1981).  But it is not yet to fully understand what knowledge and understanding students 
are in possession of when they apply mathematics to science contexts.  If a student who 
knows about derivatives and integrals from their mathematics course has trouble applying 
that knowledge in a physics or an engineering course, what knowledge is that student 
drawing on in those situations?  If a student can take a bare function in a mathematics 
class and determine an integral, what does that student’s understanding look like when 
the function has physical meaning and the integral carries a specific interpretation?  

 
1.2 What is known about the knowledge and understanding students activate when 
applying mathematics to physics and engineering problems? 
 
 Fauconnier and Turner (2002) developed a theory of “cognitive blending” to 
describe the way two or more concepts are melded together.  This theory has been 
applied to the cognitive aspects of blending mathematical knowledge with physical 
knowledge (Bing & Redish, 2007).  In this theoretical model, “the mind combines two or 
more mental spaces to make sense of linguistic input in new, emergent ways” (Bing & 
Redish, 2007, p. 1).  For example, a student might combine the “positive” and “negative” 
concepts from mathematics with an “up” and “down” conception from the real world to 
produce “positive means upward” and “negative means downward.”  Bing and Redish 
claim that “An important sign of physics students’ progress is their combining the 
symbols and structures of mathematics with their physical knowledge and intuition, 
enhancing both” (p. 1).  Thus students can apply mathematical concepts by blending 
them with the science concepts they are learning about in their classes.  In order for the 
mathematics to be useful it needs to be tied to the physical quantities being studied.  
Some studies have investigated the role that physics knowledge has in understanding 
mathematics (Marrongelle, 2004; 2001), though less attention has been given to the 
productive mathematical knowledge students have at their disposal when applying 
mathematics to physics and engineering.  There is a need to know more about the 
activation of mathematical knowledge when applied to physics and engineering.  For 
example, if students see an integral of force, what does their knowledge of this 
mathematical concept applied to this real-world concept consist of?  
 In order to discuss the knowledge students draw upon while applying 
mathematics to physics and engineering, it is necessary to establish the components of 
cognition that constitute student knowledge.  It is possible to view the basic elements of 
knowledge through the constructs of “p-prims” (diSessa, 1993) or “cognitive resources” 
(Hammer, 2000).  Knowledge defined in this way consists in part of abstractions from 
everyday experiences, including classroom experiences.  In order to better understand 
how students apply mathematics to their science courses, it is necessary to know what 
sorts of p-prims or resources students possess that they could activate in the classroom.  
Thus the next step to build an understanding of the knowledge students activate while 
applying mathematical concepts in physics and engineering concepts is to begin to 
document what cognitive resources the students hold and draw upon when dealing with 
mathematics in physics and engineering contexts. 
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 The theory of cognitive resources (Hammer, 2000), with symbolic forms in 
particular (Sherin, 1996), provides a useful lens for considering how students apply 
mathematics to their science courses.  When presented with a problem to solve, there are 
various ways to approach that problem.  There are many ideas, notions, strategies, beliefs, 
memorized facts, and/or intuitions that may, may not, or may incorrectly come into play 
when thinking about and solving a problem.  These tools, abilities, and beliefs that are 
brought to bear on the problem are called “resources.”  Hammer explains that the word 
“resource” is derived “loosely from the notion of a resource in computer science, a chunk 
of computer code that can be incorporated into programs to perform some function” 
(2000, p. 53).  Given a problem, many resources might be activated simultaneously, but 
not every resource will be used and oft times the resources drawn upon might be used in 
a way that does not satisfactorily solve the problem.   
 Hammer is careful, however, to point out that this “differs from the notion of a 
‘misconception,’ according to which a student’s incorrect reasoning results from a single 
cognitive unit, namely the ‘conception,’ which is either consistent or inconsistent with 
expert understanding” (2000, p. 53).  Each “concept” is made up of a multitude of small-
grained “resources” which are used to solve problems.  Students will develop resources 
that help them to be successful in learning, and these resources are often tied to the 
problem solving situations in which students find themselves (Hammer & Elby, 2003).  
Thus it is quite possible that students will compile cognitive resources in a mathematics 
course that could be dependent on the mathematics context, or that could be devoid of the 
necessary blending with physical notions that would make them more readily available to 
students when they work on problems in science contexts. 
 These notions support the idea that there may be a difference between using 
mathematics in a mathematics course and using mathematics in a science course.  There 
is a significant number of tasks required to apply mathematics to science courses (Redish, 
2005; McDermott, Rosenquist, & van Zee, 1987; Clement, Lochhead, & Monk, 1981).  
These tasks might require the students to draw upon cognitive resources that were 
compiled in a different context—a mathematics classroom.  But little is known as to what 
resources students activate (and how) when applying mathematics in science contexts.  In 
order to support the creation and appropriate activation of productive resources it is 
necessary to know what resources students hold in their cognition, as well as which 
resources they activate when dealing with mathematical symbols in physics and 
engineering problems. 
 The cognitive resources that physics and engineering students draw upon when 
applying mathematics to physics and engineering are at the heart of this dissertation 
study.  Research has begun to look into the cognitive resources that students draw upon 
when dealing with mathematics in a science context.  Specifically, some educators have 
looked into how physics students use equations in physical contexts (Sherin, 2006; Lee & 
Sherin, 2006; Tuminaro, 2004; Sherin, 2001; Sherin, 1996).  According to these studies, 
students’ cognitive resources pertaining to equations can be expressed in terms of 
“symbolic forms.”  A symbolic form is a cognitive resource that is comprised of two 
components: a “symbol template” and a “conceptual schema.”  These two are blended 
into a stable cognitive resource.  The idea of symbolic forms is discussed further in 
Chapter two.  At this point it is sufficient to state that the work of describing the symbolic 
forms that students hold in their cognition is primarily limited to the basic equation 
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symbol structure.  This research has described how students understand the relation “[] = 
[]” as well as operations between symbols such as “[] + []”, “[] – []”, or “[] x [].”  Any 
number, variable, term, or complicated expression can populate the “boxes” in the 
symbol template.  The symbolic form is then composed of the conceptual schema that is 
blended with this symbol structure.   
 While the work of revealing student cognitive resources pertaining to equations 
and basic operations is fundamental to understanding how students apply mathematics to 
science contexts, it is only the beginning of the manifold mathematical symbols used in 
physics and engineering.  In a calculus course, students learn about the mathematical 
concepts of the limit, the derivative, and the integral.  Each of these concepts carries with 
it notations and symbols.  Thus this provides a rich environment within which to observe 
the symbolic forms students compile and hold with respect to these symbol templates.  
While research has looked at student understanding of various calculus concepts, there is 
no research specifically aimed at describing the symbolic forms that students hold 
regarding these symbol templates.  Furthermore, all of the fields of mathematics comprise 
such a vast world of symbols that the fields of mathematics and physics education have 
barely begun the work of documenting and describing the symbolic forms students may 
hold in their cognition pertaining to these diverse symbol systems.   
 Thus, in summation, while research has begun to investigate the cognitive 
resources that students hold and draw upon, there is a significant amount of work left to 
do.  Since the ideas from calculus, namely the limit, derivative, and integral, are so 
central to many physics and engineering concepts, it is important to know what cognitive 
resources (specifically, what symbolic forms) students hold about these concepts.  This 
may help shed light on how students apply mathematics to science contexts and also 
clarifies the potential difficulties students may have in doing so. 
 
1.3 What is the significance of studying student understanding of mathematics in 
physics and engineering contexts? 
 
 Recently there have been charges that mathematics education at the undergraduate 
level is not sufficiently equipping science majors for their field of study.  Some educators 
warn of “distressing gaps in the breadth of students’ education” between mathematics, 
physics, and engineering (Hoffmann, 2004, p. 191).  Indeed, traditional mathematics 
instruction has been termed an “old-fashioned” part of the pillars of engineering 
education that should be revised to fit the current needs of today’s world (Baggi, 2007).  
There is concern among businesses that this gap in education between mathematics, 
physics, and engineering may lead to an engineering force that lacks the fundamental 
skills to compete in today’s competitive global market (Booth, 2008; Kennedy, 2006; 
Gainsburg, 2006).   
 There are also concerns that this gap in education contributes negatively to 
student success in college.  There is a high rate of failure and withdrawal among science 
majors, which has been found to be linked to the process through which students learn 
mathematics (Borges, Do Carmo, Goncalves & Cunha, 2003).  As a result, in some 
European universities engineering schools are reducing the number of required 
mathematics courses and are inserting the mathematics content relevant to engineering 
into their own classes (Fuller, 2002).  This casts doubt on the effectiveness of 
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mathematics service courses and causes concern about the mathematical opportunities 
given to physics and engineering majors.  European colleges of science, in particular, are 
looking to find up-to-date methods for teaching mathematics to their students as they 
distance themselves from mathematics departments (Baggi, 2007). 
 The conclusions one draws from this literature call into question the mathematical 
opportunities given to students.  If students were to learn mathematics in such a way as to 
be able to understand and apply mathematical content in future applied and theoretical 
contexts, what would their mathematical instruction consist of?  This has prompted 
several researchers and institutions to begin work on redesigning curriculum in order to 
“bridge the gap” between mathematics and science (Dray & Manogue, 2003; Berry, 
DiPiazza & Sauer, 2003; More & Hill, 2002; Meredith & Black, 2001).  The Vector 
Calculus Bridge Project at Oregon State University (Dray & Manogue, 2006) seeks to 
switch the emphasis of traditionally taught calculus concepts from the limit to the 
differential, from slope to rate of change, and from area to total amount.  They argue that 
these changes in emphasis will have the effect of making generalizations of the 
mathematical concepts to physical situations easier.  The Studio Calculus/Physics course 
designed at the University of New Hampshire (Meredith & Black, 2001) aims to help 
students “see the use of the calculus immediately” (p. 5) by mixing introductory calculus 
and introductory physics together into one class.  These authors are attentive to the order 
in which the topics are taught so that as students learn about physics concepts, they also 
learn the requisite calculus concepts.  The activities are explicitly a mixture of calculus 
and physics and students are required to solve several open-ended problems that make 
use of both curricular domains.  
 The mathematics education community is also engaged in improving curriculum 
for calculus courses (Hughes-Hallett, et al, 2005).  The Harvard Calculus Project takes a 
different approach to teaching the basic calculus concepts.  Those who collaborated on 
the textbook for this project “started with a clean slate” and came to decisions about what 
topics to emphasize “after discussions with mathematicians, engineers, physicists, 
chemists, biologists, and economists” (Hughes-Hallet, et al, 2005, p. v).  Each idea is 
presented from a graphical, numerical, symbolic, and verbal perspective.  Doing this 
creates opportunities for the students to construct a well-rounded understanding of the 
calculus concepts by learning about them from several angles.  The section on integration 
begins with a discussion of how far an object has traveled given that its velocity is 
known.  The idea of the Riemann sum is discussed which is then tied to the notion of area 
underneath the curve.  It is important to understand the impacts that this approach would 
have on students’ attempts to apply their knowledge about the integral to physics and 
engineering. 

These curriculum projects are generating substantial interest in the need to 
identify what students know and understand about mathematical concepts in physics and 
engineering.  In order to best design curriculum, teaching strategies, and support material, 
the research field needs to be familiar with student thinking and understanding in these 
contexts (NCTM, 2000).  For example, how would a shift of emphasis better support the 
creation of productive knowledge?  What cognitive resources can be supported by 
teaching calculus and science concepts simultaneously?  If derivatives, integrals, 
differentials, graphs, and equations are intertwined with physics and engineering 
concepts, what will the knowledge that students have look like?  At this point, the 
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research field is still in the process of documenting and understanding the cognitive 
resources students draw on in these situations. 
 Several studies have been conducted about various aspects of learning calculus.  
The focus of many of these studies has been on the limit (Oehrtman, 2008; Oehrtman, 
2004; Brown, 2004; Tall & Vinner, 1981), on the derivative (Zandieh, 2002; Carlson, et 
al, 2002; Marrongelle, 2001; Zandieh, 2000; Ortin, 1983b), and on the conception of the 
function (Oehrtman, Carlson, & Thompson, 2008; Carlson, et al, 2002).  Some studies 
have also looked at student understanding of the integral (Sealey & Oehrtman, 2007; 
Sealey, 2006; Sealey & Oehrtman, 2005; Marrongelle, 2001; Ortin, 1983a).  The work 
done by Sealey and Oehrtman has looked primarily at student understanding of the 
Riemann sum.  The purpose of their research “was to examine student development of 
the concepts of the Riemann sum and definite integrals” (Sealey & Oehrtman, 2007, p. 
78).  Thus, this work focused on understanding how students compiled particular 
knowledge about one of the ways of interpreting the integral.  This provides valuable 
insight into how students come to construct their understanding of the integral as an 
addition process.  Also, Marrongelle studied the way in which students used their physics 
knowledge to inform their mathematical understanding of the calculus concepts of the 
limit, the derivative, and the integral. 
 The research that has been done around student understanding of the integral 
sheds light on how students come to understand the Riemann sum process and how their 
physics knowledge influences the creation of their ideas.  This yields results that can 
affect instructional practice and curriculum design.  However, there are important 
components to how students understand the integral that are missing from this research.  
First, there is not enough information about the knowledge of the integral that students 
draw upon in various contexts.  Instead of focusing on one interpretation of the integral, it 
can also be asked what knowledge will students spontaneously draw on when working 
with problems involving integrals?  Specifically, is there a difference between the 
knowledge about the integral that students will draw on in a mathematics setting as 
opposed to a physics setting?  Second, while there is information about how students use 
physics knowledge to inform the creation of their mathematical knowledge, there is not 
enough information about how students activate and apply their mathematics knowledge 
of the integral to physics and engineering classrooms.  This provides a place for 
continued research to contribute to an understanding of how students apply the 
knowledge they are intended to learn in a calculus course. 
 
1.4 Conclusion and Research Questions 
 

There is more to applying mathematics concepts to physics and engineering 
courses than simply remembering the concepts learned in the mathematics course.  There 
is a call for improved undergraduate mathematics education for physics and engineering 
students.  Calculus is fundamental to both of these disciplines and is prerequisite for 
advanced courses.  Conceptual understanding of the derivative and the integral are 
important for a student to be successful in physics or engineering coursework.  There is 
limited information about some difficulties students have in translating between 
mathematical symbols and real-world concepts found in physics and engineering courses.   
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There are useful theoretical tools for understanding student cognition during the 
application of mathematics to science.  Theory suggests that when students use 
mathematics concepts in physics and engineering contexts, they may activate several 
cognitive resources that can either be helpful or unproductive in their attempts to solve 
problems.  These cognitive resources can consist of symbol templates “cognitively 
blended” with conceptual schemas into symbolic forms.  By knowing more about these 
resources, it may be possible to support the productive application of symbolic forms in 
science contexts.  Prior research has provided information about how students compile 
their understanding of the Riemann sum.  It has also provided information about how 
students use their physical understanding to assist in building mathematical knowledge.   

However, at this point there is not enough information about the cognitive 
resources students spontaneously activate around calculus concepts when dealing with 
mathematical symbols in physics and engineering contexts.  While there is some research 
on symbolic forms related to equations and simple operations, there is not sufficient 
documentation of the cognitive resources that students hold about the mathematical 
symbols and ideas from calculus.  This includes a lack of documentation and description 
of the symbolic forms students hold and draw on regarding the symbols used in 
derivatives and integrals.  When students make use of the integral in physics and 
engineering courses, there is little clarity with respect to what resources around this 
concept, including symbolic forms, students may activate.  The next step is to discover 
and describe the symbolic forms from a broader range of symbol templates that students 
might hold and activate.  Specifically, research may consider the symbolic forms students 
hold and activate around the integral symbol template. 

Thus it is appropriate to continue the work of documenting and describing 
students’ cognitive resources by finding evidence for the symbolic forms they activate in 
both mathematics and physics settings.  Because the concepts in calculus are fundamental 
to coursework in physics and engineering, this study considers the symbolic forms 
pertaining to the integral that students may hold in their cognition.  In order to shed light 
on the apparent disconnect between doing mathematics in a mathematics course and 
applying that mathematics to a physics or an engineering course, this research 
investigates the symbolic forms students draw on in both a mathematics and a physics 
context.  In particular, this research addresses the following question: 

 
 What are the symbolic forms relating to the integral that physics and engineering 

students have and draw upon? 
 

Furthermore, this work compares the activation of symbolic forms relating to the integral 
in physics and engineering contexts as opposed to mathematics contexts.  Specifically, 
this work will characterize the symbolic forms that are activated when the students are 
engaged in physics-framed problems in possible contrast to those that are activated in 
mathematics-framed problems.  Thus, this study seeks to provide insight around each of 
these sub-questions: 
 

 What symbolic forms for the integral do students activate in mathematics-framed 
settings? 
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 What symbolic forms for the integral do students activate in physics-framed 
settings? 

 
 What is the intersection and/or disjunction in symbolic form activation between 

these two settings? 
 
1.5 Implications and Limitations 
 
 This research study is not able to define the conditions that will activate certain 
symbolic forms.  There are many factors that can contribute to the “choice” of symbolic 
forms and this study is limited to the specific interview items presented to the students.  
Thus the findings presented in this research are influenced by the particular items that 
were chosen for the interviews.  However, this study does shed light on the relationships 
between certain problems or particular tasks and the activation of symbolic forms.  It is 
also able to provide a description of the similarities and differences between symbolic 
form activation for interview items that are framed as “mathematics” problems or 
“physics” problems.  What this study cannot clearly answer is the question of why 
symbolic forms are activated in the manner that they are.  It can only express correlations 
between the items and the symbolic forms that are activated.  Also, these interview items 
can serve as nothing more than very rough approximations to classroom settings where 
students learn about the integral and apply that knowledge to physics and engineering 
concepts.  Thus the results of this study cannot directly imply a particular way that 
students think in mathematics classrooms or physics classrooms. 
 Despite these limitations, this study does suggest implications for both instruction 
and curriculum.  It provides evidence for general ways in which the integral could be 
expressed in a mathematics course to better support the application of knowledge about 
the integral to physics and engineering.  It also suggests particular ways of understanding 
the integral that appear to be most productive in physics contexts.  This leads to 
implications for how the integral could be introduced and explicitly discussed in physics 
and engineering courses to support the application of knowledge about the integral. 
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CHAPTER 2:  LITERATURE REVIEW 
 
2.1 Domain and Definitions 
 
Domain of the Study 
 
 It is beyond the scope of one project to include all of the academic disciplines that 
use mathematics.  Therefore, it is necessary to limit the fields considered in order to focus 
more deeply on the particular issues of applying mathematics to those fields.  Though it is 
difficult to say that some fields are more “important,” it is possible to say that some fields 
depend more heavily on mathematics than others.  Physics and engineering make 
particular use of mathematics (Baggi, 2007; Maloney, 1994) and thus this study and 
literature review are limited to these fields.  For simplicity, in this review physics and 
engineering students are sometimes referred to as “science students.”  In this study they 
will be interchangeable.   
 Calculus is fundamental to the study of physics and engineering.  As a result it has 
received much attention from curriculum developers who are attempting to close the 
perceived gap between mathematics and science learning (Dray & Manogue, 2003; More 
& Hill, 2002; Meredith & Black, 2001).  Since there is much interest in calculus learning 
and usage, this study is focused within its boundaries.  However, even within the 
concepts of calculus, there is much knowledge that students could construct relative to 
the concepts of the limit, the derivative, and the integral as well as their applications to 
physics and engineering.  In order to delve more deeply into student knowledge around a 
single topic, the domain of this study is restricted to the integral, specifically the 
knowledge students have about the integral in a mathematics context and a science 
context.  Consequently, the results of this study regarding “mathematical knowledge that 
is applied to physics and engineering” should be understood to mean “mathematical 
knowledge about the integral that is applied to physics and engineering.”  This study’s 
methodology, which is described in Chapter three, makes use of items pertaining to the 
integral in both a mathematics context and a physics context. 
 
Definitions 
 
 In common language, once students have learned mathematics, they can “apply” 
it to other contexts.  By this is meant the ability of a student to perform mathematical 
procedures or to relate mathematical concepts outside of the class in which they were 
learned.  This includes (1) using mathematics abilities after time has elapsed (Kwon, 
Rasmussen & Allen, 2005), (2) using mathematical procedures and concepts in non-
symbolic problems (Clement, Lochhead, & Monk, 1981), and (3) performing 
mathematical actions in a science classroom (Maloney, 1994).  Thus, within this report 
“applying” mathematics to physics and engineering refers to these three features. 
 Since this study focuses on students’ application of mathematics in physics and 
engineering, it necessarily deals with student knowledge.  The domain of “knowledge” is 
broad and complex, including several facets such as the quantity of information one has 
about a subject, the interpretation of symbols, familiarity with mathematical objects and 
procedures, and the ability to dissect the subject (Nickerson, 1985).  In this study, the 
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aspects of “knowledge” are those of “cognitive resources” (Hammer, 2000), which will 
be explained later in this chapter.  This study has not exhausted the depth of student 
knowledge about the topics or contexts that are the settings for the problem-solving 
interviews, nor does it determine their ability to abstract mathematical or scientific 
knowledge.  This investigation has not directly studied students’ beliefs about 
mathematics or science (Elby & Hammer, 2001) though it is acknowledged that their 
beliefs impact the theoretical framework.  Rather this study focuses on documenting the 
symbolic forms activated in a mathematics context and a physics context as well as 
comparing and contrasting the forms activated in each setting. 
 Additionally, this dissertation speaks about “mathematical knowledge” especially 
as it is applied to physics and engineering.  This implies a distinction between 
mathematical knowledge and physics knowledge.  This study looks at the knowledge 
students have about the integral, which will be considered a mathematical concept.  Thus, 
the knowledge students have about the integral is by necessity connected to 
“mathematical knowledge.”  However, the integral has many uses in fields other than 
mathematics, such as in physics and engineering, meaning that the knowledge that 
students have about the integral may also connect with their knowledge about physics or 
engineering.  By “mathematical knowledge” several things are meant.  It is how students 
understand the syntax of formulas and equations, how students interpret and manipulate 
mathematical symbols, and the conceptual structures and representations of mathematical 
notations.  That is, it deals both with performing procedures and with providing a 
conceptual structure for the mathematical object.   
 This study does not seek to explore “physics knowledge” in isolation, but instead 
considers mathematical knowledge that is connected to this physics knowledge. Thus, 
“mathematical knowledge connected to physics” is defined as that which combines 
mathematical objects, such as the derivative, the integral, or equations, with objects found 
in the everyday world, whether material or immaterial, such as mass, force, electrons, 
velocity, or density.  Through these definitions, then, mathematical knowledge is that 
which does not require any knowledge about physical objects in order to be functional.  If 
a student can provide an interpretation of the integral that is not dependent on their 
knowledge of physical objects, such as velocity and acceleration for example, then this 
could be called mathematical knowledge.  When this mathematical knowledge is linked 
to particular knowledge about these physical objects from the everyday world, then it has 
become mathematical knowledge connected to physics.  The idea of “symbolic forms” 
which is presented in this chapter provides one way to talk about mathematical 
knowledge of the integral as well as mathematical knowledge that is connected to physics 
knowledge. 

In this dissertation both physics and engineering are grounded in “real-world 
contexts” and study physical phenomena.  As a consequence, the explanatory text 
frequently includes the phrases “physical objects” and “physical world.”  The word 
“physical” is intended to mean “real-world” in that it pertains to both physics and 
engineering, despite the close relationship between the words “physics” and “physical.”  
Thus physical objects refer to the things that both physics and engineering students might 
study.  Also, “objects” are to be understood as both concrete objects (e.g. liquids, rigid 
bodies, etc) as well as conceptual objects (e.g. force, momentum, etc).  Lastly, for 
simplicity the phrases “science students” or “science classes” mean physics and 
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engineering students and classes.  In this dissertation, the word “science” is limited to 
these two fields of study unless otherwise noted. 

 
2.2 Mathematics in Physics and Engineering 
 
Mathematics, Physics, and Engineering as Symbolic Systems 
 
 This section describes the interconnectedness of the domains for this study.  The 
mathematics, physics, and engineering disciplines are steeped in symbolic notation, 
where entire concepts can be described using a single symbol.  In a mathematics course, 
ideas are given names and symbols that enable them to be communicated; these names 
and symbols also are intended to aid in mental manipulation (Tall & Vinner, 1981).  For 
instance, the symbol “sin(x)” has multiple meanings, representations, and uses in 
mathematics.  It can be a “wave-like” graph, the relationship of an angle and sides of a 
triangle, or simply a numerical value.  The development of understanding of 
mathematical symbols is a gateway between direct computations and more abstract 
thinking (Graham & Thomas, 2000).  “[T]he total cognitive structure which colours the 
meaning of the concept is far greater than the evocation of a single symbol” (p. 151).  For 
example, the idea of a “variable” is in one way or another fundamental to every advanced 
mathematical domain.  Yet despite its simplistic appearance, one variable can take on 
multiple meanings, even simultaneously, which (ideally) allows for new connections to 
be made. Variables, equations, graphs, functions, tables, and manipulatives all serve to 
extract concepts into the theoretical realm and serve as symbols for real or constructed 
objects (Goldin & Shteingold, 2001).  Undergraduate students encounter symbols every 
day in a mathematics classroom. 
 Physics and engineering also make extensive use of mathematical symbols.  They 
borrow much from mathematics by way of formulas, theorems, operations, and notations.  
However, mathematical symbols in physics may take on different meanings than those 
intended in pure mathematics (Redish, 2005).  In physics, symbols often represent 
physical measurements rather than simple numerical values.  This is depicted by the 
example from Dray and Manogue, described in chapter one, regarding the way 
mathematicians and physicists interpret ),( rT  differently.  An important sign of 
progress in physics and engineering students is their ability to mesh the symbols and 
structure of mathematics with physical knowledge and intuition (Bing & Redish, 2007). 
 
Mathematics is Fundamental to Physics and Engineering 
 
 As just expressed, there is a fundamental link between mathematics, physics, and 
engineering.  Considering its history, several mathematical domains (including calculus) 
were created to satisfy understanding about measurement, construction, and motion.  It is 
the language that physicists and engineers use to theorize about the nature of the world 
and universe.  Because of their close connection, there is a call to pay attention to the 
relationship between teaching mathematics and teaching physics and engineering (More 
& Hill, 2002; Fuller, 2002).  Recent efforts have included looking at how science 
students are using their mathematical knowledge in order to solve physical problems 
(Bing & Redish, 2007; Lee & Sherin, 2006; Sherin, 2001; Dray & Manogue, 2006).  
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Mathematics, then, is not an isolated subject matter, nor can it be considered only in the 
environment of a mathematics classroom.  Its applications warrant discussion in a 
broader context.  When considering the connection between the domains, it is important 
to remember that applying mathematics to science involves representing physical 
meaning in addition to expressing abstract relationships (Redish, 2005).   
 
The Problem to be Addressed: The Gap between Math and Physics/Engineering 
 
 There is a compelling perception that students do not readily apply their 
mathematical knowledge to physics and engineering (Booth, 2008; Baggi, 2007; 
Gainsburg, 2006; Redish, 2005; Hoffmann, 2004; Fuller 2002; Clement, Lochhead, & 
Monk, 1981).  Is this because students are not learning the mathematics, or is there more 
to applying mathematics than just remembering?  If they are learning from their 
mathematics courses, but then struggling to apply this knowledge to physics and 
engineering, what could cause this phenomenon?  Some educators have suggested areas 
that may cause problems when trying to apply mathematics to physics, including relating 
symbols to measurement, parsing equations, understanding equations as relationships, 
coordinating time and space, and treating equations as representations of reality (Redish 
et al., 1996).  Hence there are numerous places in the process of applying mathematical 
knowledge to science classes where students could potentially have difficulty. 
 In order to address this perceived issue, many curricular projects have sprung up 
to more closely relate the mathematics instruction to physics and engineering (Dray & 
Manogue, 2003; Berry, DiPiazza & Sauer, 2003; More & Hill, 2002; Meredith & Black, 
2001).  However, the curricular approaches should have a solid base of understanding of 
student knowledge to rely on.  If it is not known what knowledge students have and are 
drawing on, how will instruction be tailored to support the application of knowledge to 
other domains?  At this point there is limited understanding of the knowledge that 
students draw on when applying mathematics to science contexts, especially concerning 
the concepts within calculus.  This dissertation attempts to describe more about the 
specific pieces of knowledge that students hold in their cognition pertaining to the 
concept of the integral.  To analyze the problem, consider the idea of “cognitive 
resources.” 
 
2.3 Theoretical Perspective: Cognitive Resources  
 
The “Predecessors” to Resources 
 
 First, is it helpful to discuss the ideas that serve as a basis for the theoretical 
construct of “resources.”  Suppose that a “concept” in a student’s cognition is not a single 
entity, but rather consists of smaller units.  These smaller units together may create an 
overall concept, belief, or strategy.  Thus it has been argued that calling a student’s 
“conception” correct or incorrect is too simplistic (Clement, Brown & Zietsman, 1989).  
In physics education, researchers began testing this idea by creating tasks that drew upon 
smaller, correct ideas that students employed in order to build up knowledge about a 
larger concept.  For example, Minstrel (1982) noted that students had difficulties 
understanding how a table can exert an upward force on a book that rests upon it.  He 
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showed that this could be overcome by first discussing springs.  Students were able to 
easily recognize the force the spring exerted back on the object compressing it.  The 
students in his study were then more easily able to understand the notion of this “upward 
force” from the table.  Thus this study had bypassed the idea that “force” is a unitary 
conception in a student’s cognition, either to be understood or misunderstood.  Instead, 
the concept of “force” could be subdivided into smaller ideas, namely downward force, 
upward force, spring force, static force, etc.  Some of the smaller ideas about force then 
proved useful in explaining the larger picture about the force exerted by the table.   

DiSessa (1993) pushed this notion further by describing “phenomenological 
primitives” or “p-prims.”  DiSessa defined these as the smallest pieces of cognitive 
structure that are accessible by a person.  The p-prims were much smaller than the 
conceptual total, meaning that even within one idea there could be several p-prims.  
Additionally, one p-prim could contribute to many distinct concepts.  Defining 
knowledge “in pieces” in this way was important in that it continued to push away from 
the idea of a single mental entity called a concept, and argued instead that understanding 
and knowledge are made up of lots of individual bits of cognitive structure.  Several 
researchers have built on this work to produce the theory of cognitive and 
epistemological resources. 

 
Definition and Explanation of Resources 
 
 Cognitive and epistemological resources are a theoretical construct that has been 
developed recently to explain the nature of knowledge (Gupta, Redish, & Hammer, 2008; 
Hammer, Elby, Scherr, & Redish, 2005; Louca, Elby, Hammer, & Kagey, 2004; Hammer 
& Elby, 2003; Elby & Hammer, 2001; Hammer, 2000; diSessa & Sherin, 1998; Hammer 
1994).  In order to present this construct, consider someone who is presented with a novel 
problem.  This person may begin by searching their knowledge and experience in an 
attempt to use what they already know in order to solve it.  This person might have 
employed memorized facts, informal notions, large concepts, or beliefs about the nature 
of the problem.  There are various ways to consider a problem.  There have many 
concepts, notions, strategies, beliefs, or intuitions that may, may not, or may incorrectly 
come into play when thinking about a given problem. 

These tools, knowledge, concepts, and beliefs that are brought to bear on the 
problem are called “resources.”  The word “resource” is derived “loosely from the notion 
of a resource in computer science, a chunk of computer code that can be incorporated into 
programs to perform some function” (Hammer, 2000, p. 53).  A computer programmer 
does not create all of her or his code from scratch every time.  There is a vast reservoir of 
previous work, which includes many self-contained subprograms that are retrieved and 
implemented by a programmer.  The programmer connects several of these resources and 
combines them with intuition and logic of his or her own to create a new project.  Note 
that an important characteristic of these resources is that they are used and re-used under 
many circumstances.  Also, resources may be different sizes: some cognitive resources 
may be memorized facts about multiplication, while another may be the overall compiled 
view of the space Rn.  A resource is simply whatever cognitive structure, large or small, 
that can be activated and implemented as a unit.  Hence one resource can be said to be 
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made up of other smaller resources.  For example, the overall concept of Rn might be 
made up of ideas about vectors, dimensions, axes, and the origin. 
 It is important to remember that resources are not always used to a constructive 
end (Hammer, 2000).  Given a problem, many resources may be activated 
simultaneously, but not every resource will be used and oft times the resources drawn 
upon might be used in a way that does not satisfactorily solve the problem.  Consider a 
person who is in the process of working out an answer only to discover that their solution 
method was not providing a useful path and that they needed to start over.  Hammer is 
careful, however, to point out that this “differs from the notion of a ‘misconception,’ 
according to which a student’s incorrect reasoning results from a single cognitive unit, 
namely the ‘conception,’ which is either consistent or inconsistent with expert 
understanding” (2000, p. 53).  Thus under the theory of resources, concepts do not come 
in the form of a single unit, but are rather built up of several components, meaning that a 
“misconception” might really just be a useful idea that was merely misapplied to the 
wrong situation.  The piece of knowledge employed in understanding a situation might be 
completely valid in one context, but inappropriate for another.  One example is to 
consider the answer to the question: “why is it warmer in the summer than the winter?”  
The correct answer to this question has to do with the angle of the Earth’s tilt relative to 
the sun.  As one hemisphere tilts toward the sun, the rays can penetrate to the surface 
more easily and for a longer period of time each day, causing the temperatures to 
increase.  However, a student may think about this question and draw on the good, often 
useful resource “closer means more intense.”  This resource certainly is true when it 
comes to a fire, or a hot stove.  The closer a person is to a fire, the warmer they are.  
Therefore, this usually productive resource may be misapplied to the question and the 
student might answer “because the Earth is closer to the sun during the summer.”  
Therefore, it is not to say that this student has created a single cognitive unit about the 
seasons that is in disharmony with expert understanding.  Rather, the student took a 
resource grounded in good experience and applied it to the wrong situation. 
 
Epistemological Resources 
 
 An “epistemology” is essentially the idea of “how we know that we know 
something.”  A person’s epistemology describes what they understand about what 
knowledge is, what it’s made up of, or how it’s created.  In the research community there 
is an apparent consensus about what constitutes a correct epistemology about science—
that science is tentative and evolving (Elby & Hammer, 2001).  However, this consensus 
can be questioned on the grounds that epistemologies should be treated as finer grained.  
In essence, much like the cognitive structures that can be broken down into smaller 
components, epistemologies can be subdivided into epistemological resources (Hammer 
& Elby, 2002).  Thus it would be important to understand that students may have 
epistemologies along many different dimensions, including beliefs about the nature of a 
subject, how knowledge is gained in that subject, or the certainty of that knowledge.  The 
beliefs that students hold about the interview setting, the tasks given to them, and about 
mathematics and physics themselves affects how they understand and approach the task 
(i.e. how they “frame” the task).  Additionally, their beliefs affect the perceived goal of 
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the task, the kind of knowledge they activate, and how they attempt to solve the task.  In 
short, epistemological resources affect which cognitive resources students activate.   
 Furthermore, the work done with epistemological resources provides a more 
detailed understanding of certain features of a resource.  Resources can better 
conceptualized by giving attention to the “form” of the epistemological or cognitive 
resource (Louca, Elby, Hammer & Kagey, 2004).  The “form” of a resource consists of 
the “grain size, stability, and context dependence of the relevant cognitive elements” (p. 
57).  The grain size refers to the relative size of the resource, whether tiny and primitive, 
or large and compiled of other resources.  One could say that diSessa’s “p-prims” might 
be generally considered as having a small grain size because of their primitive nature.  
However, Sherin’s symbolic forms (to be discussed presently) might have a larger grain 
size because they are compiled from other cognitive resources.  As previously discussed, 
the idea of a resource’s “grain size” turns away from the theories that concepts and 
epistemologies exist only as developmental stages or unitary cognitive objects, stating 
instead that they can exist as a collection of finer-grained cognitive elements (Hammer & 
Elby, 2002).   
 Next, resources can be context dependent, meaning that a person will not 
necessarily apply the same resource to every situation—resulting in knowledge of an 
“object” being different things at different times.  For example, it is possible to perceive 
that “a is a constant” in contexts such as a mathematics course, where a predominantly 
shows up in situations where there is no associated physical meaning, like in the 
equation baxxf  2)( .  Yet if the equation deals with a physical situation such as 

dt
dva  , like one would see in a physics course, this resource may become dormant while 

another resource “a is the acceleration and might not be constant” is activated and used.  
This may happen because of the context of the physics course, where a often has the 
meaning of acceleration and the acceleration may continuously change depending on the 
situation.  Thus these resources show a dependence on the context.  Finally, a resource 
may have a certain stability or instability associated with it.  For instance, one potential 
resource that might be activated when dealing with integrals is that “the integral is the 
area under the curve.”  This resource might be so stable in a student’s cognitive structure 
that the resource will be used every time an integral is encountered, even if there are 
other ways of considering the integral.  Other times the resource might be so tentative 
that it is activated in one situation with an integral and then not activated in a nearly 
identical situation. 
 This study is not intended to document student epistemologies nor to explicitly 
analyze how they influence “choice” of cognitive resource activation.  However, since 
this study does seek to document and analyze the symbolic forms that students activate, it 
must be acknowledged that these resources are playing a fundamental role in what is 
observable in the interviews.  Epistemologies play a role in two different places: in the 
“framing” of the situation and in the “selection” of cognitive resources.  (I put “selection” 
in quotes as it is most often a tacit cognitive function.)  The following paragraphs 
describe more about the role of framing. 
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Framing 
 
 The concept of framing helps us understand how students interpret a given 
situation, problem, or goal.  When a person encounters any situation, they automatically 
(and most often tacitly) make choices about what the situation means and how to construe 
it.  It is the way a person answers the question “What is going on here?” where the 
interpretations happen as a continuous process (MacLachlan & Reid, 1994; Lunzer, 
1989).  As a working definition, framing in this study means “a set of expectations an 
individual has about the situation in which she finds herself that affect what she notices 
and how she thinks to act” (Hammer, Elby, Scherr, & Redish, 2005, p. 97).  Thus, in a 
grocery store a person might use estimation to add up the prices of items in his or her 
their cart, where in a mathematics class that same person might use a written-out 
procedure or a calculator to find the exact sum.  The “task” is identical (add up these 
numbers), but the person frames it differently depending on the situation (grocery store 
vs. mathematics class) and hence uses a different strategy for computing the numbers. 
 In the interview setting, there are a number of components that influence students’ 
framing of the tasks.  While it is not possible to account for nor control all of them in 
order to make the interview a perfectly authentic reproduction of classroom, homework, 
exam, or work settings, there are some practices implemented that may control some of 
the effects of framing during the interview.  First, I interviewed students in pairs where I 
presented them with a problem and asked them to discuss it and solve it until they were 
both fully satisfied.  Interviewing the students in pairs reduces the tendency of students to 
respond to interviewer probing as directional hints about what is correct and to guess at 
what I want them to say.  Instead, they must explain their thinking to each other and 
respond to each other’s questions.  It is less likely that the other student is seen as an 
authority figure, though it may happen, and thus less likely that the student would look 
for cues as to what to say and what is correct.  Second, student pairs came in for two 
interview sessions where I intentionally framed each interview as either a “mathematics 
day” or a “physics day.”  Thus by forcing a set of expectations regarding the interview, I 
more cleanly expected the students to “frame” the tasks in a particular way.  During the 
first interview, I told the students that we were looking at problems from a mathematics 
class and provided them with tasks that closely resemble mathematics classroom 
notations and styles.  In the second interview, I told the students that we would focus on 
problems from a physics class and gave them items more similar to those encountered in 
a physics course. 
 This study is also not intended to explicitly study the effects of framing, nor to 
provide an analysis of it in the results.  Framing is only intended to be considered as an 
important component of what happened during the interview that may color the data that 
I collected.  It is possible that some of the data could be interpreted as directly consequent 
from student framing. 
 
Resources and Transfer 
 
 It is important to note why a theory of transfer is not used in this study.  A key 
feature to the theory of cognitive and epistemological resources is the abandonment of 
the notion of “transfer” and the development of the notion of “activating resources” 
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(Hammer, Elby, Scherr & Redish, 2005).  This hearkens to the rejection of conceptions 
and epistemology as unitary objects to be transferred to a new situation.  More recently 
researchers have instead begun to argue for a “manifold” view of conception and 
epistemology.  The idea is that knowledge “involves many simple elements whose 
origins are relatively unproblematic, as minimal abstractions of common events” 
(diSessa, 1993).  If one reject conceptions and epistemology as unitary objects, one 
cannot expect to see an entire conception (which is built up by many fine-grained 
resources) to be summarily “transferred” to a new situation.  Instead, individual 
components of knowledge and beliefs, or rather cognitive and epistemological resources, 
are activated upon encountering a new situation.  Consequently, instead of interpreting 
errors as students simply having “incorrect” conceptions that they learned in another 
context and are applying to this new context, it is possible that a student has merely 
misapplied an otherwise “correct” resource.  Thus instruction is not required to replace 
incorrect conceptions or beliefs with correct ones, but rather to support the activation of 
resources the student already possesses (Hammer, Elby, Scherr & Redish, 2005).  This 
study is aligned with the theory of cognitive and epistemological resources. 
 
Resources as a Way to Understand the Gap between Mathematics and 
Physics/Engineering 
 
 This section seeks to explain how the theory of cognitive and epistemological 
resources sheds light on applying mathematics to physics and engineering.  This is done 
by demonstrating how the theory of resources implies a difference between learning 
mathematics in a mathematics classroom and learning mathematics in a science 
classroom.  The focus for exploring such differences resides in the way that the two 
classroom settings create and encourage different sets of cognitive and epistemological 
resources. 
 Consider the set of curricular materials for an undergraduate calculus course.  
According to the literature, typical traditional curricular materials are described as 
“formal” (Meel, 1998) and “routine” (Park & Travers, 1996).  Traditional calculus 
curricula introduce concepts through formal introductions and skill development (Meel, 
1998).  What cognitive and epistemological resources are developed and encouraged 
through such materials?  Since students develop resources that help them to be successful 
in the environment they find themselves in (Hammer & Elby, 2003), they may build 
epistemological resources that “solving a problem” means executing a procedure.  It is 
possible to come to believe that the variable should always be x from regularly seeing 
functions such as f(x) = x2+2x+1 or f(x) = sin(x). The derivative might be understood to 
be a procedure that is done to a function, where the exponent is dropped down as a 
coefficient and then the exponent is reduced by one.  Note that this does not imply that 
any of these resources are wrong or hurtful.   
 However, by contrast consider those students in a physics classroom.  Suppose 
they were given the equation dVM

S  .  If the student tries to apply the resource “the 

variable should be x,” which was productive in the mathematics course, the student may 
have difficulty understanding this integral equation because it lacks an x.  Furthermore, if 
he or she understands the integral to be the “anti-derivative of the integrand with respect 
to the differential” (which again is a productive resource in a mathematics course), he or 
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she may struggle to understand how ρ is a function of the variable V.  This exemplifies 
how productive resources for a mathematics class may become unproductive when 
applied to very similar-looking situations in a physics course.  The resources that students 
have at their disposal and which ones they activate will impact their understanding of 
physics concepts.  Thus the theory of resources affords an important lens through which 
one may investigate the application of one subject to another, i.e. applying mathematics 
in physics and engineering courses. 
 
2.4 Symbolic Forms 
 
 The cognitive resources that physics and engineering students draw upon when 
applying mathematics to physics and engineering is at the heart of this dissertation study.  
Thus it is important to review documented evidence of the resources that these students 
draw upon when dealing with mathematics.  Research has looked into how physics 
students use equations in physical contexts (Sherin, 2006; Lee & Sherin, 2006; Tuminaro, 
2004; Sherin, 2001; Sherin, 1996).  According to these studies, there are certain types of 
cognitive resources that inhabit students’ understanding of equations, which can be 
expressed in terms of “symbolic forms.”  A symbolic form is a cognitive resource that is 
comprised of two components: a “symbol template” and a “conceptual schema” blended 
with the symbol template.  Let’s take a moment to discuss this terminology. 
 In order to have a tangible example to work with, consider the following two 
equations from physics: 

(1) atvv o    and   (2) KPE  . 
The first equation describes the velocity of an object, v, that is subjected to constant 
acceleration, a.  One takes the initial velocity of the object plus the additional velocity 
acquired from the acceleration in order to determine the object’s velocity at a particular 
point in time.  The second equation describes the relationship between total energy, E, 
and potential energy, P, and kinetic energy, K.  By adding the components P and K one 
can determine the total energy. 
 Considering these examples, let us first explore the “symbol template.”  The 
template is simply the arrangement of the symbols in the equation.  First, the right hand 
side of both equations bears the template “[] + [].”  That is, in each equation there are two 
terms separated by a plus sign.  Also, each equation has another template, which is “[] = 
[].”  That is, there are two expressions separated by an equals sign.  Together, both of 
these equations have the template   “[] = [] + [].”  The template does not require any 
meaning to be associated with any of the parts.  It is no more than the structure or 
arrangement of the symbols.  Thus, as far as the symbol template is concerned, these two 
equations are identical. 
 The “conceptual schema” refers to the meaning underlying the arrangement of the 
symbols.  Let us look at the conceptual schema that relate to these two equations.  In the 
right hand side of the first equation (1), the two terms refer to a “base” and a “change” 
(Sherin, 2001).  That is, the vo is the starting point of the velocity and the at is the amount 
of additional velocity that the object receives after t amount of time.  Thus, the symbolic 
form associated with the right hand side of the first equation is “[base] + [change].”  
Additionally, one invokes the symbolic form “same amount” ([] = []) to know that the v 
on the left hand side is equal to the resulting amount on the right hand side.  For the 
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second equation, the P and the K in the right hand side refer to two components of the 
total energy.  They are each a “part” of a “whole” (Sherin, 2001).  The symbolic form 
associated with the second equation is “[whole] = [part] + [part].”  This is a different 
symbolic form than the one for the first equation.  From this example it can be seen that 
two symbolic forms may share the exact same symbol template, but have different 
conceptual schemas.  Therefore, two symbolic forms may differ in their symbol 
templates, their conceptual schemas, or both. 
 According to this idea, students understand mathematical expressions as a 
combination of the symbol arrangement as well as the concepts that underlie the symbols.  
Furthermore, physics and engineering students understand mathematical expressions by 
taking the symbolic form and attaching it to the physical meaning of a given situation 
(Sherin, 2001; 1996).  For instance, in the velocity equation from the previous example, a 
student would associate the “base” with the velocity an object was already traveling at 
and the “change” with the additional velocity produced due to the acceleration that the 
object experienced.  By blending the symbolic form with the physical situation of 
velocity and acceleration (Bing & Redish, 2007) the student can apply the mathematical 
structure of an equation to the movement of an object. 
 Sherin’s work in this area (2006; 2001; 1996) provides a rich list of many 
symbolic forms that students draw on while working with equations in physics.  He has 
organized the symbolic forms into clusters based on similarities in structure or conceptual 
schema.  The following table lists the symbolic forms that Sherin identified.  (Note that 
some symbolic forms have the same symbol template.) 
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Cluster Name of Symbolic Form Symbol Template 

of Form 
Competing terms Competing terms []± []± [] ... 
 Opposition [] – [] 
 Balancing [] = [] 
 Canceling 0 = [] – [] 
Terms are amounts Parts-of-a-whole [ []± []± [] ... ] 
 Base ± change [ []± Δ ] 
 Whole – part [ [] – [] ] 
 Same amount [] = [] 
Dependence Dependence [...x...] 
 No dependence [...] 
 Sole dependence [...x...] 
Coefficient Coefficient [ x[] ] 
 Scaling [ n[] ] 
Multiplication Intensive-extensive x x y 
 Extensive-extensive x x y 
Proportionality Prop+ 







...
......x  

 Prop– 






......
...
x

 

 Ratio 








y
x  

 Canceling (b) 






......

......
x
x  

Other Identity x = ... 
 Dying away [e–x ...] 

Table 2.3.1: Symbolic forms identified in previous research (Sherin 2006; 2001; 1996) 
 
 This work provides a rich vocabulary for talking about how students use 
equations within the context of physics and engineering.  However, it is known that there 
are many mathematical symbols beyond equations that students must use in physics and 
engineering in order to apply mathematics successfully.  For instance, this work has 
begun to be extended to graphs (Lee & Sherin, 2006).  Yet, as students at the post-
secondary level continue in their physics and engineering education, calculus concepts 
become increasingly more common and important.  Students must understand and use 
derivatives and integrals in their coursework.  At this point, there are not descriptions of 
the cognitive resources along the lines of symbolic forms that students have regarding the 
derivative or the integral.  This research project attempts to extend the work of Sherin’s 
symbolic forms to the integral.  Specifically, given the integral symbol template (for 

example “
[]

[]
[] []d ” or “ [] []d ”), what conceptual meaning is blended with the symbols in 

order to produce symbolic forms pertaining to the integral?  This dissertation reports on 
the symbolic forms for the integral that students showed evidence of possessing and 
drawing upon during a mathematics-framed setting and a physics-framed setting. 
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CHAPTER 3: METHODOLOGY 
 
 This study aims to provide insight into the following question: 
 

 What are the symbolic forms relating to the integral that physics and engineering 
students have and draw upon? 

 
This study compares the activation of symbolic forms relating to the integral in physics 
and engineering contexts to those activated in mathematics contexts.  As such, it 
describes the forms that are activated when the students are engaged in physics-framed 
problems in possible contrast to those that are activated in mathematics-framed problems.  
Thus, this work also seeks to provide insight around each of these sub-questions: 
 

 What symbolic forms do students activate in mathematics-framed settings? 
 
 What symbolic forms do students activate in physics-framed settings? 
 
 What is the intersection and/or disjunction in symbolic form activation between 

these two settings? 
 

 This chapter explains the methodology employed in order to shed light on these 
research questions.  I interviewed students in pairs around mathematics and physics 
items.  This chapter begins with a description of the student population as well as a 
description of the courses they had taken or were enrolled in.  It then details the process 
of creating the framework developed around activating symbolic forms, and the method 
employed to prompt resource activation during the interviews.  This chapter describes the 
interview and provides a rationale for the items included in it. 
 
3.1 Background Information of Participants  
 
Student Population 
 
 This dissertation is intended to study the cognitive resources students draw upon 
while applying mathematics to physics and engineering, in response to the perception that 
students are routinely struggling to apply mathematics in their undergraduate physics and 
engineering courses.  One critical detail is the selection of representative undergraduate 
students, which would allow for the results to be at least somewhat applicable to the 
broader population of physics students (Becker, 1990).  By demonstrating that the 
students interviewed are “typical” of those characterized in the literature (Schofield, 
1990), it could be argued that the cognitive resources described in this study might be 
found amid students in a normal classroom.   

The literature often refers to introductory students in physics and engineering.  
This student population was narrowed down to students who were intending on majoring 
in physics and engineering and who were at the introductory level for their major courses.  
Since I collected my data at the University of California, Davis (UC Davis), I reviewed 
the physics course curricula at UC Davis in order to determine which courses these 
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students would be enrolled in.  The courses at UC Davis are on a “quarter system” 
meaning that each course runs for a ten-week period.  The Physics Department contains 
three tracks of physics courses as well as lower-level general courses.  The top level 
includes PHY 9HA, 9HB, 9HC, 9HD, and 9HE, which are “intended primarily for first-
year students with a strong interest in physics and with advanced placement in 
mathematics” (UCD, 2009a).  The next level includes PHY 9A, 9B, 9C, and 9D, which 
are designed “primarily for students in the physical sciences and engineering” (though it 
appears that one can still become a physics major after taking these courses).  And lastly, 
there is the PHY 7A, 7B, and 7C track for biological science majors, chemistry majors, 
and pre-medical and pre-dental students.  There are also lower-level general education 
courses.  In order to focus on physics and engineering majors at the introductory level, I 
recruited students who had nearly completed PHY 9A and PHY 9HA.   

Trivially, if students are struggling to apply mathematics to their physics and 
engineering courses, they are at least at a point in their studies where they should be 
applying mathematical knowledge to physics and engineering courses.  It is possible that 
part of the difficulties some students are having is that they either have not learned the 
mathematics sufficiently, or that they have learned it in such a way that it is not readily 
applicable to physics and engineering coursework.  This study is not meant to describe 
student deficiencies nor depict students from a deficit perspective (NCSM, 2008).  It is 
not meant to characterize students who have not adequately learned the requisite 
mathematics.  Rather, it is more concerned with the ways in which “successful” 
mathematics students apply their mathematical knowledge to physics and engineering, or 
struggle in doing so.  Thus, I did not want to recruit students who were too inexperienced 
with calculus, where the results of my study could be accounted for by their lack of 
exposure to mathematics.  Instead, I intend to shed light on the cognitive resources 
students draw upon in hopes of illuminating the field around the subject of applying 
mathematics.   

In order to recruit students, I asked permission to enter the introductory physics 
courses at UC Davis during Fall 2009 and briefly explained the study to the entire class.  
Sufficient quantities of students responded that I was able to select several pairs of 
students who had “successful” backgrounds in mathematics.  There were no students who 
declined participation after initially expressing interest.  Since I recruited students who 
had nearly completed PHY 9A or PHY 9HA, I was able to enlist students that had 
experience with calculus, including integrals.  PHY 9A and PHY 9HA both have first 
quarter calculus (MATH 21A) as a prerequisite and second quarter calculus (MATH 
21B) as either a prerequisite or a co-requisite.  Furthermore, I only recruited students who 
had “successful” performances in their calculus courses.  (For my definition of 
“successful” here, I used the requirement that they had either an A or a B, or that they had 
passed the AP calculus exam with a “5.”)  This way I could ensure that the students (1) 
had completed a first quarter calculus course (covering limits and derivatives), (2) had 
taken or had been enrolled in a second quarter calculus course (covering integration), and 
(3) had experience in applying mathematics to science concepts throughout their physics 
9A or 9HA course.  Before a student was admitted to the study, I asked to know which of 
these classes they had taken as well as the grades the student had received in each class.  
This assured me that the student met the conditions as outlined here.  The end of this 
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section includes a table that displays the background of each student who participated in 
the study. 

The students were interviewed in pairs and were asked to come to an agreement 
on mathematics and physics problems.  For this study, I had a total of four pairs of 
students from UC Davis, plus another student recruited through the University of 
Maryland’s Physics Education research group.  The pairs of students from UC Davis 
were interviewed together two times, though one of the students did not come to the 
second interview.  The first session consisted of a “mathematics-day interview” where 
items resembled problems typically encountered in a mathematics classroom.  The 
students were explicitly told to think about the interview from the perspective of being in 
a mathematics course.  The second session consisted of a “physics-day interview” with 
items resembling those seen in a physics course.  The students were again explicitly told 
this context.  The ninth student was from the University of Maryland (UMD) and was 
interviewed only once.  The items in his interview were drawn mostly from those in the 
“physics-day” interview for the UC Davis students. 
 In order to better capture the context that these students were in at the time of the 
interviews, I briefly describe here the following courses: PHY 9A, PHY 9HA, MATH 
21A, and MATH 21B.  All of the students were enrolled in either PHY 9A or PHY 9HA, 
all had either taken MATH 21A or passed the AP exam, and all either were taking or had 
completed MATH 21B.  Describing these courses aids in depicting why the students I 
recruited are representative of those characterized in the literature.  Students enrolled in 
PHY 9A or PHY 9HA are required to have completed MATH 21A and are also required 
to have completed or be concurrently enrolled in MATH 21B (UCD, 2009a).   
 
MATH 21A: Calculus I 
 
 Calculus I is a prerequisite for any students taking PHY 9A or PHY 9HA.  It is 
possible that students may have completed high school AP credit and have tested out of 
MATH 21A, but similar concepts would have been learned (and I required them to have 
scored a “5” on the exam).  According to the math department’s website, the course 
focuses on “differential calculus” including the topics of functions, limits, continuity, 
derivatives and applications of the derivative, optimization, related rates, and L’Hopital’s 
rule (UCD, 2009b).  “Successful” completion of this course, or a similar AP course in 
high school, ensures that the students had a working understanding of the important basic 
concepts of differential calculus. 
 
MATH 21B: Calculus II 
 
 Calculus II is a pre-requisite or a co-requisite for PHY 9A or PHY 9HA.  All of 
the students in this study either had taken this course or were enrolled in it.  This means 
the students would have either completed or mostly completed this course by the time I 
interviewed them.  The department website indicates that the course centers on anti-
derivatives, techniques of integration, center of mass, surfaces of revolutions and volume, 
work, fluid pressure, exponential and logarithmic functions, partial fractions, numerical 
methods, and polar coordinates (UCD, 2009b).  This suggests that students would not 
only have seen the basic concepts of calculus, but would have had the opportunity to 
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extend their knowledge through a full semester of integration.  Since the students had 
completed or nearly completed this course, it is less likely that their difficulties with 
mathematics in their science courses would lie purely in their inability to do the math 
itself.  They have been exposed to the type of mathematics required of them in their 
introductory physics and engineering courses.   
 
PHY 9A: Classical Physics 
 
 This course is a general physics course for engineering majors and physical 
sciences majors (UCD, 2009a).  It is the first of a four-quarter track and it is explicitly 
calculus-based.  According to the syllabi available on the physics department website, it 
covers the topics typically dealt with in this type of course, including the laws of motion, 
force and energy, principles of mechanics, collisions, linear momentum, rotation, and 
gravitation.  The book used for this course in Spring 2009 (Young & Freedman, 2004) 
follows similar topics as other typically-used undergraduate physics texts (Serway & 
Jewett, 2008; Tipler & Mosca, 2008), though it does contain slight variations from others 
texts in the presentation of the material, as would be expected.  The book uses 
rudimentary calculus explicitly and regularly, including both the derivative and the 
integral, and homework problems include calculus concepts (UCD, 2009c).  This course 
exposes students to applying calculus to physics. 
 
PHY 9HA: Honors Physics 
 
 This is the first of five courses designed specifically for those with a strong 
interest in physics, who also have a strong mathematical background (UCD, 2009a).  It is 
calculus-based and covers a variety of topics, including kinematics, Newton's laws, 
energy and work, linear and angular momenta, temperature and pressure, statics, and 
oscillations.  The book used for this course in Spring 2009 (Moore, 2003) follows similar 
topics as other books used at this level.  As with PHY 9A, the book makes use of calculus 
and the students are required to use basic calculus to work through problems.  Students 
will have had numerous occasions to see and use mathematics in this physics course. 
 
Brief Student Profiles 
 
 For this study, I interviewed a total of nine students.  Eight of the students were 
recruited at UC Davis and were interviewed in pairs.  Each pair was interviewed twice, 
with the exception of one student who did not attend the second interview.  Thus I 
interviewed the other student alone for the second interview.  The ninth student was 
recruited from the University of Maryland and was interviewed once.  In this paper, 
pseudonyms have been given to the students which indicate their gender; the first pair 
consists of Adam and Alice, the second pair Bill and Becky, the third Clay and 
Christopher, the fourth Devon and David.  David did not show up for the second 
interview.  The ninth student is Ethan, from the University of Maryland, who was 
interviewed once by himself. 
 Each student was required to have a successful background in mathematics.  I 
defined a “successful background” as having an A or a B in the appropriate courses (or a 
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5 on the calculus AP exam).  The students had to have completed the first calculus course 
and have completed (or nearly completed) the second semester calculus course.  The 
students would have already received a grade for these courses unless they were enrolled 
in one of them at the time of the interviews.  Most of the students exceeded these 
preliminary requirements.  The students were recruited from introductory physics courses 
for physics or engineering majors.  Table 3.1.1 shows the mathematics and physics 
background for each student. 
 
Student Math 21A Math 21B Math 21C Math 21D PHY 9A or 

PHY 9HA* 
Adam AP exam B A- enrolled 9A 
Alice A- A enrolled  9A 
Bill AP exam A enrolled  9HA 
Becky B A- (completed) enrolled 9A 
Clay A enrolled   9HA 
Chris AP exam B enrolled  9A 
Devon A A A A 9HA 
David B- B enrolled  9A 
Ethan** (completed) (completed) (completed) (enrolled) (PHY 161) 
Table 3.1.1: Mathematics and physics background for student participants 
* 9HA is for intended for physics majors; 9A is for intended for engineering majors. 
** Ethan completed comparable courses at UMD and was an engineering major. 
 
3.2 Framework: Activating Symbolic Forms of the Integral  
 
 This sections describes the framework that was compiled for this dissertation, 
which represents applying mathematics to physics and engineering via the activation of 
cognitive resources in the form of symbolic forms.  Symbolic forms have provided a 
useful language for describing the way students interact with the mathematics they see in 
their physics and engineering courses.  These cognitive resources can be activated by 
students in order to apply mathematical knowledge to a physics-framed situation.  While 
certainly not the only piece of the puzzle, symbolic forms may be manifest whenever a 
student is asked to make meaning out of mathematical symbols.  Essentially, if the 
student has stably blended a conceptual schema with a particular symbol template, then 
by definition a symbolic form exists in the student’s cognitive structure.  Evidence of this 
might be seen in the way a student talks about and works with a physics or engineering 
problem. 
 There are manifold places in the application of mathematics to physics and 
engineering where students are confronted with a symbolic structure that is meant to 
convey meaning.  As such, there are many places where the work of symbolic forms 
could be extended.  Work centered on equations has already yielded a robust collection of 
symbolic forms, some of which have been backed up by other studies (Lee & Sherin, 
2006; Sherin, 2006; Tuminaro, 2004; Sherin, 2001; Sherin, 1996).  Additionally, some 
exploratory work has been done in looking at the symbolic forms that students have and 
activate when using graphs (Lee & Sherin, 2006).  However, there are other topics that 
have yet to be explored with a symbolic forms lens, including the derivative and the 
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integral.  Both are symbolic structures with associated meaning.  For this study, I explore 
the symbolic forms relating to the integral that students have and activate. 
 As discussed in the previous chapter, the framing students employ in the tasks 
they are given will influence the resources they activate (Hammer, Elby, Scherr, & 
Redish, 2005).  Underlying the activation of symbolic forms are the students’ 
epistemologies about mathematics, physics, and engineering.  The epistemological 
resources that they have active in the interview influence their framing, which may in 
turn play a significant role in the choice of the cognitive resources they activate for 
solving the problem.  Thus it can be expected that the cognitive resources that are 
employed during the interview are mediated by the framing done by the students.  The 
framings are tied to the activated epistemological resources in the interview context.  The 
way the students understand the interview setting, what is requested of them, and what 
constitutes mathematical or physics knowledge will effect how the students approach the 
problems in the interview.  A student may hold a particular symbolic form, but not apply 
it because of the set-up of a problem or because of what they think they are being asked 
to do.  These pieces are put together into the following framework that I use for this 
study, which is represented in Figure 3.2.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2.1: Framework around the activation of symbolic forms during the interview 
 
 This study focuses on the cognitive resources (as symbolic forms) that students 
activate in mathematics and physics contexts.  Thus, while the important role that both 
framing and epistemologies play in the process of resource activation is acknowledged, 
and that they certainly interact with the cognitive processes of the student, this analysis is 
restricted to documenting and describing the symbolic forms that students gave evidence 
as having.  Also, this research does not attempt to examine how or why symbolic forms 
are cognitively compiled.  Thus this framework may be conceptualized according to 
Figure 3.2.2, depicting the pieces of the framework explicitly analyzed (bold font). 
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Figure 3.2.2: Framework showing pieces that are explicitly analyzed 
 
3.3 Data Collection, Resource Activation, and Coding  
 
Interview Data 
 
 The data used for this study consists of interviews with pairs of students, who 
were audio recorded and video recorded.  I also took notes during the interview and kept 
student written work to support the other forms of data.  Video was an important 
component of data collection as it allowed me (1) to capture non-verbal data (including 
and especially gestures),  (2) to correlate the audio with written work, and (3) to observe 
where and when students make references to written materials.  Student written work 
gives me the opportunity to represent drawings, equations, or work produced from the 
student during the interview.  These can shed light into their thinking and understanding.  
Finally, notes taken during the interview provide a record of impressions, interesting 
moments, unique responses, or other instances that are important to keep track of.  These 
sources of data together help create a more accurate description of student thinking 
during the interviews. 
 The students were interviewed in pairs in order to avoid some of the difficulties in 
accurately capturing student thinking in one-on-one interviews.  Often in one-on-one 
interviews, the questions, reactions, and follow-up of the interviewer can lead student 
responses in such a way that detracts from natural student thinking.  The student might 
assume that a follow-up question means that the interviewer values a particular way of 
doing the problem, which can correspondingly alter the student’s course of action.  
Similarly, if the interviewer asks the student to explain a different way of doing the 
problem, the student might believe that his or her answer is wrong and will try to change 
it.  On the other hand, if students are working in pairs, they must discuss their solutions 
with each other instead of the interviewer.  The advantage is that if the first student 
disagrees with the second student, the second student cannot automatically assume that 
that means they are incorrect (as might be the case if the interviewer disagreed).  Thus the 

Observable outcome: 
Student responses 

Activation of 
symbolic form 

Available symbolic forms 
 

(blend of 
template + conceptual 

schema) 
 Interview context 

math or 
physics 
problem 

Framing by students: 
 
math/physics context 
+ interview context 
 
what is being asked? 
 
what is math or 
physics knowledge? 
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student may still persist in their way of thinking.  If they do change their mind, it is more 
likely an indication that their thinking has changed instead of an attempt to read into the 
interviewer’s reactions. 
 Evidence of students’ symbolic forms primarily came from what students said and 
what they wrote.  It was important to encourage student talking as much as possible 
during the interviews.  Students were encouraged to discuss their ideas with each other 
and to come to a consensus regarding the solution to the problem.  In addition, probing 
questions were often used to follow up student explanations.  If a student did not provide 
much explanation along an important line of thinking, I asked follow-up questions 
targeted at exploring their understanding more fully in that area.  This helped ensure that 
I could make reasonable assertions about the cognitive resources they were drawing on 
during the interview.  If a student had not discussed a certain type of understanding that a 
particular interview item was intended to cover, I explicitly brought it up at the end of 
their discussions in an effort to see what the student would express about it.  In the next 
section I describe my interview items and planned questions. 
 Despite the utility of interviews (Bogdan & Biklen, 2006), I do note that 
interviews in general have certain limitations.  First, analyzing student responses, spoken 
or written, only approximates the intended goal of capturing “knowledge” as something 
that can be observed and documented.  The verbal and written data can only serve as a 
rough approximation to student thinking.  Second, an interview occurs over a limited 
amount of time, and therefore only captures what the participant thinks about during that 
time frame.  Thus I cannot claim that the results account for all of the students’ available 
cognitive resources, nor that the results would necessarily be reproducible across several 
interviews.  This together with other issues, such as my own interpretation of their 
answers, will naturally bring up questions about the validity of the results (Wolcott, 
1990).  However, by being explicit about the intent of the interview to the students 
(Maxwell, 1996), by allowing the interviewees to explain freely their ideas, and by being 
as open and clear as I can be about my own interpretations in my results (Wolcott, 1990), 
this study can posit the existence of legitimate symbolic forms.  However, this study 
cannot make any claims to the frequency of the symbolic forms within the overall student 
population. 
 
Potential Symbolic Forms and Interview Items 
 
 In preparing to write items for the interview sessions, I brainstormed potential 
symbolic forms relating to integrals that might be present in student thinking.  I consulted 
with faculty advisors as well as peer workgroups to obtain a decent collection of good 
“candidate symbolic forms” that students may actually possess and that would be 
documentable from the data I would collect.  Some of these forms also came from 
preliminary pilot interviews done with engineering students.  Keeping these possible 
forms in mind, I created interview items in order to maximize the possibility of capturing 
them (or other potential resources) during the interview sessions.  I discuss the interview 
items in the next section.  I now describe the symbolic templates relating to these 
“potential symbolic forms” that I used in the creation of the interview items.  Note that 
these “potential symbolic forms” do not represent the results from the study, but are 
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merely reported to indicate the method I used in creating the interview items.  The 
symbolic templates associated with these potential forms are: 
 

1.  [][]d  

2.  []d  

3. 
[]

[]
 

4. []  

5.   

6. []  
 
 Let me make some comments regarding these templates.  First, note that what 
counts as the “template” depends on what is seen as the “symbolic placeholders.”  In 
Sherin’s work, this is analogous to a “+” or a “=” which count as symbolic placeholders 
separating two terms in a template.  The first of these templates (1) looks solely at the 
interpretation of the symbols in the place of the integrand and differential.  According to 
standard integral notation, these two symbols are separated by a d.  This symbol template 
could then be further meshed with an integral sign with limits or one of the other 
templates to produce a larger, more complex symbolic template.  The second template (2) 
looks at those integrals with “no” integrand, that is with an integrand equal to 1.  Here 
there are no symbols in between the integral sign and the d.  This template could also be 
meshed with an integral sign with limits or other symbol templates to produce a more 
complex template. The next symbol template (3) takes into account the meaning given to 
the limits of integration, as placed on the integral sign.  The fourth template (4) is related, 
but different in that some limits of integration are represented generically with a symbol 
for the domain, such as R or D.  These symbols could potentially be interpreted 
differently from the limits as presented in the third template.  By contrast, the fifth 
template (5) looks at the meaning of an integral symbol without limits of integration.  
This relates to the difference between “definite” and “indefinite” integrals.  Finally, the 
sixth template (6) looks at the meaning given to a “multiplier” on the front of the integral 
symbol.  It is possible that this template might produce some forms that overlap with 
Sherin’s work, which includes forms relating to multiplication.  Some of these symbol 
templates listed above could be meshed together to give a more complex symbol 

template, such as “ [][][]
[]

[]
d .”   

 These templates may provide the grounds for compiling some of the symbolic 
forms for the integral.  If these templates are stably blended with a conceptual schema 
then a symbolic form could be said to exist in the student’s cognition.  The interview 
items were created with these templates in mind to see what meanings students would 
give to these symbol structures. 
 
Looking for Symbolic Forms: Grounded Theory 
 
 In each interview item, the students had the chance to work with symbol 
templates for the integral.  They were asked to think about various integrals in different 
contexts, at times simply calculating an integral, or at other times creating an integral that 
would match a particular scenario.  In the data collected from each item I looked for any 
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of the following clues, or others similar to these, that might serve as places in the data 
that could provide evidence for a symbolic form a student had activated. 
 

1) Students point to written symbols 
2) Students verbally mention symbols 
3) Students use words such as “the integral…” or “this represents…” 
4) Students make visual representations of the integral 
5) Students say phrases such as “I know that…” or “I see this as…” 
 

These phrases are obviously not an exhaustive list of clues for places in the data where I 
might discover evidence for a symbolic form.  However, they served as a useful sieve at 
times for flagging places to investigate more deeply.   
 My analysis could be said to follow a “grounded theory” approach (Glaser & 
Strauss, 1967).  In looking for symbolic forms, I let the data provide the basis for 
conjecturing about the existence of symbolic forms.  By continuing to look for 
confirming or disconfirming evidence, I was able to refine the conjectures I had for 
symbolic forms until they took definite shape and were able to withstand continued 
scrutiny.  These forms were shown to faculty and fellow students who challenged and 
debated their structure.  My first step in coding the data consisted of going through each 
interview, creating an outline of what was said by the students.  This outline contained 
the main ideas of each student explanation as well as brief descriptions of any written 
work done while the student was talking.  Whenever I saw a place in the data where one 
of the aforementioned (or other) “clues” were present, I made a note in the outline to 
come back and investigate those pieces more carefully.  Upon returning to these places in 
the data, I made a full transcription of the entire episode, along with insertions of the 
students’ corresponding written work in the transcription.  By having the full 
transcription and written work together in one body, I was able to carefully consider the 
meaning the students were giving to the symbols in the template. 
 If it appeared that there was evidence of a symbolic form, I wrote out a conjecture 
of what the overall symbolic form consisted of and the conceptual schema applied to the 
symbols.  I kept track of all of these “candidate symbolic forms” in a list.  As I continued 
through the data I would look for confirming or disconfirming evidence of these 
symbolic forms in other places of the same interview, or in other interviews, or with other 
students.  By doing so, I was able to reject inaccurate conjectures and refine misjudged 
notions until I had a reasonable argument for a symbolic form.  As I continued to look 
through the data, I would use other episodes as verification of the proposed symbolic 
form. 
 
3.4 Interview Items and Analysis  
 
 Previously, I listed several potential symbolic templates that might serve as the 
basis for a symbolic form.  Based on the insight of this preliminary exercise, I created 
interview items that would likely allow me to investigate symbolic forms that students 
held around these particular templates.  I will now explain the interview items I used in 
order to find evidence of symbolic forms in the students’ work.  As previously explained, 
most of the students participated in two interview sessions.  The first session consisted of 
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a mathematics-framed interview setting.  Here the items were more similar to problems 
seen in mathematics courses.  The second session consisted of a physics-framed 
interview setting.  In this interview the items were more similar to what is seen in physics 
courses.  Each interview session lasted for about 45 to 70 minutes.  For each item, the 
students were given an initial problem to work on.  After they had completely solved it 
and had finished all discussion between themselves, I prompted them with several 
follow-up questions.  The follow-up questions were often targeted at making sure the 
students talked about each aspect of the symbol template.  For instance, I often asked the 
students something like: “Does that ‘dx’ have any meaning?”  Then I prompted them to 
describe what its meaning was. 
 The mathematics-framed items gave insight into the symbolic forms students had 
and drew upon in mathematics contexts.  The physics-framed items provided data for the 
symbolic forms students drew on in physics contexts and provided a contrast for the 
similarity or discrepancy in the symbolic forms that students activated in each situation.  I 
limited myself solely to interview items based on integrals in order to maximize the time 
the students spent discussing the integral symbol templates.  The mathematics-day 
interview items and physics-day interview items were as follows: 
 
Interview Items for the Mathematics-Day Interview 
 
ITEM Math1 (presented to all student pairs, excluding Ethan) 
 
Two wires are attached to two telephone poles (see picture).  Suppose we wanted to know 
the area between the two wires.  How could you figure that out? 
 
 
 
 
 
 
 
ITEM Math2 (presented to all student pairs, excluding Ethan) 
 
2

2
3

1

2 x dx
x

  Compute and then discuss this integral. 

 
 
 
ITEM Math3 (presented to all student pairs, excluding Ethan) 
 
I want you to look at each of the following integrals and talk about what they mean.  Talk 
about each one individually. 

sin( )x     
0

2

xe dx     
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ITEM Math4 (presented to all student pairs, excluding Ethan) 
 
I want you to look at each of the following integrals and talk about what they mean.  Talk 
about each one individually. 

 dx        dxt  

 
 
ITEM Math5 (presented to all student pairs, excluding Ethan) 
 
Suppose we had a function f(x) with a domain D.  What does this integral mean? 

2 ( )
D

f x dx   

 
 

ITEM Math 6 (presented only to David and Devon to produce more data) 
 

This picture shows the outline of a violin body.  If you wanted to know the area of 
this shape, how could you figure that out? 

 
 
 
 
 
Interview Items for the Physics-Day Interview 
 
ITEM Physics1 (presented to all student pairs) 

 
This shows a box with varying density. (dark = more dense, light = less dense)   
Suppose you wanted to know the box’s mass. How could you figure that out? 
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ITEM Physics2 (presented to all student pairs) 
 
The durability of a car motor is being tested.  The engineers run the motor at varying 
levels of “revolutions per minute” over a 10 hour period.  Denote “revolutions per 
minute” by R. 

What is the meaning of the integral 
600

0
R dt ?   

 
 
 
ITEM Physics3 (presented to all student pairs) 
 
A 2-dimensional surface (S) experiences a non-uniform pressure (P) and we want to 
know the total force exerted.  We can use the surface’s area (A) to compute this through 
the integral:   

F = 
S

P dA . 

Why does this integral calculate the total force exerted? 
 
 
 

ITEM Physics4 (presented to all student pairs, excluding Ethan) 
 

We know from kinematics that acceleration and velocity are related by ( )( ) d v ta t
dt

 .  We 

can rearrange this equation and integrate to get the equation  
 

a dt dv   
 

What does this equation mean?  Why are these two terms equal to each other? 
 
 
 
ITEM Physics5 (presented to all student pairs, excluding Adam/Alice and Ethan) 
 
Fy is used to denote the amount of a force in the y-direction.  ΔU is used to denote the 
change in potential energy.  These two concepts are related through this equation: 

f

i

y

y
y

U F dy    . 

Explain this equation.  What does each part of the equation/integral mean? 
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ITEM Physics6 (presented to all student pairs, excluding Bill/Becky and Ethan) 
 
 
 
This represents a metal bar with varying mass along its length 
(lighter = less dense, less mass / darker = more dense, more mass) 
 

How could you figure out the center of mass for the bar along its length? 
 
 
 I now discuss the interview items and the goal I had in presenting each item to the 
students during the interviews.  The mathematics-day interview started off with an open-
ended question regarding the area between two hanging wires.  The problem is a 
mathematical one despite the use of the “real-world” objects, because the physical 
properties of the wires have no bearing on the problem.  The item is devoid of any 
numbers, functions, or other clues as to how to proceed (other than the direction to find 
the area).  In this way, the students were free to use any approach.  If they came to use an 
integral, the construction of that integral was purely their own.  The symbols that they 
wrote in the integral could all be “clues” about their thinking, which would lead to a rich 
place to analyze the conceptual schema they had meshed with those symbols.  By 
opening the interview in such a way, I could expect to find evidence of the way they had 
compiled the meaning of an integral.  Fortunately, in this set of interviews, every student 
pair naturally came to the idea of an integral and did not require any prompting about 
using an integral, which would have had the effect of influencing their framing of the 
problem. 
 Since the first interview item is open ended, it could be possible for the students 
to employ various symbolic forms with varying symbol templates.  Thus in the next few 
items, I attempted to both involve other symbol templates as well as use non-area based 

problems.  The next item uses the template “
[]

[]
[] []d ” allowing for opportunities for the 

students to talk about the integrand, the differential and the limits.  (Note: this item 

additionally has the template “
[]

[]
([1] [2]) []d ” which ended up being significant.)  The 

third item takes a look at this same symbol template where the limits are “reversed.”  
This created a place for discussing the limits more carefully.  Also, this item uses an 
integral that lacks a dx.  This omission was made on purpose in order to provide a place 
for potential discussion about the differential.  By paying close attention to what 
interpretations the students gave to this expression, I could better analyze the meaning 
they gave to the differential.  The fourth item then moves on to discuss the template with 
“no” integrand, that is the template “ []d .”  This particular item does not have limits, 
which also allowed students to discuss the relevance of the limits of integration.  In this 
same item is another integral that does “have” an integrand, but the variable in the 
integrand is different than the variable in the differential.  This provided an opportunity 
for the students to discuss the relationship between the integrand and the differential.  
Finally, the fifth item presents a more generic integral that both has a multiplier in the 
front as well as a change in the way the limits are presented.  Here there is a domain 
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affixed to the integral symbol, in contrast to an upper and lower bound.  By carefully 
considering how the students attended to the -2 in front and the D on the integral, I was 
able to learn about the understanding they attached to symbols in these locations.  The 
last mathematics-day interview item was used as a back-up in case I felt like I needed 
more data from a particular pair of students.  This was only the case with David and 
Devon who had been describing the integral often as a “mapping” to some “original 
function.”  I wanted to see if this thinking would persist even in the context of another 
“area”-framed item (which it did not). 
 The physics-day interview also opened up with an open-ended question about 
finding the mass of a box.  Again, no information was given about the numbers involved, 
the functions involved, or anything else other than the fact that the density was varying.  
Like the opening mathematics item, this allowed me to see the students create their own 
integral.  This afforded the opportunity to see more clearly how the students put the 
pieces of the integral together based on the idea of a box with varying density.  By 
watching them do this, I was able to see the meaning they gave to the various symbols 
associated with the integral, such as the integrand, differential, and limits.  It also 
provided insight into “the way the integral works.” 
 Following the same train of thought as the mathematics-day items, I wanted to 
make sure that after giving the students an open-ended question related to integrals, I 
would be able to see the students work with a variety of symbol templates.  Thus the 
subsequent items were designed to provide the students with problems using an integral 
with different templates.  The second item looks at an integral with “regular” upper and 
lower limits, while the third item attaches a “domain” onto the integral.  This provides a 

way of looking at the templates “
[]

[] ” and “
[] ” and seeing possible comparisons or 

contrasts between the meaning made out of these symbol structures.  The fourth item 
looks at an integral equation involving acceleration and velocity.  I want to note that in 
this equation, the integrals should (to be physically correct) have limits on them.  They 
are only truly equal if the two integrations are happening over the same time interval.  
However, I wanted to provide the students items using integrals without limits on them in 
order to see how the students interpreted an integral without them.  I decided that this 
“mistake” could potentially provide a place for discussion with the students.  It would 
allow me to see them talk about the role of the limits of integration.  It would also allow 
for a discussion on the difference between definite and indefinite integrals.  In item five, I 
made an attempt to find an integral with a multiplier on the front of the integral.  This 
equation shows a negative on the outside of the integral, which could provide a place to 
talk about the meaning of the multiplier.  Lastly, as with the mathematics-day interview, I 
had an additional item that I could use for more data.  This question is also open ended 
and directed the students to determine a way to calculate the center of mass of a bar.  It 
turned out that I was able to use this item with most of the pairs of students.  
Unfortunately, Bill and Becky were experiencing a certain degree of tension between 
each other and began to dwindle in their efforts toward the end of the interview.  Thus I 
decided it would not be useful to ask them to continue through another task. 
 The symbol templates that I listed in the previous section are certainly not all of 
the symbol templates possible for the integral.  They represent, instead, the groundwork 
for creating interview items.  During the analysis I also looked for other possible 
symbolic forms that made use of other symbol templates that were not included in my 
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list.  Additionally, it is possible that other templates (and associated forms) exist beyond 
what I captured in this dissertation project.  However, based on this groundwork, I wrote 
interview items to provide opportunities for capturing forms relating to these templates.  
In order to see the relationship between the symbol templates and the interview items, I 
visually depict how these interview items overlap with the posited symbolic templates.  
The table below shows which symbol templates are covered by each interview item.  An 
“x” in the table means that that interview item has a task that would likely provide data to 
support the documentation of symbolic forms with that particular symbolic template. 
 

Interview Items 
 m1 m2 m3 m4 m5 m6 p1 p2 p3 p4 p5 p6 
1 x x x x x x x x x x x x 
2    x      x   
3 x x x   x x x   x x 
4 x    x x x  x   x 
5 x  x x  x x   x  x 

Sy
m

bo
l T

em
pl

at
es

 

6 x    x x x    x x 
Table 3.4.1: Intersection of interview items with symbolic templates (m = math, p = 
physics) 
 
 Through this methodology, I was able to create interview items that enabled me to 
detect and document student cognitive resources in the form of symbolic forms.  By 
conceiving of candidate symbolic forms before the interview process, I could be sure that 
my items would cover the breadth of these potential sources for data.  By working with a 
grounded theory lens as I sifted through and coded my data, I was guided by the student 
responses in detailing the existence of symbolic forms in the students’ cognition.  Due to 
the “typical” nature of the students I interviewed, it is possible to claim that some of the 
symbolic forms presented in the next chapter might exist in any common university 
classroom. 
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CHAPTER 4: RESULTS 
 
 In this chapter I discuss the results from the interviews with the students.  As 
discussed in chapter three, I interviewed a total of nine students, eight of which were 
interviewed in pairs, with one additional student interviewed alone.  I discuss the 
symbolic forms that can be postulated as evidenced by the students’ work.  I use the 
descriptions that the students provided of their thinking in order to determine what 
meaning they gave to certain symbolic elements of the integral symbol template.  While I 
acknowledge the limitations that verbal and written descriptions have on approximating 
the actual cognitive resources that students may hold, I provide support for the symbolic 
forms I ascribe to their cognition. 
 Throughout the interviews, there appeared four “major” symbolic forms that 

encompassed the entire integral symbol template, “
[]

[]
[] []d .”  By “major” I mean that 

they have the complete symbol template with different conceptual schemas.  The 
meaning given to each of the parts of the symbol template were self-consistent within 
each of these four major symbolic forms.  That is, the meaning ascribed to one part of the 
template corresponded tightly with the meaning ascribed to the other parts of the symbol 
template.  Each of these symbolic forms can be supported through the work done by 
individual students, as well as laterally across the various students I interviewed.  After 
discussing each of these symbolic forms independently, I then compare and contrast the 
four symbolic forms with each other, taking note of the differences in conceptual 

schemas given to the “[]d[]” symbols, the “  ” symbol, and the limits, “ 
[]

[]
.” 

 Following the exhaustive description of these four major symbolic forms, I then 
turn my attention to other symbolic forms pertaining to the integral.  These forms related 
to specific parts of the integral template, such as the differential, a multiplier preceding 
the integral sign, or the relationship between certain symbols and graphical 
representations.  Lastly, I look briefly at some other interesting cognitive resources that 
students exhibited, but that do not necessarily constitute a “symbolic form.” 
 Following the description of these various symbolic forms and cognitive 
resources, in chapter five I launch into an analysis of the symbolic forms I discovered.  I 
detail which symbolic forms were activated in the mathematics-day interviews and the 
physics-day interviews, and which interview items in particular elicited certain symbolic 
forms.  I compare and contrast the symbolic forms activated in each of these two 
interviews and explore the conclusions that might be drawn from the differences in the 
way students drew on their cognitive resources in a mathematics setting versus a physics 
setting. 
 
4.1 The “Area” Symbolic Form 
 
 The first symbolic form of the integral that I explore equates the integral to a 
fixed region in the x-y plane, whose area is the value of the integral.  The students first 
ascribe meaning to the “[]d[]” part of the symbol template, proceeding to then interpret 

the “  ” symbol itself as well as the limits “ 
[]

[]
” of the integral.  I use an example from 

the mathematics-day interview with Clay and Chris.  In the interview, I wrote the integral 
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“  xdxf
D

)(2 ” on the board and asked them to describe what the integral meant.  Chris 

immediately began working on the problem. 
 

Chris:  OK, so essentially I always like graphs.  So if you want to draw a graph 
[draws axes], um, we have f of x [draws squiggly graph above x-axis.  See 
Figure 4.1.1a]. 

 
 
 
 
 
 
 
 
 
 We see that Chris’ first action was to attend to the function f(x) and represent it 
graphically in the plane.  This serves as a important step in creating a fixed region in the 
x-y plane that relates to the integral.  Chris continued: 
 

Chris:  And then since we’re saying over the domain D, domain is usually when 
we’re dealing with x, y axes.  We assume it’s with respect to the x axis and 
also the integral deals with x [points to dx] and we have a function of x, so we 
can assume D is a domain from some point x1 to some point x2 [labels x1 and 
x2 on the x-axis.  See Figure 4.1.1b]. 

 
 
 
 
 
 
 
 
 
 Chris explained the fact that he was dealing with an x-y plane and that “it” was 
with respect to the x-axis.  Part of his reasoning for assuming an x-axis was the fact that 
“the integral deals with x.”  Chris said this as he pointed to the dx in the integral.  This 
signifies that part of the role of the dx is to determine one of the sides of the region.  The 
dx helped Chris make the decision about the axis that would serve as the “bottom side” of 
the fixed region.  Next, Chris marked x1 and x2 on the x-axis in order to graphically 
represent the boundaries of the integration. 
 

Chris:  So we have… [writes D:(x1,x2)].  And then so that would be equal to… 

[writes  xdxf
x

x
)(2

2

1

.  Draws dotted vertical lines from x1 and x2].  And then 

Figure 4.1.1a 
          
 
 
 
             

Figure 4.1.1b 
         y 
 
 
 
           x 
     x1        x2 
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we’d take the integral from x1 to x2 [said as he shades the area.  See Figure 
4.1.1c]. 

 
 
 

 
 
 
 
 
 
 
 
 Chris used the x1 and x2 to create the left and right sides of a fixed object in the x-
y plane.  He used vertical dashed lines to mark off this region and shaded the region in to 
clearly show the object that was represented by the integration.  Thus the limits of 
integration are not merely numbers, but actual boundaries of a region in the plane.  They 
become the “left and right sides” of the fixed region itself.  Then while he shaded in the 
region he said, “And then we’d take the integral from x1 to x2.”  This clearly connects the 
actual area to the act of integration. 
 This episode shows Chris decomposing the integral and describing what each part 
means, activating what I call the “area” symbolic form.  First, he chose to display the 
function f(x) as a randomly drawn graph in the x-y plane.  Then the fact that “the integral 
deals with x [a reference to the dx]” meant to Chris that the x-axis was the bottom of the 
region and that the upper and lower limits for this variable x would provide the left and 
right sides for a spatial region in the plane.  He marked off two vertical lines underneath 
the graph of f(x) and shaded in everything in between.  Speaking the words “And then 
we’d take the integral from x1 to x2” while shading the region in shows that the 
integration itself does not take place until the fixed area has been determined.  The key 
feature of this symbolic form is that the “area underneath the curve” (as we often say in 
mathematics) is taken to be one static whole.  It is not subdivided into parts nor measured 
using successively more accurate approximations, as in a Riemann sum.  The bounded 
region is seen as a fixed body whose fixed area is taken, as a whole, to be the value of the 
integral.   
 The area symbolic form essentially takes the integral and construes it as a region, 
usually in the x-y plane, whose area will be computed.  This symbolic form may not be 
any great surprise to educators, since an area model is used extensively in mathematics 
courses, though there are interesting components to it.  The limits of integration actually 
become the physical sides of the shape, as opposed to representing simple numbers.  This 
imbues the limits with additional meaning, more than just the numbers that are plugged 
into the anti-derivative.  This meaning contrasts with the meaning given to the limits in 
the other symbolic forms.  The horizontal axis creates the bottom of the shape, since the 
differential is a dx.  The integral symbol is then taken to mean the area of this fixed 
shape.  This symbolic form is depicted visually in Figure 4.1.2. 
 
 

Figure 4.1.1c 
         y 
 
 
 
           x 
     x1        x2 
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Figure 4.1.2: A visual representation of the area symbolic form 
 
 This symbolic form guided much of Clay’s and Chris’ work during other items in 
the mathematics-day interview.  In one interview question, Clay and Chris were shown 
the following item:   
 

Two wires are attached to two telephone poles (see picture).  Suppose we wanted 
to know the area between the two wires.  How could you figure that out? 

 
 
 
 
 
They set up an integral by labeling one curve f1 and the other curve f2 and writing down 

“  


xdff
x

x
21 ” (the fact that the limits, -x and x are technically incorrect do not play an 

important role in this part of the discussion).  Then Clay explained in more detail how he 
thought about figuring out the problem. 
 

Clay: Uh, well you could have probably solved it like… so using integrals, like 
finding the area of the whole thing, and minus it from the bottom [redraws 
figure and shades the two regions.  See Figure 4.1.3a].  …That would be 
another approach. 

 
 
 
 
 
 
 
 
 

Figure 4.1.3a 
 
 
 
 
 
0 
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 For a moment, Chris did not understand exactly what Clay was doing.  I prompted 
them to discuss it with each other until they came to an agreement.  They began dividing 
up the region into various segments and adding and subtracting them from each other 
until they had the desired leftover area. 
 

Chris:  How are you adding them? 
… 
Chris:  So, we’re finding this whole rectangle’s area, and then subtract it by this 

area? 
Clay:  It’s probably more complicated actually. 
Interviewer:  But this is good.  Go ahead and work through that. 
Clay:  Ok, I put 0 at the bottom of it.  And then… [writes f1 and f2 on the two 

curves].  On this top part I could put y1, so we have this line y1 [adds a line 
across the top and labels it y1.  See Figure 4.1.3b].   

 
 
 
 
 
 
 
 
Clay:  And we subtract out the function f1 [underneath the figure writes y1 – f1].  

And then you get this value in between [points to small area in between y1 and 
f1].  Then you subtract that from the lower value of…  

Chris:  So basically you’re finding this area [points to area between y1 and f1], this 
area [points to area below f2], and this whole area [traces finger around the 
entire drawing], and then subtracting these from this. 

Clay:  Yeah.  Basically.  So we’re going to have this value so far [points to area 
between y1 and f1].  And then we need to find this value [points to area 
underneath f2]. 

Chris:  …So, we could write this integral from the top area. 
Clay:  Wait, this is the top area, right [points to y1 – f1]? 
Chris:  Yeah. 
Clay:  This part [points to area underneath f2].  And you have to subtract that from 

the total area.  Like this whole thing [motions over whole region]…  [writes  
 y1 – (y1 – f1)]. And we need to subtract this value from that.   
Chris:  So minus…f2 [writes y1 – (y1 – f1) – (f2)] 
… 
Clay:  So these cancel out and this just becomes f1 minus f2 [writes f1 – f2]. 
Chris:  So [laughs] that’s just where we were. 
 

 In this episode Clay and Chris again demonstrated activation of an area symbolic 
form.  The fact that their sole purpose was to reduce the overall picture to the bounded 
region in between the f1 and f2 curves shows that they understood the integral template 

Figure 4.1.3b 
  y1 
  f1 
 
  f2  
   0 
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“  


xdff
x

x
21 ” to be the area of the fixed region in between the f1 and f2 curves in the  

x-y plane.  The symbol dx, in this particular discussion, served no purpose beyond 
determining the “bottom side” of the regions.  The areas were not partitioned, but rather 

were thought of as static wholes.  Consider again the symbol template “ 
[]

[]
[][]d .”  Their 

entire discussion revolved around what should be in the “integrand box” in the template, 
such that the extraneous regions would be disregarded.  This interpretation of the integral 
as an “area” drove their whole method for determining how to proceed.  This provides 
evidence that they had activated an area symbolic form. 
 
4.2 The “Adding Up Pieces” Symbolic Form 
 
 The next symbolic form for the integral I discuss deals with thinking similar to 
that expressed in the Riemann sum.  However, there may be minor differences between 
the way this form is compiled and the actual process that the Riemann sum follows.  The 
integral is viewed as slicing an object or a region into tiny pieces that are added up to 
give the value of the integral.  In the mathematics-day interview with Devon and David, I 
showed them the interview item with the two telephone wires (see the previous section), 
where they were asked to come up with a way to obtain the area in between them.  After 
a minute’s work they came up with the integral “  

b

a
dxxfxf )()( 21 ,” based on a figure 

they had drawn (see Figure 4.2.1a). 
 
 
 
 
 
 
 
 
 
 We can see that they also began with a concept of a fixed region in the plane, 
evidencing the activation of an area form, which this interview item admittedly lends 
itself to.  However, when I asked them to explain how they came up with their integral, 
they began drawing on other meanings for the integral symbols.  Devon explained how 
he understood the integral that they had come up with. 
 

Devon: You can’t just put area, you have to somehow divide it into, let’s say the 
length, let’s say you slice it this way [draws several vertical lines from top 
curve to bottom curve], and then you add up all the individual lengths [puts 
hand on left side of shaded region and sweeps hand across to the right side].  
And then that means we have to find the difference between these two curves, 
that’s why we label it [points to f1 and f2].  And by finding the curve and then 
integrating over them [again sweeps hand from left to right], that’s how we 
find the area.  

Figure 4.2.1a 
    f1(x) 
 
    f2(x) 
 
 
 a   b 
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 Devon started his explanation by stating that in order to understand their integral, 
he had to “divide” the region of interest.  Then these “individual lengths” had to be 
systematically added up, which he demonstrated by sweeping his hand from the left of 
the shaded region to the right.  We see a hint of what it means to him to “integrate” when 
he again swept his hand from left to right while saying “and then integrating over them.”  
There appears to be some connection for Devon between “integrating” and going from 
the left to the right.  I prompted him to continue describing what he meant. 
 

Devon: I would imagine it as, you slice it [draws a thin rectangle.  See Figure 
4.2.1b], like very small pieces and each of them is a dx [draws an arrow from 
the bottom and writes dx].   

 
 
 
 
 
 
 
 
 
Devon: And this part [puts fingers along the height of the thin rectangle] is the, is 

this part right here, this term right here [points to f1 – f2 inside the integral].   
Interview: Which part is?  Just to make sure. 
Devon: This part right here, the length here [underlines f1 – f2 inside the integral 

and draws an arrow over the height of the rectangle].  And then every little bit 
[uses finger and thumb to mark a small width], I call it a dx. 

 
 As Devon continued his explanation, we see that the first part of his thinking 
consisted of making a rectangle that served as a reference for what was happening in the 
integration.  Furthermore, he described where the rectangle came from.  The height of the 
rectangle came directly from the integrand, namely “f1 – f2.”  The width of the rectangle 
was referenced by the differential dx.  I then asked Devon to say what the a and the b 
meant. 
 

Devon: When we label this a and b, it’s kind of like a natural thing to us.  Because 
we did it like that in class.  But if you really think why we put it there, like I 
said, I slice it into little pieces.  And all the pieces we’re looking at is from 
here to here [motions with hand from left of the shaded region to the right], 
and it has to do with the values of it [says this as he moves his hand from left 
to right again].  It’s more like an action thing I think. 

 
 Devon had previously described that the integral takes all of the individual pieces, 
like the rectangle he created, and adds them up.  Now we can see how he saw this 
addition as taking place.  The limits of the integration, a and b, served as a “starting” and 
“ending” place for the addition.  The integration happens “from here to here.”  The 

Figure 4.2.1b 
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    f2(x) 
 
 
 a      dx  b 
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integration is “more like an action.”  Under this conceptual schema, the integrand and 
differential divide the object or region of interest into small pieces.  The integral itself 
then adds up all of these pieces and the limits of integration dictate where to start the 
addition and where to end the addition.  This constitutes the “adding up pieces” symbolic 
form.  This form is visually represented in Figure 4.2.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2.2: A visual representation of the adding up pieces symbolic form 
 
The Infinite Addition 
 
 In most instances where the students had activated the adding up pieces symbolic 
form, there was strong evidence that they viewed the rectangles as “infinitely thin” and 
the addition as happening over “infinitely many” rectangles.  When Chris and Clay were 
working on the problem of finding the area between the two wires, I asked them to 
explain why an integral gives the area.  Chris, who had drawn on the adding up pieces 
symbolic form had been describing rectangles that would add to give the value of the 
integral.  He then talked about how these rectangles would be added up. 
 

Chris: We want to find the area, so theoretically we could add up the value of a 
bunch of rectangles, and add them up. But we’re going to constantly have 
little gaps [draws approximation rectangles.  See Figure 4.2.3a].   

 
 
 
 
 
 
 
 
 
Chris: So we’re going to be missing this area [points to gaps in between curve and 

rectangles].  So we assume, by integrating we assume that dx is infinitesimally 
small. 

Figure 4.2.2 
[]

[]
[][]d     

[]

[]
[][]d  

        the limits say where to 
the integrand is        start and stop adding 
the length of the 
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  the differential is the width     
  of the rectangle  an addition occurs to the overall amount 

Figure 4.2.3a 
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 Note that when integrating “we assume that dx is infinitesimally small.”  Thus 
integration does not occur with a finite number of rectangles.  Chris further clarified this 
thinking during the next interview.  He and Clay had been given the following problem: 
 

The durability of a car motor is being tested.  The engineers run the motor at varying 
levels of “revolutions per minute” over a 10 hour period.  Denote “revolutions per 
minute” by R. 

What is the meaning of the integral 
600

0
R dt ?   

 
They correctly determined that the integral was calculating the total number of 
revolutions that occurred over the ten hour period.  When prompted to discuss how they 
came up with this answer, Clay drew a squiggly graph to represent R and drew in a 
rectangle underneath the graph (see Figure 4.2.3b). 
 
 
 
 
 
 
 
 
 
Clay identified the height of the rectangle as “the revolutions per minute at that time,” 
and the width of the rectangle as a small unit of time.  Chris then interjected his thoughts: 
 

Chris: Essentially the length times width of the infinitesimally small rectangle, 
that we’re integrating over, is going to have units revs per minutes times 
minutes, equals revs. 

 
 Once again, Chris expressed the idea that these rectangles were infinitely small 
during the integration process.  This type of language was common and consistent across 
the students.  During instances of using the adding up pieces symbolic form, the students 
described the rectangles as “infinitesimal,” “infinitesimally small,” “infinite number,” 
“infinite amount,” “infinitesimal rectangles,” and “infinitely many.”  It seems clear that 
for many students, the adding up pieces symbolic form also has embedded in it an 
inherent notion that the rectangles have already achieved the status of being infinitely 
thin and that the addition process requires an infinite summation over the infinitely many 
pieces.   
 The adding up pieces symbolic form compiled in this manner diverges in an 
important way from the traditional Riemann sum process.  The Riemann sum takes an 
arbitrary finite partition, which yields a finite amount of rectangles whose areas are added 
together.  The partition is then refined and the areas of the finitely many rectangles are 
again added.  By systematically doing this, one constructs a sequence of numerical 
values.  By a theoretical process of refining the partition infinitely many times, the 

Figure 4.2.3b 
 
 
 
 
 
 dt 
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numerical sequence may converge to a single number.  If it converges in a particular, 
well-defined way, this number is the value of the integral.  Many theorems help establish 
the value of the integral as being independent from the choice of partitions.  By contrast, 
the students in the interviews commonly understood the integral to be a process of taking 
infinitely small pieces and adding up the infinitely many pieces to capture the total.  That 
is, the limiting process seems to occur before the addition takes place. 
 This distinction is more than just linguistic.  There is evidence that some students 
separate the finite “Riemann sum” process from the final, infinite “integral” process.  
Adam and Alice had been working on the problem regarding the area between two wires 
and they had drawn in thin rectangles between the two wires.  I asked them to speak more 
about the thin rectangles they had drawn on their graph.  Adam offered the following 
explanation. 
 

Adam: So, this goes back to a Riemann sum, where you take small portions  
 of each graph [draws a “thin rectangle” with his finger].  Like what I have 

here which would be dx.  In Riemann sum, you define what the width is, or 
how many sections per… graph you have.  With the dx, when you’re 
integrating, you’re taking an infinite number of lengths of portions, so the dx 
gets really really small, making the area of each sliver more accurate to what 
it actually is.   

 
 Adam claimed that in a Riemann sum the graph is partitioned according to a 
defined width.  However, he noted that “when you’re integrating” the process changes a 
little bit, so that now there is “an infinite number of lengths of portions.”  This is how the 
integral is “more accurate” than the Riemann sum.  These two ideas certainly appear to 
be connected in his thinking.  That is, the integration is like having a Riemann sum when 
“the dx gets really really small.”  But again, this is conceptually distinct from the actual 
Riemann sum process.  The students show evidence of thinking of the integration as 
happening over “an infinite number of lengths.”  At another point, during the physics-day 
interview, Adam was again drawing rectangles into his figure to talk about the integral he 
and Alice had come up with.  When prompted to talk more about those rectangles he said, 
 

Adam: It’s kind of like you’re adding them all up.  Going back to Riemann sums, 
it represents the infinite amount… or sums for Riemann, so… If you had the 
infinite amount of portions for a Riemann sum, that would represent this, the 
integral. 

 
Hence, an integral is when one has “the infinite amount of portions for a Riemann sum.”  
That is, the integral is the “infinite” case of a Riemann sum.  Bill produced a similar 
explanation in his interview when he said, 
 

Bill: Well, I would say dx is just a… I think of an integral as just a way of 
expressing an infinite Riemann sum.  And, as dx goes to 0.  Well, as, as the 
length of each rectangle goes to 0, then it becomes a dx.  That’s how I think  
of it. 
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 Again, an integral is “an infinite Riemann sum.”  This way of compiling the 
adding up pieces symbolic form exhibits a qualitative difference from the Riemann sum 
process.  Here the integral itself could even be considered a “special case” of a Riemann 
sum, namely a Riemann sum with an “infinite amount of portions.” 
 
4.3 The “Function Mapping” Symbolic Form 
 
 The third main symbolic form I discuss here is somewhat different from the other 
two.  While the others draw heavily on visual representations of the integral, this form 
views the integral as more of a “pairing of objects,” which takes the integrand and 
matches it with an appropriately selected function.  Like the other forms, the students 
imbue the integrand, the differential, and the limits of integration each with their 
customized conceptual meaning.  Though this form resembles the “rote procedure” for 
calculating an integral, I argue that the students are not, in fact, simply producing rote 
calculations, but are giving conceptual meaning to the symbol template of the integral.  
This may be similar to the reification of “processes” into “objects” (Sfard, 1991).  In the 

mathematics-day interview Devon and David were given the integral “ dxx
x 

2

1

2
3

2 .”  I 

asked them to calculate it and then began asking them about the way they solved it.  In 

their first step they had broken the integral into two parts, “   2

1

22

1

32 dxxx .”  David 

recognized that they had left out the dx from the first of these two integrals and added it 
in.  I then asked them to explain why it needed a dx. 
 

Interviewer: Why does it need a dx?  
David: Well, it’s still an integration.  So, in an integration the dx is always 

essential, because it shows that this entire thing [waves hand over 2x-3 – x2 
inside the integral] is a derivative of x.   

 
 The first explanation we have from them revolves around the fact that dx signifies 
that the integrand is “a derivative of x.”  Hence it appears that the function may have 
“come” from somewhere else.  The conversation then moved to talk about what is meant 
by the fact that      (2x-3 – x2) and dx are placed next to each other in the integral symbol 
template. 
 

David: The fact that this entire thing is sitting right next to each other, and dx 
outside, means that basically this entire function [motions hand over 2x-3 – x2] 
is the derivative of an original function. 

 
 David had conceptualized the integrand “2x-3 – x2” as the “derivative of an 
original function.”  This means that there exists a function out there, or several functions 
potentially, that would map to this function via the derivative/integration process.  The 
function in the integral is connected with this other function (or functions) in that it came 
from this other function.  At this point, their explanations about dx are centered on the 
idea that it determines the variable that was used to take the derivative of this “original 
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function.”  In the next interview item, I wrote “  )sin( x ” and “ 
0

2
dxe x ” on the board and 

asked David and Devon to talk about them (note: the dx was left off of the first and the 
limits were written 2 to 0 on the second intentionally, as a means to generate 
conversation).  They wrote below the first integral “-cos(x) + c.”  Then Devon turned to 
me to explain what he was thinking. 
 

Devon:  From my memory it’s like finding the anti-derivative of, like, this 
function [points to sin(x)].   

 
 Here Devon stated that he was thinking of the object “sin(x)” as mapping to its 
antiderivative.  The actual meaning of the integration, then, is to map the integrand 
appropriately with another function, by “finding the anti-derivative of this function.”  
During the conversation, David added in a dx to the original expression, “  )sin( x ,” so I 
took the opportunity to ask him why he did so and what significance that dx had. 
 

David: Again, I guess it matters because if you don’t have the dx, then it’s just 
going to be like sine x [sin(x)]… but, is it the second derivative, or the first 
derivative or something like that? … So I think it’s just for the sake of 
organization just to have the dx in there, to signify that this is the derivative of 
the original function.   

 
 David clearly laid out his thinking that the idea behind an integral is to take a 
function and map it to some “original function” from whence the integrand function 
came.  The dx serves the exclusive purpose of indicating which variable was used to take 
“the derivative of the original function.”  It is the “link” between the two functions.  The 
purpose of the integral, then, is to appropriately select this “original function” that the 
integrand maps to.  In this case “-cos(x) + c” maps with “sin(x).”  David also explained 
the significance of the “+ c” in their solution. 
 

Interviewer: Why in this case is there a plus c? 
David: Because in the original equation, you could always have a constant.  You 

could always have a function added with a constant [waves finger over –
cos(x) + c].  But the thing is when you derive the entire function the constant 
just goes away.   

 
 Again, David talked about an “original equation” (David often used the word 
“equation” when he meant “function”) that could “always have a constant.”  In his 
explanations there clearly exists some other function that maps directly to the function 
inside the integral.  The conceptual understanding of the integrand, then, is that the 
integrand exists in some kind of correspondence to this other “original function” that it 
came from.  And that the meaning of the integral is to find the original function that 
matches with the function in the integral.   
 So the question still remains that if the integral is conceptualized as mapping an 
“original function” with the integrand and the dx serves as a referent for the variable of 
differentiation, what is the meaning of the limits of integration?  I asked David and 
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Devon why the integral of sin(x) ended up with a “+ c” when the previous integral they 
worked on did not have a “+ c.” 
 

Interviewer: So why do we have a plus c in this one, where in the last example we 
didn’t have a plus c anywhere? 

Devon: I think it’s plus c, we didn’t see, but it’s there, but we cancel it out.  We 

make this function [moves over to 
0

2
dxe x ], we have the antiderivative of this 

[writes ex+ c], but when you’re doing the [writes 2
0|ce x   (note: later he 

notices his mistake and changes it to 0
2| )], doing this, this c got cancelled out, 

so it’s not shown.   
… 
David: [Referring back to dxx )sin( ] And we need the constant in order to come 

up with a concrete function. 
… 
Devon: But this one [moves back to 

0

2
dxe x ], you are finding the difference 

between these two [points fingers to the 2 and 0].  So, regardless of the c, it 
would just be difference.  So that’s how I think of it, as difference.  So it 
doesn’t matter. 

 
 In their discussion, they revealed something about the meaning of the limits of 
integration when considering the integral as a map to another function.  Devon explained 
that he was “finding the difference” and pointed at the 2 and the 0.  Thus the limits of 
integration have to do with the “difference in values” of the original function.  Devon 
stated that that was how he thought of it, “as difference.”  I want to be clear that this is 
not merely a rote procedure, but an understanding that 2 and 0 signify a difference 
between two values.  There is nothing inherent in a 2 and a 0 that mean “difference,” so 
we can see that they were providing these numbers with a layer of meaning.  As a 
sidenote, we also see that David referenced the need for a constant in order to come up 
with a “concrete function” that corresponds with the function in the integral.  Thus we 
can see strong evidence of a “mapping” idea in his thinking. 
 We can put these pieces together to describe what I call a “function mapping” 
symbolic form.  The integrand is conceived of as having come from some “original 
function.”  The differential dictates the “link” between the original function and the 
integrand function.  It is “how you know” how to pair the function in the integral with the 
original function.  The meaning of the integral itself is to find this companion function 
that maps directly onto the function in the integral.  Though of course, there may be more 
than one function, hence the need for a “+ c” in some cases.  The limits then correspond 
with certain values of the “original function” and the difference between them is 
measured.  This symbolic form is visually described in Figure 4.3.1. 
 
 
 
 



 52 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3.1: A visual representation of the function mapping symbolic form 
 
 There needs to be one important note made about the function mapping symbolic 
form.  It could be easy to dismiss this form by saying that it does not meet the criteria of a 
symbolic form.  However, it is possible that this symbolic form could be seen as 
something like the reification of the anti-derivative process into a conceptual object 
(Sfard, 1991).  The procedure of reversing the derivative process has created the meaning 
of “finding” a companion function for the integrand.  Here we have meaning being given 

to the symbols in the template “ 
[]

[]
[][]d .”  I argue that the way in which the students are 

thinking about function mapping here does not fall under the category of “rote 
procedure,” though it is closely related to the regular procedure for calculating an 
integral.  The students were able to articulate conceptually about the meaning of the 
symbols in the template.  Devon and David consistently refer to an “original function” 
that pairs up with the integrand.  The means by which they are paired is mediated through 
the differential.  This thinking transcends mere rote procedure, as much as any of the 
other symbolic forms do, and gives the integrand and the differential an identity with real 
meaning.   
 In order to create an analogy to a more concrete situation to explain the 
conceptual merit of this symbolic form, consider a child who is playing with play-doh.  
As the child begins to play, he or she might pull clay from several different jars, where 
each jar has a lid that matches the color of the play-doh inside.  When the child is done 
playing with the play-doh, she or he is able to “map” each color of play-doh with the jar 
that it came from.  The child does this by matching the color of the play-doh with the 
color of the jar’s lid (see Figure 4.3.2).  If there is more than one jar with a “red” lid, then 
it does not matter which of these jars the child returns the play-doh to.  This scenario is 
analogous to the type of thinking David and Devon exhibit with the integration.  The 
integrand comes from some original function, and the integral seeks to “return” the  
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integrand to this original function.  The clues for how to do this are given by the 
differential, which indicates how the integrand and original function are related. 
 Some branches of mathematics have been devoted to the study of such “function 
mappings,” such as is the case with some Banach spaces or with some areas of set theory.  
Thus unless we wish to call those fields of study mere “rote procedure” then we should 
consider what these students are doing as conceptually meaningful.  Just as a 
mathematician sees meaning in looking at mappings from one function space to another, 
the students appear to also be giving meaning to the pairing of the integrand with some 
other “concrete function.”  The whole meaning of the integral through this lens is 
function mapping. 
 In fact, it is true that the essential meaning of the indefinite integral “  [][]d ” is 
just that.  It is a shorthand notation for the mapping of the function to a class of anti-
derivatives.  The conversation that David and Devon had regarding the “+ c” shows that 
they hold understanding regarding the mapping of the one function, the integrand, to a 
whole host of potential candidates.  Thus we can say they are conceptualizing the integral 
in a similar way to how a mathematician might.  They are demonstrating a certain type of 
conceptual understanding that can be placed on the integral template. 
 
4.4 The Problematic “Add Up Then Multiply” Symbolic Form 
 
 The resources framework, and the “knowledge in pieces” ideas in general, push 
away from deficit-based explanations for student mistakes.  In this vein, I do not want to 
wrongfully portray student misconceptions as the culprit to student difficulties.  
However, it is still possible that students may develop a piece of knowledge that is based 
in sound cognitive resources, but conflicts with accepted conventions.  It is even possible 
for this “knowledge” to become a resource that the student uses.  Here I describe a 
symbolic form that students may hold that is problematic, but also show that the form is 
based in other correct and useful resources. 
 First, I describe the work done by Ethan during his interview.  I gave him the 
following interview item and asked him how he could determine the box’s mass.   
 

Figure 4.3.2 
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This shows a box with varying density. (dark = more dense, light = less dense)   
Suppose you wanted to know the box’s mass. How could you figure that out? 
 

He decided that he needed to look at the density over the whole volume in order to the 
find the mass.  He began to write down an integral of density with respect to volume 
(  dVD ), and I asked him to explain what he was writing down.   
 

Ethan: Density is varying.  So this integral means that we’re going to add up all 
the densities [points to D], infinitely small, so that you get the overall idea.  
You’ll get the exact idea of its density once you do that, then you just multiply 
by volume [points do dV]. 

 
 During his explanation he pointed to the D in his integral (representing density) 
and dV (representing the volume).  Thus he appears to have conceptualized the pieces of 
the integral as being multiplied together.  However, this multiplication seems to take 
place after the adding up of the integrand.  Following this train of thought, the differential 
dV would act as an infinitesimally fine-grained partition over which the density D (not 
mass) is added up over each piece.  At the conclusion of this summation, the resultant 
density would be multiplied by the volume to get mass.  This view of the integral is 
different from the standard understanding in a significant way and it played an important 
role in Ethan’s thinking about the integral.  I now provide support that this understanding 
of the integral was not an isolated case, but was drawn on in other contexts during the 
interview as well. 
 In another interview item, I presented Ethan with the following problem.   
 

A 2-dimensional surface (S) experiences a non-uniform pressure (P) and we want 
to know the total force exerted.  We can use the surface’s area (A) to compute this 
through the integral:   

F = 
S

P dA . 

Why does this integral calculate the total force exerted? 
 

I asked Ethan to talk about what was happening in this integral and what it meant to 
integrate pressure.  Ethan’s response again yielded evidence of a similar way of thinking. 
 

Ethan: Since it’s a non-uniform pressure, you’re adding up all the pressures that 
are at each point, each kind of location on the surface, and over all they would 
tell you the pressures—you can get the whole pressure. You can divide, after 
you integrate you can divide it by how much area... and it’ll tell you the 
average area. 
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 The first part of this quote makes it clear that Ethan was thinking about adding up 
pressures, not forces.  This is similar to his idea of adding up densities (not masses) in the 
previous example.  The second part of the quote, about dividing by area, left some 
questions about what he was thinking, so I asked him to say more about what he meant.   
 

Ethan: The higher the P’s the more the F’s...Force equals, so I’m adding up the 
P’s.  So if P is higher, you’ll get more, a higher sum and that relates to F. 

 
Here he explicitly stated a relationship between adding up the pressure and the resultant 
force.  He understood the integral to be a summation of pressures, which if they are 
higher give you a larger total pressure.  This summation of pressure is “related to F.” 
 In a third instance, Ethan displayed thinking along these same lines.  I provided 
Ethan with the interview item:  
 

The durability of a car motor is being tested.  The engineers run the motor at 
varying levels of “revolutions per minute” over a 10 hour period.  Denote 
“revolutions per minute” by R. 

What is the meaning of the integral 
600

0
R dt ?   

 
He first talked about how the “10-hour period” had been changed into minutes and that 
that was where the 0 and the 600 came from.  I then prompted him to explain what the 
integral was computing. 
 

Ethan: You’re just adding up all of the, I guess in this context, you’re just, over 
time, you just add up all the RPMs that happened from 0 minutes to 600 
minutes. Because 10 times 60 is 600 minutes. 

Interviewer: What do you mean by add up all the RPMs? 
Ethan: The integral just adds up things, just keeps adding them up [places hand on 

table to his left and sweeps it across to the right].  I guess if you had it, if you 
just had a function of RPMs, something like [draws axes], this is time here 
[points to horizontal axis], maybe this is RPMs [points to vertical axis] and 
you have something like [draws squiggly graph.  See Figure 4.4.1a]. 

 
 
 
 
 
 
 
 
 
This function will tell you the area here, which is just the way you’re just adding 

it up [draws several vertical lines from his graph to horizontal axis.  See 
Figure 4.4.1b].  

Figure 4.4.1a 
 RPM 
 
 
 
    t 
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Interviewer: What does the 0 and what does the 600 mean? 
Ethan: It just means… wait, I don’t understand. 
Interviewer: So, what does the 0 refer to and what does the 600 refer to? 
Ethan: Oh.  It’s going to add up a whole bunch of RPMs [points to R in the 

integral] with respect to time from 0 minutes to 600 minutes [points to the 
limits on the integral].  In that region. 

 
 This third episode clearly shows Ethan stating that the quantity being added up is 
RPMs.  The fact that he labeled his vertical axis RPM illustrated that it was not due to 
confusion about what the function was, and that he was thinking of RPMs as the values 
of the function.  Thus, in his thinking it is the quantity represented in the integrand that is 
added up over the region dictated by the limits.  His language and hand movements also 
clarified what he saw the limits of integration as representing.  He used his hands to 
visually show that the addition was happening from left to right, from 0 to 600 minutes, 
showing a “from…to” type thinking.  He also employed the words “from 0 minutes to 
600 minutes,” which is language similar to that found in the adding up pieces symbolic 
form.   
 I wish to draw attention to the fact that Ethan had a stable blend between the 
symbolic template and a conceptual schema for the symbols.  He viewed the integral 

template as “ 
[]

[]
[][]d ,” where the first box (density, pressure, RPMs) was added up over 

the infinitesimally small pieces generated from the partition created by the differential 
(dV, dA, dt).  The resultant summation was then multiplied by the quantity represented by 
the differential (volume, area, time) in order to get the value of the integral.  I call this the 
“add up then multiply” symbolic form and give a visual representation of it in Figure 
4.4.2. 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.4.2: A visual representation of the add up then multiply symbolic form 
 

Figure 4.4.2 

   
[]

[]
[][]d   

[]

[]
[][]d     
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      summation of integrand multiplication between sum 
      from one limit to other and differential’s quantity 
differential 
determines a partition    “   ” 
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 This symbolic form, while problematic, seems rooted in productive resources.  
For example, it is reasonable to claim that Ethan understands a connection between 
integrals and multiplication.  Whether this comes from working with Riemann sums or 
somewhere else is unclear, but it is certain that Ethan understood some multiplicative 
relationship between the integrand and the differential.  This is similar to the 
multiplicative relationship in the adding up pieces symbolic form, except for when the 
multiplication occurs.  While Ethan was working with the mass of the box, he drew on 
the fact that “mass is…density times volume.”  Thus he not only has understanding about 
the inherent multiplication in integration, but he drew on knowledge about the 
relationships between certain variables to come up with his integral.   
 Additionally, the differential “d[]” does have a connection with the 
“infinitesimally small.”  If the partition is at a finite level, usually a symbol such as x  is 
used to represent the small width of the partition.  Often we say that 0x   and 
becomes dx.  Hence Ethan also may have been drawing on a relevant cognitive resource 
that dx means “infinitesimally small.”  
 Lastly, the Riemann sum process (or similarly the adding up pieces symbolic 
form) has elements of a summation that approaches a limiting process of an “infinite 
summation.”  This feature of the Riemann sum has most likely been used by Ethan in 
constructing his notion of integration.  The only place where Ethan’s thinking diverged 
from correct understanding about the integral is that the multiplication between integrand 
and differential happened after the summation, instead of before the summation in each 
“little piece.”  We could say then that his understanding has most likely arisen from these 
correct underlying pieces of knowledge.  However, what is important to note is that since 
this knowledge has been compiled into a stable cognitive unit, it should be considered a 
symbolic form in his cognition. 
 
4.5 Contrasting the Four Major Symbolic Forms 
 
 In this chapter I have presented four major symbolic forms that take the entire 

integral symbol template “ 
[]

[]
[][]d ” and associate a conceptual schema to it.  All of the 

symbolic forms presented so far provide unique meaning to each of the template pieces: 
(1) the integrand and differential “[]d[],” (2) the “  ” sign, and (3) the limits of 

integration “
[]

[] .”  At the initiation of this research, there was an implicit presumption 

that students would associate meaning with each of these pieces of the symbol template 
separately.  However, these data indicate that for these students a conceptual schema 

applied, for example, to the limits “
[]

[] ” correlated with another specific conceptual 

schema applied to the integrand and differential “[]d[].”  That is, the meaning that these 
students gave to one piece of the integral template automatically linked to specific 
meanings that were then given to the other parts of the template.  That is to say, if a 
student saw “[]d[]” as a thin rectangle, then their interpretation of the “  ” sign and the 
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limits “
[]

[] ” automatically had specific meanings associated with a “thin rectangles” 

view of “[]d[].” 
 The relationship between the meanings given to each of these parts of the symbol 
template exactly correlated with the specific symbolic form the student was drawing on at 
that point.  Thus, for these students, each of the parts of the symbol template was viewed 
in terms of how they fit into either the area, adding up pieces, function mapping, or add 
up then multiply symbolic forms (or others not yet conceived).  What follows in the 
subsequent section is a consideration of each of the parts of the integral symbol template, 
recapping the part of conceptual schema given to them depending on which symbolic 
form is being activated. 
 
Conceptual Schema Blended with “[]d[]” 
 
 First, consider the part of the integral symbol template “[]d[].”  This component 
addresses the integrand and the differential that are involved in the integration.  When 
students drew on an area symbolic form, the integrand was taken to mean a graph drawn 
on a set of axes and the differential had the role of determining the axis that counted as 
the “bottom side” of the fixed region.  Bill and Becky, who drew on the area symbolic 
form extensively provide a nice example of this.  After they had calculated (numerically) 

the integral “  
2

1

2
3

2 dxx
x

,” I began asking them about different parts of the integral 

symbol template. 
 

Interviewer: When you see the 1 and the 2, what does that mean? 
Bill: It means to me that if we’re looking at this on a graph, this is 1 and this is 2.  

Let’s just say it looks something like that [draws in squiggly graph], it would 
be the area in between 1 and 2 [shades in region] 

Becky: I totally agree with that.  First I would look to see if it was a dx or a dy. 
 

I then asked Becky to clarify how the meaning would change if it were a dy instead of a 
dx.  She explained that the axis involved in forming the region would shift to the other 
axis. 
 

Becky: Picture-wise, it would mean the 1 and the 2 would be on the y axis [points 
to two places on the y-axis]. 
 

We can see from this episode that the integrand is made to be a graph in the plane.  There 
seems to be no further purpose for, nor action taken on the integrand.  The integrand 
simply defines the “top” part of the region being considered.  The major purpose of the 
differential unit in this symbolic form is to dictate the axis over which the region would 
be bounded.  Thus, in a sense, the differential is responsible for the “bottom side” of the 
region being considered.  If there is a dx, the bottom part of the region lies on the x-axis, 
but if there is a dy, then the bottom part of the region lies on the y-axis.  Later, Bill was 
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discussing the meaning of the integral dxe x
0

2
 and was trying to justify why the limits 

would end up yielding a negative area. 
 

Bill: Let’s see, for this… if I drew e to the x… [draws ex graph].  When I look at 
this, when I try to justify why it’s negative area and not positive area, cause 
you normally...  Like with the identity [a reference to a rule], it would be from 
0 to 2, but it would be negative.  So if it was redrawn, like that [draws in –ex 
graph].  

 
Later, while trying to explain why  dx  was just the same thing as  dx1 , he offered the 
following, 
 

Bill: If it’s only just 1, times, the graph is just y equals 1.  So it’s 1.  Straight line 
[draws  “y = 1” graph, horizontal line]. 

 
 Bill continued to use a “graph” approach many times throughout the interview, 
even causing Becky, his interview partner to remark, “You like graphs, huh?”  The 
importance that these data have is that they show Bill regularly interpreting the “[]d[]” 
part of the integral template as a graph in the plane.  The integrand only serves the 
purpose of creating the “top” part of the region whose area will be determined.  The 
region under the graph was viewed as a static, fixed whole.  The differential determines 
which axis the bounded region will be attached to.  I call this the “parts of the region” 
interpretation of the integrand and differential. 
 This interpretation contrasts in important ways to the meaning of “[]d[]” when 
looking through the other symbolic forms.  When the students were drawing on the 
adding up pieces symbolic form, the meaning that they gave to “[]d[],” though still 
related to a graphical, visual representation of the integral, included a representative 
“rectangle” that was used to analyze the integral.  The integral includes a partition of tiny 
pieces, where a little bit of the overall quantity is ascribed to each of these tiny pieces.  
One of these “tiny pieces” is looked at as representative of all of the tiny pieces and its 
properties are used to understand what is being done in the integral.  The integrand and 
differential are used to construct this “representative rectangle.”  Thus the integrand is not 
merely the “top” part of a region, but is involved in the creation of these “tiny pieces.”   
 Chris and Clay drew on the adding up pieces symbolic form regularly during their 
interviews.  During the mathematics-day interview, they were computing and explaining 

the integral “  
2

1

2
3

2 dxx
x

.”  They had drawn a picture with two curves, one representing 

3

2
x

and another representing x2.  While they were talking about why they could split the 

integral up into two separate integrals, Chris drew a thin rectangle running up to the 
higher curve, another running up to the lower curve, and then a third one running 
between the two curves.  He drew a dark line across the base of the thin rectangle and 
labeled it dx (see Figure 4.5.1). 
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Chris used this “representative rectangle” to explain why the integral could either be 
broken up into two pieces or considered together as one integral.  In doing this, he 
separated out the representative rectangle from his drawing and redrew it larger on the 
side. 
 

Chris: That’s basically like, if you want to find the area of the rectangle [refers to 
the rectangle in between the two curves], you have length times width [draws 
another, larger rectangle to the side of his figure].  And so, we’ll assume that 
length [points to the rectangle] is the difference between the two functions.  I 
should draw it this way [vertically] and length [writes L] is the difference 
between the two functions [writes in f1 and f2].  And width is dx [writes w and 
dx].  [See Figure 4.5.2.] 

 
 

 
 
 
 
 
 
 Chris used the rectangle to dissect and make meaning of the integral.  Notice that 
the single “representative rectangle” was redrawn larger off to the side of the figure.  This 
shows that Chris was thinking of this one rectangle specifically, and that its properties 
had general implications for the overall integral.  But in order to discover these general 
properties, attention had to be paid to one single representative rectangle.  In Figure 4.5.2, 
f1 and f2 represent the functions that are being subtracted in the integral.  The length of the 
rectangle, L, is given by their difference.  The width of the rectangle is given by dx.  We 
can see the connection, then, between the symbols “[]d[]” and this rectangle.  The 
integrand represents the height of this representative rectangle, whereas the differential 
represents the width.  Thus the symbols “[]d[]” are used to construct these rectangles.  
This contrasts with the area symbolic form, where the integrand and the differential 
served the purpose of creating the “top” and “bottom” parts of a fixed region in the plane. 
 Later in the interview, Clay and Chris were discussing the integrals “  dx ” and 

“  dxt .”  Chris approached the integrals in the same way as before, by drawing one 
representative rectangle to discuss in depth.  He began by discussing the first of the two 
integrals. 
 

Figure 4.5.1 
 
 
 
 
          dx 
          1    2 

Figure 4.5.2     f1 
 
  L 
 
  f2     w 
         dx 
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Chris: So here obviously, we don’t have a function, so we can assume it’s 1. 
Interviewer: Ok.  Why can you do that? 
Chris:  Cause when we’re going back to the length times width back here [draws 

large rectangle next to integral], we have length and width.  We have our 
width equaling dx [writes w = dx].  So if the, the area is going to be dx [writes 
A = dx], then that means our length has to be 1 [changes it to A = 1 dx.  See 
Figure 4.5.3]. 

 
 
 
 
 
 
 
 Chris used the rectangle to reason about the properties of the integral “  dx .”  He 
did not even use a graph to situate this rectangle.  He was able to take one representative 
rectangle completely out of context as a way of discussing the integral.  According to this 
rectangle, whose area is supposed to equal dx, in order to match the integral, the length 
would have to be L = 1.  That meant that “1” could be substituted back into the integral as 
the integrand.  Through this Chris showed the close connection between the integrand 
and the height of the rectangle.  The rectangle was satisfactory for Chris in justifying this 
idea.  Furthermore, as he moved on to discuss the second integral, “  dxt ,” he came 
back to the rectangle idea.  Clay had just finished saying that if t did not have a 
dependence on x, then it could be treated as a constant and pulled out of the integral.  
When I prompted them to talk more about what they meant, Chris brought up the 
rectangle he had used for the previous discussion.  He erased the L and put “ t ” instead.  
He then said, “Yeah, so instead of having 1 being here, we would have root t.”  Thus the 
use of a single representative rectangle figured prominently in his thinking.  I call this the 
“representative rectangle” view of the integrand-differential part of the symbol template. 
 These two graphical-visual interpretations of “[]d[]” contrast with the function 
mapping symbolic form where the integrand is seen as having come from some other 
function.  From this “original” function, whose derivative was calculated with respect to 
the differential variable, we get the function represented by the integrand.  David and 
Devon demonstrated how the integrand could be conceptualized within a function 
mapping symbolic form.  At one point they were discussing the need for the dx in the 
integral “ dxxx )2(

2

1

23  .” 

 
Interviewer: Why does it need a dx?  
David: Well, it’s still an integration.  So, in an integration the dx is always 

essential, because it shows that this entire thing [waves hand over 2x-3 – x2] is 
a derivative of x.   

 
A little bit later David added the following when asked to talk about the relationship 
between the integrand function and the differential. 

Figure 4.5.3          A= 1 dx 
 
       L 
 
       
  w = dx 
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David: The fact that this entire thing is sitting right next to each other, and dx 
outside, means that basically this entire function [motions hand over 2x-3 – x2] 
is the derivative of an original function. 

 
 David had conceptualized the integrand “2x-3 – x2” as the “derivative of an 
original function.”  The purpose of the differential was to indicate that the way the 
integrand was formed was by taking this “original function” and differentiating it with 
respect to x.  The differentiation should happen with respect to x because x is the variable 
of the differential.  The dx “shows that this entire thing is a derivative of x.”  Thus the 
“[]d[]” is seen as having “clues” about the origin of the integrand function.  I call this the 
“function origins” view of the integrand-differential part of the symbolic template. 
 Lastly, the add up then multiply symbolic form, like the first two symbolic forms, 
views “[]d[]” in more graphical-visual terms.  It is similar to the adding up pieces 
symbolic form in that the differential directs some kind of partition and each piece of the 
partition is considered.  However, the difference is in the relationship between the 
integrand and the differential during this process.  In the adding up pieces symbolic form, 
the integrand and differential interact within each individual rectangle to create a small 
bit of the quantity, as seen by the use of one representative rectangle to describe the 
integral.  In the add up then multiply symbolic form, small quantities of the integrand are 
considered to exist within each little piece of the partition.  Chris and Clay were working 
on the interview item in which they were to figure out how to determine the mass of a 
box with varying density.  They had devised the integral “ 

4

0
dxx ” and were explaining 

how their integral calculated the box’s mass.  They had arbitrarily decided to use a 
linearly increasing density function, x, and arbitrarily came up with the limits of 
integration.   
 

Chris: We have this density that’s increasing.  Along the one side it’s linearly 
increasing.  So dx would just be us trying to calculate density at each point 
along the x axis that’s infinitesimally small.  And then adding up all these 
infinitesimally small values. 

 
Chris described that the purpose of the dx was to allow him “to calculate density at each 
point.”  These densities were thought to be distributed throughout the dx-related partition.  
Each small piece within the partition had some small amount of the density.   
 Ethan, in his interview, worked on the same problem and came to the exact same 
conclusion.  He had written his integral “  dVD ” and was explaining why it worked. 
 

Ethan: Density is varying.  So this integral means that we’re going to add up all 
the densities [points to D], infinitely small, so that you get the overall idea.  
You’ll get the exact idea of its density once you do that, then you just multiply 
by volume [points do dV]. 

 
Similarly to Chris, Ethan stated that each “infinitely small” piece held a little bit of 
“density.”  We can see from their descriptions that the meaning of “[]d[]” is that a small 
amount of the integrand “[]” is contained in each tiny piece created by the partition made 
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by the differential “d[].”  But there is no interaction between the two at this fine-grained 
level.  I call this the “integrand in each piece” view of these symbols. 
 
Conceptual Schema Applied to the “  ” Symbol 
 
 Next, I examine the meaning given to the integral symbol itself, “  .”  Once 
meaning is given to “[]d[],” then the integral symbol comes to mean different things.  
Each of the four major symbolic forms takes a different interpretation of the symbol.  I 
want to note that the meaning given to the “  ” sign stably correlates with the meaning 

of both “[]d[]” and the limits “ 
[]

[]
.”  So while there are several interpretations of the 

“  ” sign, they appear not to be independent of the symbolic form that is being 
activated. 
 First, I talk about the students who were drawing on the area symbolic form.  Bill 
had made much use of this symbolic form in his thinking.  He often immediately took the 
integrals of the interview items and construed them as graphs in the plane, taking a fixed, 
static view of the region underneath the graph.  This pair of students had been given the 

integral “ dxe x
0

2
,” and Bill was trying to explain why it gave negative area as opposed to 

positive area. 
 

Bill: Let’s see, for this… if I drew e to the x… [draws ex graph.]  When I look at 
this, when I try to justify why it’s negative area and not positive area, cause 
you normally...  Like with the identity [a reference to a rule], it would be from 
0 to 2, but it would be negative.  So if it was redrawn, like that [draws in –ex 
graph].  

 
Bill talked about the fact that when integrating from 2 to 0, he knew the area should come 
out to be negative.  According to a “rule,” he reconceptualized the problem as being an 
integral from 0 to 2 over the function “–ex.”  When he drew in the –ex graph, it helped 
him explain why the result should be negative, since it was yielding a “negative area.”  
We can see that his understanding of the integral seems tied to the area of a fixed, 
bounded region.  He redrew his graph in order to provide an area that was “negative,” 
since –ex is below the x-axis.  I asked them to talk more about why having the limits as 2 
and 0 would end up giving negative area for the integral. 
 

Becky: It basically means you have your graph [references the ex graph] and you 
have your two points, here’s 0 and here’s 2 [points to two places on the x-
axis].  Instead of looking at it as if you were wanting the area from this point 
to this point [puts left hand on 0, then right hand on 2], you’re just looking at 
it as the area from this point to this point [puts right hand on 2 then left hand 
on 0]. 

Bill: The only problem I have with that is that it looks like positive area on the 
graph. 
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 Here we can see that once the ex graph had been drawn in the plane, Bill 
conceptualized the integral as the area of the fixed, bounded region above the graph.  
Consequently he ended up having a “problem” with the fact that “it looks like positive 
area on the graph” when dealing with the function ex.  We can see that he was 
interpreting the integral symbol as meaning “the area of this bounded region.”  The area 
looked positive to him, so it seemed like it should have ended up being positive area.  The 
main point we see in this episode is the fact that the integral actually means the area, 
which is the conceptual schema given to the “  ” symbol.  Thus this symbolic form is 
labeled the “area” symbolic form. 
 The adding up pieces symbolic form, while also based in visual, graphical 
representations, is quite distinct from the area symbolic form’s conceptual meaning of 
the “  ” symbol.  The adding up pieces form starts by taking the “[]d[]” and construing 
it as several tiny rectangles, where one representative rectangle can be taken out of 
context in order to understand the properties of the integral.  Hence, the “  ” symbol 
here will necessarily have to do with these rectangles, which are often viewed as 
“infinite” in number by the students.  In the physics-day interview, Devon was working 
on the problem of how to determine the mass of a box with varying density.  He had 
drawn a box in a three-dimensional coordinate system and then written an integral that 
corresponded to it (see Figure 4.5.4).  He had chosen ρ(r) to represent his density 
function. 
 
 
 
 
 
 
 
 
 
He then drew several little cubes inside of his larger box and then talked about why his 
integral would compute the mass of the box. 
 

Devon: I think it’s more the conceptual idea that when you find out a mass of 
every small piece [points to the little cubes inside his box], you find the mass 
of the whole thing [waves hand over the whole box].  And this would find the 
mass of every piece [underlines p(r)dV inside of the integral], and then you 
just add them up together [waves hand over the integral symbol]. 

 
 Devon provided a very clear picture of what he saw the integral as doing.  The 
integral “just adds them up together.”  As discussed in the previous section, the fact that 
he was drawing on an adding up pieces symbolic form meant that the integrand and 
differential “[]d[]” interacted within each little cube.  He stated that “this,” meaning the 
function p(r) and the differential dV, “would find the mass of every piece” for the little 
cubes he had inside of the larger box.  Then, he showed his interpretation for the integral 
sign itself, saying “then you just add them up together” while he waved his hand over the 

Figure 4.5.4      
   dVr

V )(  
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integral sign.  So the “  ” means “add them up.”  The masses from each of the little 
cubes were added up in order to “find the mass of the whole thing.”  He then furthered 
this idea. 
 

Devon: It’s basically, how many boxes there are, and each box has its density and 
then you calculate the volume of, I mean the mass of each box [points to little 
cubes inside of the box] and then you add them up.   

 
Again, we can see that once the integrand and differential have “interacted” in each cube 
in order to determine the mass of each cube, the integral itself takes all of these masses 
and adds them up.  Thus the meaning given to the “  ” sign is to add up all of the little 
quantities and for this reason this form has been termed the “adding up pieces” symbolic 
form. 
 These two graphical-visual interpretations of “  ” again contrast with the 
function mapping symbolic form where the meaning of the integral has more to do with 
selecting an appropriate companion function that matches what is in the integral.  In this 
symbolic form, the integral seeks to pair the function presented with a “companion 
function” from whence it came.  Specifically the relationship between the integrand 
function and the companion function is a derivative with respect to the variable of the 
differential.   
 Adam and Alice, who drew often on the function mapping symbolic form 
demonstrated how the “  ” sign could be conceptualized from the standpoint of this 

form.  They had been given the integral equation   dvdta  and were talking about 
why they were equal to each other.  (Note: no limits were placed on these integrals 
intentionally as a potential source of conversation.)  The conversation was revolving 
around why these two integrals were equal and what the meaning of dv was. 
 

Interviewer: What does it mean that the integral on the right is dv? 
Adam: So I see these terms, a and dv as functions [writes “functions: a, dv”].  So 

they [a and dv] equal something like y…[writes y = ].  And this [points to y] 
can also be denoted as f of x [writes y = f(x)] …  This f is like a or dv [points 
to a and dv].  These represent functions…You could put t, or whatever, it’s 
just another variable [writes dv(x) and then changes to dv(t).  Then changes y 
= f(x) to y = f(t)].  It’s just denoting the function with something, so you can 
recognize it.   

 
 Adam talked about a third function, y or f(t), that could be paired with both a and 
dv.  Hence the reason for the equality of these two integrals is the fact that they both map 
to the same function, f(t).  The conceptual meaning of the integral itself was about finding 
the function that  is paired with the integrand function, in this case with either a or dv 
(though he will clarify shortly that by “dv” he is actually thinking of dv/dt).  The equality 
of the two integrals was due to the fact that they both map to the same companion 
function.  It didn’t matter whether the companion function was written as y, or f(x), or 
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f(t), etc.  All that mattered was that it was a match for a as well as a match for dv.  And 
the variable t from dt is merely “just another variable,” facilitating the choice of the 
companion function.  A few moments later, Adam came back to this point. 
 

Adam: And what you were saying before about the dv.  I think this is just like a 
name.  You call someone a name, like Adam or something.  Here you’re just 
doing integral terms.  dv equals acceleration.  The derivative of velocity.  But 
you’re just making this the name of the function.   

… 
Adam: I think I wrote this wrong.  It’s not dv in terms of t, it’s the derivative of v 

of t over dt [writes dv(t)/dt].  It’s just another way to write a [points to a]. 
 

Again, the integrand is a function that represents the derivative of some other function; in 
this case a is the derivative of velocity.  But dv/dt is also the derivative of velocity.  
Hence these two functions came from the same original function, namely the velocity 
function.  Adam was able to use this to contend that the two integrals were, in fact, equal 
to each other since a and dv/dt are just two different “names” for the “derivative of 
velocity,” where velocity counts as the “original function.”  Hence, “the derivative of v(t) 
is a” means that v(t) is the “original function” from whence a came.  So it works as the 
companion function to the integrand function, a(t).  Similarly, dv/dt is the derivative of 
velocity, and so v(t) is also the “original function” for that integral.  Thus the name 
“function mapping” is given to this symbolic form. 
 Finally, in the add up then multiply symbolic form the meaning of the “  ” sign 
takes  on a similar meaning to the adding up pieces symbolic form.  It likewise is 
conceptualized as taking all of the tiny pieces and adding them up.  The signature 
difference between the two symbolic forms resides in the meaning given to each tiny 
piece.  In the adding up pieces form, the meaning given to “[]d[]” dictates that each tiny 
piece is a product of the quantity of the integrand and the quantity of the differential.  
That is, density and volume give mass.  Or pressure over an area gives a force.  However, 
in the add up them multiply symbolic form, the meaning of “[]d[]” dictates that the 
quantity of the integrand alone is added up over each piece of the partition.   
 When Ethan described the integrals he had come up with during his interview, it 
was clear that he was thinking of a summation over the quantity of the integrand.  When 
he had the integral over density, “ dVD ,” which was used by him as a way to calculate 
mass, he said,  
 

Ethan:  Density is varying.  So this integral means that we’re going to add up all 
the densities [points to D], infinitely small, so that you get the overall idea.  

 
Then when working with the integral equation “ dAPF

S ,” he explained how this 

integral computed the overall force.   
 

Ethan:  Since it’s a non-uniform pressure, you’re adding up all the pressures that 
are at each point, each kind of location on the surface, and over all they would 
tell you the pressures—you can get the whole pressure. 
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Similarly, when working with “ dtR

600

0
,” where R represented the revolutions per 

minute, he claimed that the integral symbol indicated an addition.   
 

Ethan:  It’s going to add up a whole bunch of RPMs with respect to time from 0 
minutes to 600 minutes. 

 
It is clear that this symbolic form views the “  ” symbol as an addition, but that the 
addition happens over the quantity that stands in the place of the integrand.  The density, 
the pressure, or the revolutions per minute is what is added up. 
 

Conceptual Schema Applied to the Limits, “
[]

[] ” 

 
 Last, I consider the meaning given to the limits of integration “

[]

[] .”  As with the 

other parts of the symbol template, the meaning given to the limits of integration 
correlated with the meaning given to both the “[]d[]” and the “  ” symbols.  When the 
students were drawing on the area symbolic form, the limits of the integration came to 
mean the sides, or perimeter, of a fixed region in the plane.  Much like the four lines of a 
trapezoid mark out the boundary of what is considered “the trapezoid,” the limits of 
integration become actual vertical lines that help mark out the boundary of the object 
whose area is considered by the integral. 
 When the students were using the area symbolic form in their thinking, the limits 
often manifested themselves as vertical lines extending up (or down) from the horizontal 
axis in order to mark off the shape of the region.  Bill and Becky were working with the 

integral “ dxx
x 

2

1

2
3

2 ” when I asked them specifically to talk about what the 1 and 2 

meant. 
 

Interviewer: When you see the 1 and the 2, what does that mean? 
Bill: It means to me that if we’re looking at this on a graph, this is 1 and this is 2 

[draws vertical lines].  Let’s just say it looks something like that [draws in 
squiggly graph.  See Figure 4.5.5].  It would be the area in between 1 and 2 
[shades in region]. 

 
 
 
 
 
 
 
 

Figure 4.5.5 
 
 
 
 
       1    2 
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 The 1 and the 2 appear to represent lines drawn straight up in such a way that 
there is a specific, closed off region in the plane.  Therefore, the 1 and the 2 do much 
more than represent numbers on the x-axis.  They are actually the two sides of the shape 
itself.  I call this the “sides of the region” view of the limits.  At another point, Bill was 
describing the integral “ sin( )x dx ” and the difference between definite and indefinite 
integrals. 
 

Bill: So the definite integral, it would be [draws squiggly graph on x-y axes].  If it 
was, for example, from 1 to 2 [makes marks on x-axis at 1 and 2].  It would 
just be [draws vertical lines at x = 1 and x = 2] this area right here [shades in 
region. See Figure 4.5.6]. 

 
 
 
 
 
 
 
 
 
 Again, we see Bill conceptualizing the limits of the integral (he used the example 
of 1 and 2 for the limits) as the two sides of a fixed region in the plane, where the integral 
was going to represent the area.  The vertical lines going up from the numbers on the x-
axis were a common hallmark in the figures students produced while drawing on the area 
symbolic form.  Thus the limits of integration actually are the sides of the shape.  They 
are more than simple numeric values, but they are part of the fixed region itself. 
 The limits of integration looked somewhat different when the students were 
drawing on the adding up pieces symbolic form.  They did not have quite the same 
visual-graphical interpretation that they had in the area symbolic form.  In adding up 
pieces, the integral involves some action, where the little pieces are all “added up.”  The 
limits in this case represented a sort of “starting” point and “ending” point for this 
addition.  Clay and Chris were working on the following interview item and had activated 
an adding up pieces form. 
 

A 2-dimensional surface (S) experiences a non-uniform pressure (P) and we want 
to know the total force exerted.  We can use the surface’s area (A) to compute this 
through the integral:   

F = 
S

P dA . 

Why does this integral calculate the total force exerted? 
 

They drew a two-dimensional rectangular surface and eventually “sliced it up” into a grid 
of smaller rectangles (see Figure 4.5.7).  During their work, they changed the integral to 
be 

2

1

s

s
P dA .  I asked them to discuss the limits s1 and s2 that they put on their 

integration. 

Figure 4.5.6 
 
 
 
 
       1    2 
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Interviewer: It was integral with S, and you translated that in an integral with an 
s1 and an s2.  So what exactly are s1 and s2? 

Clay: s1 is the minimum, where you’re starting from, I guess. And s2 would be 
the last one you’re integrating, but that would be inclusive of all the ones in 
between. 

Chris: s1 would be the first square here [points to lower left-hand corner of the 
surface, see Figure 4.5.7], and then s2 would be this square here because it’s 
where both x and y reach the maximum [points to upper right-hand corner of 
the surface]. 

 
 

 
 
 
 
 
 
As a note of clarification, in the last statement Chris meant by “reach the maximum” that 
the upper right-hand corner of their two-dimensional surface was the largest x,y pair on 
the surface.  But more importantly, we can see that the lower limit represented “where 
you’re starting from” and the upper limit represented “the last one” that was being added 
up.  Thus, when the integral is given the meaning of “adding up” all of the small 
quantities, the limits come to mean “from where to where” the addition happens.  I call 
this the “from…to” view of the limits. 
 In a separate problem, Chris was trying to explain why the integral “ dv ” was the 

same as the integral “ a dt ,” where a and v were acceleration and velocity.  (Note: In 
order to generate conversation, no limits of integration were specified in this problem.)  
Chris had noted that dv  did not have any time component in it, but that it was still 
equivalent to the other integral anyway.  He explained this by discussing the quantities 
that were being integrated and had been drawing on an adding up pieces symbolic form 
during his work.  The following is what he said about the limits of integration. 
 

Chris: So we don’t really need to worry about time anymore here.  We’re just 
integrating from the first point of velocity [writes v0 as lower limit: 

vo
dv ], to 

the last point [writes v1 as upper limit: 
1v

vo
dv ].   

 
Again this shows the nature of the limits of integration while drawing on the adding up 
pieces symbolic form.  The lower limit was “the first point of velocity” and the upper 
limit was the “last point of velocity.”  We can see that a “from…to” way of looking at the 
limits was active in Chris’ thinking while using this symbolic form. 
 As already discussed in more detail in section 4.3, the limits of integration, when 
looking through a function mapping symbolic form, mean the values of the original 
function and the difference between them.  Devon, who was drawing on a function 

Figure 4.5.7 
 
      s2 
 s1 



 70 

mapping form, was explaining why there was no “+ c” when computing the integral 
“ 

0

2
dxe x .” 

 
Devon: But this one [points to 

0

2
dxe x ], you are finding the difference between 

these two [points fingers to the 2 and 0].  So, regardless of the c, it would just 
be difference.  So that’s how I think of it, as difference.  So it doesn’t matter. 

 
Devon described that the way he thought about the limits, 2 and 0, was “as difference.”  
The limits of integration come into play to find “the difference between these two” 
values.  Through his work, it was clear that the difference he was talking about was the 
values of the “original function” that maps to the integrand.  Note that 0 and 2 do not 
have any inherent meaning of “difference.”  Thus we can say that Devon was ascribing 
the meaning of a difference between two values to the limits of integration.  I call this the 
“difference” view of the limits. 
 Finally, in the add up then multiply symbolic form, the limits of integration are 
given a similar meaning to that in the adding up pieces symbolic form.  The integral is 
considered to be “adding up” small quantities in both of these symbolic forms.  The only 
major difference is what is being added up.  However, the fact that this addition takes 
place in both means that it would make sense to have similar interpretations of the limits 
of integration for both.  Ethan was describing the details of the integral “

600

0
R dt ” and 

was drawing on the add up then multiply form.  I asked him to describe exactly what the 
limits of integration meant. 
 

Interviewer: What does the 0 and what does the 600 mean? 
Ethan: It just means… wait, I don’t understand. 
Interviewer: So, what does the 0 refer to and what does the 600 refer to? 
Ethan: Oh.  It’s going to add up a whole bunch of RPMs [points to R in the 

integral] with respect to time from 0 minutes to 600 minutes [points to the 
limits on the integral].  In that region. 

 
 Thus the limits 0 and 600 again refer to the “starting” point and “ending” point of 
the addition.  The addition happens “from 0 minutes to 600 minutes.”  Ethan also used 
hand gestures while he was talking about this integral, where he swept his hand from the 
left side of his figure to the right side.  The difference, then, between the adding up pieces 
and the add up then multiply symbolic forms in general is quite subtle.  There is similar 

meaning given to the integral symbol “  ” as well as the limits of integration “
[]

[] .”  

They mean “add them up from here to here” in both forms.  The difference comes mainly 
in the interpretation of the symbols “[]d[].”  In the adding up pieces form, the integrand 
and differential create small rectangles, where inside each rectangle there is an interaction 
between the integrand and the differential to make a small quantity.  However, in the add 
up then multiply form, there is no such interaction and it is only the quantity of the 
integrand that is added up. 
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4.6 Other Symbolic Forms Pertaining to the Integral Symbol Template 
 
 In the previous sections, I outlined four major symbolic forms that were 
detectable during the interviews with the students.  By “major” I simply mean that they 

take into account the entire integral symbol template “
[]

[]
[] []d .”  However, there are other 

symbolic forms that pertain to the integral, but that are specific to either only one part of 
the template, or to the way the symbol template interacts with other symbols around it.  
First I look at the students conceptual schemas blended with just the “  ” symbol (i.e. 
with no limits attached to it).  Then I discuss a symbolic form that is actually a special 
case of the area form where the “area” is thought to be between two curves in the plane.  
Then I describe other forms that deal with the meaning of a number multiplied onto the 
outside of the integral. 
 
Two Interpretations of the “  ” Symbol with No Limits 
 
 During the interviews with the students, there emerged two different conceptual 
schemas that could be applied to the “  ” symbol with no limits on it.  The students, in 
general, discussed this symbol more on the mathematics-day interview, but rarely during 
the physics-day interview.  Instead, they often translated those integrals into integrals 
with limits.  However, during the mathematics-day interview, I asked the students what 
the symbol meant and how it differed from an integral symbol with limits on it.  In the 
interview with Bill and Becky, they had been given the integral “ dxx )sin( ” and were 
trying to explain why the answer needed a “+ c” on it.  I asked them to summarize what 
the difference was between an integral like this one, without limits, and one that had 
limits on it. 
 

Becky: I would say the one that has numbers, you’re asking for a specific area or 
a specific region of like whatever y it is.  One that doesn’t, you’re just asking 
for it in general.  I kind of like interpret that as later on, if you want to know it, 
what values it’s between, you have a more broad range to put the values into.  
Whereas when you solve for a specific 0 and 2 you’re giving the answer and 
you can’t really, like, work on that. 

 
 Becky described that by not having limits on the integral, “you’re just asking for 
it in general.”  She explained what she meant by saying that “later” you could attach 
numbers on to it to find out the integral for “specific” values.   
 

Becky: Later on, if you want to know it, what values it’s between you have a 
more broad range to put the values into. 

 
Thus, the integral without limits is like a “generic answer” that is waiting for more 
specific limits of integration in order to provide a more specific value.  By contrast, the 
integral with limits already gives an “answer,” so there is nothing else that can be done 
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with it.  When the “  ” symbol is seen in this way, I call it the “generic answer” 
symbolic form. 
 The second way the students appeared to think of the integral symbol with no 
limits deals more with the kind of “object” that results after the computation.  It 
differentiates the two types of integrals based on their outcome.  This interpretation of the 
“  ” symbol could almost be thought of as a special case of the function mapping 

symbolic form.  It is similar in that the object of “  ” is to find an appropriate 
companion function that fits the integrand.  I asked David and Devon to describe what the 
difference was between “ dxx )sin( ,” which has no limits, and “ dxe x

0

2
,” which does. 

 
David: I guess when it has no limits, no upper bound or lower bound, it just 

means you’re trying to find the anti-derivative of the equation.  The original 
equation to the derivative inside the integration. 

… 
David:  So in this case [points to dxe x

0

2
] you’re just trying to find a number, in 

this one [points to dxx )sin( ] you’re finding a function. 
 

 Since the integral “ dxx )sin( ” has no limits, they were “finding a function,” as 

opposed to “ dxe x
0

2
,” where they were “trying to find a number.”  Thus the “  ” 

symbol is taken to mean “finding a function.”  Note that David claimed that “  ” meant 
that they were trying to find the “original equation” of the integrand function.  (Note: as 
in other explanations, David often said “equation” when he meant “function.”)  Because 
of its similarity to the function mapping symbolic form for the entire symbol template, I 
simply call this a special case of that symbolic form for the “  ” symbol, or the 
“function mapping with no limits” symbolic form.  I want to make clear, however, that 
this is not equivalent to the function mapping symbolic form since the symbol template 
used is different.  Because a form consists of a symbol template blended with a 
conceptual schema, these become two separate (though related) symbolic forms.   
 Alice further illustrated how this thinking is similar to that expressed in the 
function mapping form.  She was explaining her computation of the integral 

“ dxx
x 

2

1

2
3

2 ” and noted that if the limits 1 and 2 were not there, it would need a “+ c.” 

 
Interviewer: So why, why would you need a plus c? 
Alice: Because, like we did some examples in class where you have a function 

and they might have the same end derivative, but there’s some extra variable 
or constant to it.  So it could be like 2 x plus 4 [writes 2x + 4] or 2 x minus 2 
[writes 2x -2], so they’re completely different, but you might get the same, so 
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that’s why you need to add the constant.  But because we have definite 
boundaries, we don’t need it. 

 
 Alice talked about various functions that could all have the same “end derivative.”  
Here we again see the ideas expressed in the function mapping symbolic form, where the 
integrand is conceptualized as having come from some other “original function.”  She 
noted that the functions “2x + 4” and “2x - 2” were both candidates for the “original 
function” of the same integral.  Both of them would yield the same “end derivative” and 
hence would both work for the integral “ dx 2 .”   
 

Symbolic Form for the Template:  
[]

[]
[1] [2] []d  

 

 The symbol template “  
[]

[]
[1] [2] []d ” is really just a special case of the regular 

integral template “
[]

[]
[] []d .”  However, the extra layer of having the integrand 

represented as “[1] – [2]” provides the potential for additional meaning to be given to the 
integral.  Several of the students took integrals in this form and equated it to finding the 
area in between two different curves in the plane.  In one interview item, I wrote the 

integral “ dxx
x 

2

1

2
3

2 ” on the board and told them to compute it and talk about it while 

they worked on it.  Bill was trying to explain what the “area” would be for this integral 
when Becky brought in the idea to think of it as two curves. 
 

Bill: Well I think it means it’s just that, separately it would be, well they combine 
together to make one function, that in terms of… I’m trying to explain.   

Becky: I don’t know if this is correct, but you could do it kind of like the f of x 
and g of x [f(x) and g(x)].  It’s like f of x plus g of x [f(x) + g(x)].   

Bill: Yeah I guess you could do that, if you took 2 over x cubed [ 3
2
x

], that’s 
probably just … let’s just say it’s this [draws a random curve. See Figure 
4.6.1].  And then you take x squared [draws the x2 graph] and then you take all 
the area here… The area is just the difference between those two curves 
[draws in vertical lines at x = 1 and x = 2]. 

 
 
 
 
 
 
 
 
 
 The integral in this scenario was only a single integral.  However, Becky 
suggested looking at the integrand of this single integral as two functions instead of as 

Figure 4.6.1 
 
 
 
 
    1     2 
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one function.  Bill caught onto this idea readily and began drawing out the two curves, 

one for the 3

2
x

 function and another for the x2 function.  Then he interpreted the integral, 

drawing on an area symbolic form, as the area in between these two functions.  Thus 
Becky and Bill were able to see a special case in the integral symbol template and imbue 
a conceptual schema onto it. 
 Other students showed evidence of similar kinds of thinking.  When given this 
same integral to work with, David said the following. 
 

David: The fact they’re just sitting right next to each other, it’s like the first 
problem [a reference to the “area between two wires” item], where you have 
two different equations, where you’re trying to find the area between the two.  
I think what they’re trying to do is find the area in between each other. 

 
David had a consistent habit of using the word “equation” to mean “function,” and I have 
no doubt that similarly he means “function” here.  Thus David, like Bill and Becky, saw 
the special format of “[1] – [2]” in the integrand and gave it the meaning of finding “the 
area between the two” functions.  To emphasize this point, he repeated himself, “I think 
what they’re trying to do is find the area in between” the two curves.  We have evidence 
that the students may contribute an extra layer of meaning to this special case of the 
integral.  I call this the “area between [] and []” symbolic form. 
 
The Front Multiplier: “[]  ”  
 
 As part of the interview items, I gave the students integrals that had a constant 
preceding the integral.  For example, in one item, I gave the students the integral 

“ 2 ( )
D

f x dx  ” where D was stated to be the domain of the function f.  There seemed to 

be three major ways of interpreting this “front multiplier” of the integral.  One was rooted 
in a more visual-graphical conceptual schema, another was similar to more basic 
symbolic forms for multiplication (see chapter two), and the third dealt with the 
symmetry of the graph or function.  First I discuss the more visual-graphical schema.   
 Clay and Chris were discussing this integral and had approached it by giving D a 
specific range of values, D=(x1,x2).  Activating the area form, Chris visually represented 
the basic meaning of the integral by drawing a random, squiggly graph in the coordinate 
system, marking off x1 and x2, and shading in the region.  Then, without any prompting 
about the -2, he launched immediately into explaining the effects of the -2 in front of the 
integral sign. 
 

Chris: If we multiply by negative 2, essentially that means that we’re flipping this 
over negatively [points to graph] and we’re multiplying it by a double 
magnitude.  So this is what it would be [starts to make mark below x-axis.  
See Figure 4.6.2a]. 
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Interviewer: So when you say that we’re multiplying by double, what exactly are 

you multiplying by double? 
Chris: So each infinitesimal rectangle [draws in thin rectangle.  See Figure 

4.6.2b], we’re doubling its y magnitude [doubles length of the rectangle] 
because… or we’d be doubling the area of it, and since dx, it’s staying 
constant then that would mean we’re doubling the y component.   

 
 
 
 
 
 
 
 
 
 
So we’d get [draws in “flipped over” graph.  See figure 4.6.2c].  And so this 

would be our resultant value [says this while shading the region]. 
 
 
 
 
 
 
 
 
 
 
Interviewer: Now let me ask you a question on that.  So you’re talking about 

doubling the area, and it’s down below the x axis.  Now that negative 2 is kind 
of sitting out in front of the integral, so why is it that that negative 2 is making 
that kind of a result?  

Chris: So if we’re dealing with an infinitesimal region, we could assume that this 
is area [writes A above the f(x)dx in the integral].  And either… we could think 
of it two different ways.  We could think of it as being, um doubling the area 
and moving it negatively [makes hand motion like he’s flipping something 

Figure 4.6.2a 
 
           f(x) 
 
       x1          x2 

Figure 4.6.2c 
 
           f(x) 
 
       x1          x2 

Figure 4.6.2b 
 
           f(x) 
 
       x1          x2 
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upside down].  Like I did here.  Double that.  Or you could just move it in and 
have it be doubling and multiplying by negative 2 on the function itself.  So 
moving this up [puts chalk on the graph and moves chalk upward] and 
negatively [swings chalk down below x-axis] and then multiply by dx. 

 
 Chris was describing here a conceptual schema relating to the “front multiplier” 
of the integral.  He explained in detail the fact that the -2 could interact with the function 
and influence the result of the integral by doing so.  He conceptualized the -2 as 
“doubling the magnitude” of the function values (or “y-values,” as he called them).  Then 
these doubled values were “flipped over” to the region underneath the x-axis.  This 
provided a new graph with a stretched out mirror-image of the first graph.  There is good 
evidence that this is a well-compiled cognitive resource, owing to the fact that he was 
able to explain it both visually in the graph and algebraically through the function values.  
He called these “two different ways” to think about the -2.  This significant conceptual 
schema assigned to the symbol template “[]  ” provides another symbolic form that the 
students held in their cognition.  It takes the multiplier in the box “[]” and blends it with 
the function in the integrand so that a new function is being used in the integral.  This 
affects the size of the “area” being computed, or the height of the “rectangles” that are 
being analyzed.  Note that this symbolic form is compatible with both the area and the 
adding up pieces symbolic forms.  Chris was able to successfully explain the meaning of 
“[]  ” from both an area perspective and a representative rectangle perspective.  The 
key characteristic of this symbolic form is that the multiplier is taken as blended with the 
integrand before the integration takes place.  I call this symbolic form the “melds with 
integrand” form.   
 Consider another episode where David and Devon were working with the same 

integral, “ 2 ( )
D

f x dx  .”  In this episode, they had activated the function mapping 

symbolic form.  During their work, David involved the -2 in the relationship between the 
integrand f(x) and the “original function” F(x). 
 

David: If we think that f of x equals f, x [writes F’(x) = f(x)], then I guess this 
would equal negative 2, f, x over the domain [writes -2 F(x)]. 

 
After a brief discussion of the domain D, I came back to the -2 and asked them to further 
describe what they meant by that.  Devon then hinted at the idea that the -2 could be 
taken into the integral which would give a “new function.”   
 

Devon: Either take the 2 in and then you can, like, take this as a new function, or 
you take this as some kind of value [points to -2] and this some kind of value 
[points to the integral].  It has nothing to do with the integration here. 

… 
Devon: That way the 2 is part of the function.  So, it’s one of the determined of 

the function.  It’s just that you can’t take it out, you take that, it’s the whole 
function. 
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David: Or you could actually think of this also like, f of x [f(x)], like if you look at 
it, you could say f of x could have been some function, and like, let’s say I had 
negative 6 x squared minus 4 x [writes -6x2 - 4x], and this is a function, but 
you could have taken out the negative 2 and made it negative 2 times 3 x 
squared plus 2 x [writes   

 -2(3x2+2x)].  You know, and this constant would just come out and this would 
be the function [points to (3x2+2x)]. 

Interviewer: Alright. Anything else about… 
Devon: Yeah.  If you take it as a whole function, the 2, like you would not see the 

2, you don’t even see the 2 here, it’s just like a part of it. 
 

 David provided an example of how the negative 2 could have come from the 
function in the integral and that by removing it, he ended up with a “new function.”  
Devon furthered this by claiming that if you have the -2 on the inside, “you take it as a 
whole function” and that “you would not see the 2, you don’t even see the 2 here.”  This 
language indicates that Devon saw the -2 as being able to completely blend with the 
function, providing a new function for the integrand.  This is similar to the way that Chris 
earlier talked about using the -2 to double the function values and swing them over below 
the x-axis.  In both cases, the student was conceptualizing the multiplier in front of the 
integral as “melding” with the function.   
 This episode with David and Devon provides evidence that the melds with 
integrand form is also compatible with the function mapping symbolic form.  David had 
been discussing this integral in terms of f(x) being the derivative of F(x) and the effect the 
-2 would have on the relationship between these functions.  While drawing on the 
function mapping form, David was able to draw on a melds with integrand symbolic form 
for the multiplier -2.  His explanation was that the algebraic form of the function would 
change as the -2 was pulled out of the integral.  That is, it would change from -6x2 - 4x to 
3x2 + 2x.  The key, however, is that David was still interpreting the -2 as something that 
blends with the integrand, or that can be taken out of the integral.  Thus this symbolic 
form appears to be compatible with all of the major symbolic forms I have presented. 
 In this episode, Devon also talked about another way to view the multiplier, 
“[]  .”  In this other view, the multiplier is taken to just be “some kind of a value” that 
might have “nothing to do with the integration.”  In this case, the value of the multiplier 
and the value of the integral are simply multiplied together like any other two values 
might be.  Devon offered his ideas about how the multiplier would be conceptualized 
looking at it from this perspective.   
 

Interviewer: If you do it that way, you said take that as a value and take that as a 
value, then what’s the relationship between this value and that value? 

Devon: This and this [points to -2 and then the integral]?  They don’t have to have 
any kind of relation, it’s just a random thing, times them together.  Multiply 
together. 

 
In this case, there is no special relationship between the -2 and the integral.  Instead, it is 
merely a multiplication between two values.  The integral would need to be computed to 
get its “value” and then that would be multiplied by -2, in this example.  In this case, this 
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reduces the symbol template “[]  ” down to the symbolic forms for basic multiplication 
“[] [].”  The symbols filling in the second box may look more complicated, being an 
integral, than other basic expressions and equations, but the conceptual schema is the 
same.  The two are simply “multiplied together.”  I call this the “scales the result” 
symbolic form for the integral. 
 There was also evidence that this “front multiplier” could be interpreted as 
correlating with the graph of a function that was symmetric about a vertical line.  There 
were few instances of this type of thinking during the interviews, but there was one 
important occurrence during the mathematics-day interview with Clay and Chris that 
helps explain this conceptual schema applied to the symbol.   
 Clay and Chris were working on the problem of finding the area between two 
curves in the plane.  They had named the two curves f1(x) and f2(x) and had started to 
create an integral that would match the scenario.  They drew a coordinate system where 
the y-axis split the curves directly in half, and used the x-values “–x” and “x” for the left 
and right endpoint (see Figure 4.6.3). (Note: their use of the limits –x and x is technically 
incorrect, but they do not interfere with the present discussion.) 
 
 
 
 
 
 
 
 
 
They had decided that based on the shapes of the curves, they could use the functions 

“f1(x)=
4

4
x ” and “f2(x)=

2

2
x ” (they later revise these—for our purposes here, the functions 

they use do not matter) and agreed that they would be able to calculate the area using the 

integral “
2 2

4 2
x

x

x x dx


 .”  As they started to write this down, Chris noted, 

 
Chris: Now we could just say from negative x to x, take the two integrals, subtract 

the difference [he writes 
2 2

4 2
x

x

x x dx


 ].  Or we could just double from 0 to x 

because it’s simpler [erases –x, writes 
2 2

0
2

4 2
x x x dx ].  Because the right side 

is a mirror of the left and stuff. 
Clay: Right, ‘cause it’s an even function. 
 

 In the middle of writing the integral, Chris decided that they could take advantage 
of the fact that the curves were symmetric about the y-axis to come up with an “easier” 
integral.  Instead of having an integral from –x to x, he could have an integral from 0 to x, 
which would just be doubled in order to recapture all of the area between the two curves.  

Figure 4.6.3 
   f1(x) 
 
                      f2(x) 
 
         -x         x 
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We can see evidence that this front multiplier was connected with the symmetric graph.  
Later I asked them to come back and explain in more detail why they could do that and 
what motivated them to do that. 
 

Interviewer: In your integral, you had started with a negative x up to x, and you 
decided, let’s just change that, and you put a 2 in front and you changed the 
bottom one to 0.  So talk a little more about that, as far as why can you do 
that?  What motivated you to say that’s a good thing to go ahead and do? 

Clay: Well, it’s, like, an even function.  So you know that whatever is on this side 
[points to the right half], it’s the same as that [points to the left half]. 

Chris: Yeah, so if you take an integral, the difference between the right side 
[moves hands over right half of the picture] and you add it to the integral, the 
difference on the left side [moves hands over left half of the picture], they’re 
going to be two equal values, so we might as well just make it a 0 and 
multiply by 2 for simplicity reasons. 

 
 It’s clear from their explanations that they saw the symmetry as a motivator to 
dividing the integral up and multiplying the result by 2.  They explained that the meaning 
of the 2 is tied to this symmetry, since the right half and the left half are equal to each 
other.  They produce two equal parts of the area, so “for simplicity reasons” you could 
find out the integral for only part of the area, and then double it to recapture the whole 
area.  I call this the “symmetric graph” symbolic form for the symbol template “[] .” 
 
The Dependence of the Differential “d[]”on either the Integrand or the Domain 
 
 The next symbolic form is specific just to the interaction of the integrand and the 
differential, “[]d[].”  While it is related to the adding up pieces and add up then multiply 
symbolic forms, it constitutes a separate piece of thinking that is not necessarily inherent 
in either of those symbolic forms.  Thus I claim that it constitutes a separate symbolic 
form, attaching a meaning specifically to “[]d[].”  Here the differential “d[]” is seen as 
dependent on the integrand.  During the physics-day interview, Devon brought this idea 
up several times.  In the first instance, Devon was working on an item in which he was 
trying to determine the mass of a box with varying density.  He drew a figure of a box in 
a three-dimensional coordinate system and then created the integral “ ( )

V
r dV .”  I 

prompted him to explain how the dV corresponded to the picture he had drawn. 
 

Interviewer: What would dV be over in your picture that you have over there? 
Devon: In this case it really depends… It’s just dV as corresponding to the rho r 

[ρ(r)].  Like I said, you could either integrate the horizontal and vertical way, 
or if…it depends on how the trend of the density is.  Let’s say, it depends on 
the distance from the origin to that point, then dV, maybe I’d use the 
coordinate system, the polar system, so dV would be a different shape.  Like I 
would have a different way to slice it.  Generally, I would say that it’s the dV 
that’s corresponding to the rho of r [ρ(r)]. 
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 Here Devon claimed that there was a “correspondence” between dV and ρ(r).  
However, there is something unique about this “correspondence.”  Most students, while 
drawing on an adding up pieces symbolic form, used the differential as a starting place to 
talk about the representative rectangles that were created.  They would draw in a 
rectangle, whose width was dependent on the differential.  While it is true that Devon 
was connecting the differential dV with the way the domain would be “sliced up,” it 
appears that the nature of these slices could not be determined without some previous 
knowledge of the integrand, in this case ρ(r).  Hence dV is dependent in some way on the 
integrand.  He then continued to provide an example of how the partition and the 
differential dV were connected. 
 

Interviewer: So maybe do a couple of examples, one where it is polar, or one 
where it’s not polar or something.  What are some ways you could represent 
dV over in your picture? 

Devon: Let’s say this is case 1, and the function rho r [ρ(r)] is something related 
just to    a x plus b y plus z [writes ax+by+z].  And then I would, it would be 
easy for me to slice it, I’ll show you a graph here, just vertical and horizontal 
[draws a box].  Just this way and then… [draws several lines going left to 
right, then back to front, then top to bottom.  See Figure 4.6.4a].   

 
 
 
 
 
 
 
 
Devon: It would be like, every little dV would be a small piece of box, a small 

box [draws a small box inside the larger box. See Figure 4.6.4b].  And really I 
would guess it would be a triple integral, with like, it would be dx, dy, dz.  
That would be one case.   

 
 
 
 
 
 
 
 
 
 Devon’s description showed that the integrand directly impacted what dV was.  It 
was not until he instantiated a particular function for ρ(r), namely “ax+by+z” that he was 
able to move forward on his partition.  Thus the partition and the differential dV were 
partially dependent on ρ(r).  Because it was “easy” to slice it up along the directions of 
the three axes, the natural shape for dV ended up being a “box.”  Devon then tried to 
come up with another example of a way to slice the domain up, but had difficulty coming 

Figure 4.6.4b 
 
(note: lines  
removed 
for clarity) 

Figure 4.6.4a 
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up with one because “this is a box” and for that reason “this is the easiest way to slice it.”  
He explained his difficulty in choosing another way to partition. 
 

Devon: I can’t really come up with a rho [ρ(r)] that I have to slice another way.  
But like the principle is, you have to be corresponding to the rho r [ρ(r)].  
Let’s say if this is not a box, but like a sphere, I can have multiple ways to 
slice it. 

 
 Devon stated that his difficulty in finding another way to partition the domain was 
based on the fact that he “can’t really come up with a rho [ρ(r)]” that would require a 
different type of “slicing.”  The method of partitioning, and hence the shape of dV, is 
dependent on the integrand, ρ(r).  “You have to be corresponding to the rho r [ρ(r)],” he 
claimed.  If a particular function or domain lent itself well to a spherical-type domain, 
then he could find another way to slice it.  Later in the interview, Devon was working 
with the integral equation “ dAPF

S ” and was trying to explain why the integral 

calculated the total force on a surface.  After explaining the relationship F = PA, he drew 
a picture and represented the surface, S, by a randomly drawn shape in the plane (see 
Figure 4.6.5a). 
 
 
 

 
 
 
 
 
Devon: Every…let’s say we slice it this way [slices region into a grid.  See Figure 

4.6.5b].  And this little piece would be dA [shades in one square].  At every 
little piece you can find the pressure at that point.  You can find the P and find 
the area of that little piece [draws arrow, writes P and dA], and multiply them 
and you get the force at that point [draws arrow and writes F].   

 
 
 
 
 
 
 
 
 
 
Devon: And again, that’s not the only way you could slice it.  Like you could do it 

like a radian, do a radian thing or system.  Let’s say it’s a circle [draws a 
circle and divides it.  See Figure 4.6.6].  Like every piece of pizza can be dA 
as well [draws arrow, writes dA].  And then you find the P at that, of that slice 
[shades in a piece, writes P]. 

Figure 4.6.5a 
 
 

Figure 4.6.5b 
 
 
 
 
 
     P 
    dA      F 
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 Devon again explained that the differential dA was dependent on the shape of the 
domain.  Here we have an interesting problem, which is that Devon does not invoke the 
integrand, P, as the main factor in determining the partition, and hence in determining dA.  
Instead, he spoke only about the shape of the surface, S.  Thus in contrast to the previous 
episode, he used the domain as the means of getting the shape of the dA.  While these two 
episodes are at odds in terms of what really determines the way dA comes into the 
picture, they both agree in the fact that Devon saw the dA as being dependent on 
something else.  This is a significant departure from the way that most other students 
approached the problem, where instead the differential was the thing responsible for the 
partition, not dependent on it.  Devon’s descriptions clearly show that he favored the 
latter. 
 This symbolic form for “[]d[]” is related in some ways to the adding up pieces or 
the add up then multiply symbolic forms because of the attention given to representative 
“slices” that explain what is being “added up.”  However, this form for “[]d[]” should not 
be confused as being an inherent or essential part of either of these broader symbolic 
forms.  There is evidence that many students held the adding up pieces and add up then 
multiply symbolic forms without necessarily having this specific conceptual schema 
attached to the symbols “[]d[].”  Most students discussed the differential as the major 
component in creating the representative rectangle, not as being dependent on it.   
 The exception to this is Devon, who used this thinking in several places during 
the physics-day interview.  Hence it could be said that either he has integrated this into 
his adding up pieces symbolic form, creating a new “advanced” version of this form, or 
he has compiled a separate symbolic form specifically for the differential “d[].”  All we 
can say for sure is that Devon drew on an understanding of the differential “d[]” as being 
dependent on either the integrand or on the shape of the domain.  However, we know 
Devon activated the adding up pieces symbolic form during both the math- and physics-
day interviews, but he only drew on this understanding of the differential during the 
physics-day interview.  Consequently, it appears that Devon has a separate symbolic form 
for the differential since he seems able to draw on the adding up pieces form without 
necessarily activating this thinking.  That is, to Devon this form for the differential “d[]” 
likely exists as a separate symbolic form, despite its close relationship to the adding up 
pieces symbolic form.  I call this the “dependent differential” symbolic form. 
 
 
 
 
 
 

Figure 4.6.6 
 
 
 
    P 
      dA 
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The Symbol “ [] ” as Representing a Region in Space 

 
 The symbol template “ [] ” deals with an integral whose domain is summarized 

by one symbol, as in the integral 
S

P dA .  There were two interpretations that the 

students placed on this symbol structure, though I would only consider one of them to be 
a “symbolic form.”  I discuss the other interpretation in the next section about other 
resources the students drew on.  In this section, I describe this symbol as being 
interpreted as a region marked off in space.  That is, the domain of the function consists 
of some two-dimensional object in the plane, or a three-dimensional object in three-
dimensional space.  In one example, Adam and Alice were discussing the integral 
“ dxxf

D )(2 ” and Adam had just explained to Alice that the D could represent any 

domain for the function f(x).  He used the examples “D:(1,2)” and “D:(2,3)” to explain 
the meaning of D.  However, he then added a different thought about the meaning of that 
symbol. 
 

Adam: I guess just as far as the domain goes, sometimes there’s a double integral 
[writes  R ].  There would be an R right here.  Which would be the region, 

like right here [draws a graph and shades in the region.  See Figure 4.6.7].   
 
 
 
 
 
 
 
 
 
Adam: So it would be like…dx…dy [writes  R dxdy ].  So the x would go 

from, the region for the x would be 1, 0, or something.  0 to 1, right here. But 
you could say, instead of writing these out, you could just put R [writes R 
underneath the graph] for the region.  So I guess that’s similar to the domain. 

 
 Adam takes the integral to potentially mean a “double integral.”  This led him to 
discuss a domain that would exist in a two-dimensional plane, as opposed to a one-
dimensional line.  He claimed that the D, which he renamed R, “would be the region.”  
He then drew a graph to explicitly demonstrate what “the region” might look like.  He 
marked off the boundaries of the region, and used the underlining bracket to show that 
the R represented the entire region.  By rewriting the integral as “  R dxdy ” he 

provided evidence that he specifically connected the subscript D (or R) as the region in 
the plane.  Thus the symbol means more than an interval of “x-values,” but means an 
entire bounded region in the plane.  The R stands in place for the shape of the region.  I 
call this the “region in space” symbolic form. 

Figure 4.6.7 
  1 
 
 
            1 
   R 
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4.7 Other Cognitive Resources of Interest 
 
 In addition to the number of symbolic forms that I have presented, there were two 
other significant cognitive resources that students drew on during the interviews.  I do not 
give these cognitive resources the label of “symbolic form” because they do not 
necessarily mesh a specific symbol with a specific conceptual schema.  However, they 
were stable elements of knowledge that the students drew on and worked with in their 
thinking.   
 

The Symbol “ [] ” as Shorthand for “ 
[]

[]
” 

 
 The first of these deals again with the symbol template “ [] .”  Throughout the 

interview this notation was very consistently thought of as a shorthand notation for the 

limits “ 
[]

[]
.”  This does not necessarily comprise a symbolic form, because there is not 

much by way of a “conceptual schema” that is being attached to the “ [] ” template.  

Rather, this symbol template is seen as equivalent to, and hence replaceable by, the 

similar symbol template “ 
[]

[]
.”  It constitutes a stable piece of knowledge that students 

may hold and then activate when thinking about integrals. 
 I gave Adam and Alice the integral “ dxxf

D )(2 ” and asked them to talk about 

what it meant.  Alice had some questions about what the D meant, because she said she 
had not seen that notation before.  Adam offered an explanation of D. 
 

Adam: Well I see, well it says with the domain.  I picture, there’s no value, there’s 
no boundaries, there’s no values for the boundaries.  You just put D to 
represent what boundaries there are going to be.  So, in an assignment you 
could put, like, the domain would be like 1 to 2. 

… 
Adam: Let’s say like 1, 2 or something like that [writes D:(1,2)].  Like I would 

imagine in a book, it would just, like, list a couple of different domains [writes 
D:(2,3)].   

Alice: Now, since it’s at the bottom, does that mean the highest one goes here and 
the lowest one here, or does it matter?  Like could you write it where you have 
the D up here [points to top of the integral sign]?   

Adam: No, this just represents, this isn’t really a value for the bottom boundary.  
It’s just saying between… for this domain.  Like sometimes there’s a 
question: what’s the domain for the function?  And it goes from 0 to infinity 
or 0 to 2.  This is just saying the domain would be such and such, and it would 
give you something.  Right here it’s ambiguous to what the domain is.  

 
 When I asked Adam to rewrite the integral using those domains he chose, he 
wrote “ dxxf

2

1
)(2 ” and “ dxxf

3

2
)(2 .”  Adam saw the D as standing in place for the 
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“regular” limits of integration, or two x-values.  The D was there to represent the generic 
domain, and it was to be replaced with two numbers as soon as those numbers were 
discovered.  For instance if “an assignment” told him to find the domain of the function 
and then integrate between those values, the D would be replaced by the interval that 
represented the domain for that function.  If the domain of the function was found to be 
something like (1,2) or (2,3), then the symbol template “ [] ” could be replaced with 

“ 
2

1
” or “ 

3

2
.” 

 This cognitive resource seems innocuous and is, in fact, a correct way to interpret 
the symbol “ [] ” much of the time.  However, there is strong evidence that the students 

overgeneralized this resource to most situations where this symbol template was used.  In 
the physics-day interview, the students were asked to interpret the integral equation 
“ dAPF

S .”  When Chris and Clay were given this interview item, they drew a two-

dimensional rectangular surface and eventually “sliced it up” into a grid of smaller 
rectangles (see Figure 4.7.1).  During their work, they changed the integral to be 
“

2

1

s

s
P dA .”  I asked them to discuss the limits s1 and s2 that they put on their integration. 

 
Interviewer: It was integral with S, and you translated that into an integral with an 

s1 and an s2.  So what exactly are s1 and s2? 
Clay: s1 is the minimum, where you’re starting from, I guess. And s2 would be 

the last one you’re integrating, but that would be inclusive of all the ones in 
between. 

Chris: s1 would be the first square here [points to lower left-hand corner of the 
surface, see Figure 4.7.1], and then s2 would be this square here because it’s 
where both x and y reach the maximum [points to upper right-hand corner of 
the surface]. 

 
 
 
 
 
 
 
 Like Adam, Chris and Clay viewed the symbol template “ [] ,” which in this case 

was “ S ,” as generic for the symbol template “ 
[]

[]
.”  They changed the integral to have 

two limits, s1 and s2, where the integration was to happen from s1 up to s2.  While there 
is certainly some merit in what they have said, as one could devise a summation that 
ranged from s1 to s2 in the plane using an appropriate ordering, it also does not regard 
“ S ” as denoting a region or boundary in the plane.  Instead, one symbol template is 

merely exchanged for the other.  This way of thinking does not place a conceptual 

Figure 4.7.1 
 
      s2 
 s1 
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schema on the symbol “ [] ,” but rather views it as an equivalent symbolic expression to 

the limits of integration, “ 
[]

[]
.”  Thus it does not attain the status of a “symbolic form” 

and I instead consider it simply, and more generically, to be a cognitive resource in the 
students’ knowledge system.  I call this cognitive resource the “shorthand for limits” 
resource.  I discuss the implications of this resource more in chapter five. 
 
Facing the Other Way and Negative Area  
 
 Some of the students demonstrated that they understood certain regions in the 
plane to contain “negative” area.  Here I explain the connection “negative area” had with 
symmetry in their discussions.  David and Devon were working on a problem and were 
trying to find the area of a region that was in the shape of a violin, as given in the 
following item. 
 

This picture shows the outline of a violin body.  If you wanted to know the area of 
this shape, how could you figure that out? 
  
 

 
 
 
They quickly agreed that an integration would be helpful, though David began his 
explanation with a warning that this integration needed to be done carefully.  He said that 
otherwise they could just end up with 0 for the result. 
 

David: I think you could [use an integral], but you’d have to be careful because, 
say you graphed it like this [draws axis through middle.  See Figure 4.7.2].  
Then if you use, like, integration without being attentive you just get 0.  
Because this is positive and this is negative [writes + and – in two halves].  I 
would suppose that this would be like negative f of x [writes –f(x)] and this 
would be positive f of x [writes f(x)]. 

 
 
 
 
 
 
 
 
 We can see that David had some idea of a positive area versus a negative area.  
However, an important feature in his explanation is that the symmetry of the shape 
seemed to prompt him to think of negative area.  There was nothing about the interview 
item that said anything about negative area, nor a choice of axes.  But David recognized 
that if this particular axis was chosen along the line of symmetry, there would be equal 
portions of “positive” and “negative” area.  As they continued to work on this concept, 

Figure 4.7.2 
     
      f(x) 
 
 
    -f(x) 

+ 

– 
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David revealed more about the connection between symmetry and negative area.  During 
their work they created the integrals “  

b

a

b

a
dxxfdxxf )()( .”  I then prompted David to 

go back and discuss the negative and positive areas in more detail. 
 

David: This [points to top half of figure] is pretty much the same as this one 
[points to bottom half of figure], just flipped around.  So I would suppose that 
they’re identical, the only thing is that this is negative, so it’s facing the other 
way.  It’s like a complete opposite reflection… And let’s say we were just to 
ignore the fact that… Y’know, let’s say we did this [points to integral 

 
b

a

b

a
dxxfdxxf )()( ], but instead we put a negative here [changes to 

 
b

a

b

a
dxxfdxxf )()( ].  We’d probably get a negative answer that is exactly 

the same as this one.  So positive x minus x.  And you get 0.  They just cancel 
out.  So I think that just paying close attention and knowing that this entire 
area is not 0, it’s the combination of two halves. 

Devon: Yeah, we’re doing that integration, it’s actually we calculate the signed 
value of it.  So this one would have a positive signed value, a signed area.  
And this one has a signed area too, and this, they’re equal but opposite, so 
they would cancel out if you don’t do it carefully.  

 
 There are two important ideas that come out of their discussion.  David talked 
about the bottom half of the figure as being “flipped around,” a “complete opposite 
reflection,” and as “facing the other way.”  His consistent use of these phrases makes it 
clear that a salient feature in this item for David was the symmetry between the top and 
bottom halves of the figure.  Then he took the region that “faces the other way” as the 
negative area.  Thus David saw some kind of directionality in the assignment of positive 
or negative area.  Devon called this “signed area,” meaning that each area actually has a 
positive or a negative sign attached to it.  The symmetry of the figure, which prompted 
the notion of directionality, specifically activated the concept of “negative area.”  There 
appears to be a link between graphical symmetry and negative area in the way David and 
Devon were thinking about this problem.   
 The second idea connects a curve that “faces the other way” to a function with 
negative values.  David and Devon had assigned the top half of the violin body the 
function f(x) and then given the bottom half the function –f(x).  The “negative area” that 
they got from the integral corresponds to this “negative function.”  By stating this, David 
and Devon showed that there is a cognitive connection between the following: (1) 
graphical symmetry, (2) curves that “face the other way,” (3) negative area, and (4) 
negative function values.  The symmetry of the graph activated knowledge that cast the 
bottom half of the object as a curve that “faces the other way,” which in turn cast the area 
of the bottom half as negative area.  Thus we see a connection between the symmetry and 
the idea of negative area.  This is not a symbolic form, because these students are not 
attaching this meaning to symbols, but are rather ascribing meaning to a graphical 
feature.  I claim that this is, generically, a cognitive resource instead.  I call it the “facing 
the other way” resource. 
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4.8 Summary of Results 
 
 In chapter five I elaborate further on the activation of certain symbolic forms 
during the mathematics-day interview and the physics-day interview.  I also elaborate on 
the similarities and differences between the symbolic forms activated during the two 
interviews.  In this section I present a summary of the symbolic forms that were activated 
during each interview item for the mathematics-day and physics-day interviews.  In order 
to do this, first I display a summary of the various symbolic forms that students drew 
upon during the interviews.  I want to be clear that this does not represent an exhaustive 
list of all possible symbolic forms relating to the integral template.  However, they are the 
ones that I had evidence for during the interviews.  The symbolic forms I detected are 
listed in the following, Table 4.8.1. 
 
Symbol 
Template 

Brief Description of Conceptual Schema Name of 
Symbolic Form 

[]

[]
[] []d  Integrand represents a graph and the differential 

determines the axis used.  Limits and axis create 
the actual sides of a fixed, static region in the 
plane.  The integral is the area of this region. 

Area 

[]

[]
[] []d  Integrand and differential create rectangles, each 

with a small piece of the quantity.  The integral is 
an addition over these pieces.  The limits indicate 
the starting and stopping point of the addition. 

Adding Up Pieces 

[]

[]
[] []d  Integrand originated from another function.  The 

link between them rests in the differential.  The 
limits represent values of this original function 
whose difference is measured. 

Function Mapping 

[]

[]
[] []d  Differential determines a partition in which a 

small quantity of the integrand exists.  These small 
quantities are added up and then the result is 
multiplied by the variable of the differential. 

Add Up Then 
Multiply 

[] []d  The integral yields a function, which is a generic 
version of a numerical value.  This result is 
waiting for limits to be attached so a more specific 
numerical result can be calculated. 

Generic Answer 

[] []d  Integrand originated from another function.  The 
link between them rests in the differential.  The 
meaning of the integral is to search for this 
original function. 

Function Mapping 
with No Limits 

 
[]

[]
[1] [2] []d

 

Similar to the area form.  However, the unique 
structure of the integrand suggests that the fixed 
area is situated in between two curves in the plane. 

Area between [] 
and [] 

[]   The multiplier on the front can be combined with 
the integrand function.  This alters the area, 
rectangles, or function involved in the integration. 

Melds with 
Integrand 
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[]   The multiplier on the front is seen as a value to be 
multiplied with the value of the integral, thus 
scaling the result.  This also may reduce to 
symbolic forms for multiplication. 

Scales the Result 

[]   The function is symmetric, yielding the possibility 
of finding a smaller part of the integral and then 
doubling it (or some other magnification) in order 
to recapture the entire integral. 

Symmetric Graph 

[]d[] The differential is dependent either on (1) the 
function of the integrand or (2) the shape of the 
domain. 

Dependent 
Differential 

[]  The symbol “ [] ” is seen as representing a region 

in space. 

Region in Space 

[]  The symbol “ [] ” is seen as shorthand for “ 
[]

[]
.” Shorthand for 

Limits* 
Graphs Certain parts of the figure are deemed to be 

“facing the other way” which corresponds to 
negative area. 

Facing the Other 
Way* 

Table 4.8.1: Summary of the symbolic forms detected during the interviews  
* These two do not represent symbolic forms, in that they do not constitute a conceptual 
schema blended with a symbol template.  However, they appear to be stable cognitive 
resources. 
 
 To facilitate a summary of which symbolic forms the students drew on during 
each interview item, I now recap the interview items that were given to the students 
during each interview.  Not every item was given to every pair of students, depending on 
the way the interviews progressed.  See chapter three for a more detailed discussion on 
the interview items.  Here is a listing of the interview items presented to the students for 
quick reference.  Note that Ethan did not receive any interview items from the 
mathematics-day interview. 
 
Interview Items for the Mathematics-Day Interview 
 
ITEM Math1 (presented to all student pairs, excluding Ethan) 
 
Two wires are attached to two telephone poles (see picture).  Suppose we wanted to know 
the area between the two wires.  How could you figure that out? 
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ITEM Math2 (presented to all student pairs, excluding Ethan) 
 
2

2
3

1

2 x dx
x

  Compute and then discuss this integral. 

 
 
 
ITEM Math3 (presented to all student pairs, excluding Ethan) 
 
I want you to look at each of the following integrals and talk about what they mean.  Talk 
about each one individually. 

sin( )x     
0

2

xe dx     

 
 
 
ITEM Math4 (presented to all student pairs, excluding Ethan) 
 
I want you to look at each of the following integrals and talk about what they mean.  Talk 
about each one individually. 

 dx        dxt  

 
 
 

ITEM Math5 (presented to all student pairs, excluding Ethan) 
 
Suppose we had a function f(x) with a domain D.  What does this integral mean? 

2 ( )
D

f x dx   

 
 
 

ITEM Math 6 (presented only to David and Devon to produce more data) 
 

This picture shows the outline of a violin body.  If you wanted to know the area of 
this shape, how could you figure that out? 
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Interview Items for the Physics-Day Interview 
 
ITEM Physics1 (presented to all student pairs) 

 
This shows a box with varying density. (dark = more dense, light = less dense)   
Suppose you wanted to know the box’s mass. How could you figure that out? 
 
 
 
ITEM Physics2 (presented to all student pairs) 
 
The durability of a car motor is being tested.  The engineers run the motor at varying 
levels of “revolutions per minute” over a 10 hour period.  Denote “revolutions per 
minute” by R. 

What is the meaning of the integral 
600

0
R dt ?   

 
 
 
ITEM Physics3 (presented to all student pairs) 
 
A 2-dimensional surface (S) experiences a non-uniform pressure (P) and we want to 
know the total force exerted.  We can use the surface’s area (A) to compute this through 
the integral:   

F = 
S

P dA . 

Why does this integral calculate the total force exerted? 
 
 
 
 
ITEM Physics4 (presented to all student pairs, excluding Ethan) 
 

We know from kinematics that acceleration and velocity are related by ( )( ) d v ta t
dt

 .  We 

can rearrange this equation and integrate to get the equation  
 

a dt dv   
 

What does this equation mean?  Why are these two terms equal to each other? 
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ITEM Physics5 (presented to all student pairs, excluding Adam/Alice and Ethan) 
 
Fy is used to denote the amount of a force in the y-direction.  ΔU is used to denote the 
change in potential energy.  These two concepts are related through this equation: 

f

i

y

y
y

U F dy    . 

Explain this equation.  What does each part of the equation/integral mean? 
 
 
 
ITEM Physics6 (presented to all student pairs, excluding Bill/Becky, and Ethan) 
 
 
 
This represents a metal bar with varying mass along its length 
(lighter = less dense, less mass / darker = more dense, more mass) 
 

How could you figure out the center of mass for the bar along its length? 
 
 
Summary of Symbolic Forms Activated during the Interviews 
 
 I now display a summary of the symbolic forms the students activated during each 
of the interview items.  I list the items of the mathematics-day and physics-day 
interviews, as well as the students’ names, and in each cell I put the symbolic forms that I 
have evidence those students activated during that item.  I want to note here that it is 
absolutely possible that the students drew on more than the symbolic forms I have listed 
for them.  However, I am limited to what they verbally stated or wrote down and can only 
report the symbolic forms that I have evidence for. 
 For each student pair, I list the symbolic forms, or the other two cognitive 
resources, that are supported by the data for each interview item.  If the students drew 
heavily on a particular symbolic form, I display that form in bold lettering.  At times it 
was clear that only one of two students was drawing on a particular symbolic form, and 
that the other was not.  If this is the case, I make that distinction in the table by listing the 
symbolic form next the student’s name in the cell.  Also, occasionally there is scant 
evidence that a symbolic form may have been activated in a student’s thinking, but the 
evidence is not necessarily robust.  I indicate this through the use of parenthesis to show 
that that form may have been active, though I cannot substantiate it with confidence.  If a 
student did not provide any evidence of symbolic form activation during a particular 
interview item, I denote that with a dash.  The summary of the symbolic forms that the 
students drew upon in the mathematics-day interview is listed in Table 4.8.2 and the 
physics-day interview in Table 4.8.3. 
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St
ud

en
ts

 Adam/ 
Alice 

Becky/ 
Bill 

Chris/ 
Clay 

David/ 
Devon 

M
at

h 
1 

Area, Adding Up 
Pieces 

Area, Area 
between [] and [], 
Bill: Adding Up 
Pieces,  
Becky: Function 
Mapping 

Area, Adding Up 
Pieces, Symmetric 
Graph, Area 
between [] and [] 

Area, Area 
between [] and [], 
Devon: Adding 
Up Pieces,  
David: Function 
Mapping 

M
at

h 
2 

Area, Function 
Mapping, Facing 
the Other Way, 
Generic Answer, 
Function Mapping 
with no Limits 

Area between [] 
and [], Bill: Area, 
Becky: Function 
Mapping 

Area, Area 
between [] and [], 
Adding Up Pieces 

Function 
Mapping,  Area 
Between [] and [] 

M
at

h 
3 

Area, Function 
Mapping 

Bill: Area, Bill: 
(Function Mapping 
with no Limits), 
Bill: Melds with 
Integrand,  
Becky: Function 
Mapping, Becky: 
Generic Answer  

Function Mapping, 
Generic Answer, 
Area, Adding Up 
Pieces 

Function 
Mapping, 
(Generic Answer), 
Function 
Mapping with no 
Limits, Adding 
Up Pieces, 
Dependent 
Differential, Area 

M
at

h 
4 

Function 
Mapping, Area 

Function Mapping, 
Bill: Area, Bill: 
Melds with 
Integrand 

Function Mapping, 
Adding Up Pieces 

Function Mapping 
with no Limits 

M
at

h 
5 

Scales the Result, 
Area,  
Adam: Shorthand 
for Limits, Adam: 
Region in Space 

Scales the Result, 
Bill: Shorthand for 
Limits, Bill: 
Adding Up Pieces 

Shorthand for 
Limits, Area, 
Melds with 
Integrand, Adding 
Up Pieces, Scales 
the Result 

Function 
Mapping, 
Shorthand for 
Limits, Melds 
with Integrand, 
Scales the Result 

M
at

h 
6 N/A N/A N/A Area between [] 

and [], Facing the 
Other Way 

Table 4.8.2: Breakdown of symbolic forms (or other resources) by students, by item 



 94 

St
ud

en
ts

 Adam/Alice Becky/Bill Chris/Clay Devon 
(David was 
not present) 

Ethan 

Ph
ys

ic
s 1

 
Adam: 
Adding Up 
Pieces,  
Alice: -- 

Bill: Add Up 
Then 
Multiply, 
Becky: -- 

Add Up 
Then 
Multiply, 
Melds with 
Integrand,  

Region in 
Space, 
Dependent 
Differential, 
Adding Up 
Pieces 

Add Up 
Then 
Multiply, 
Region in 
Space 

Ph
ys

ic
s 2

 

Function 
Mapping 

Bill: Area, 
Adding Up 
Pieces,  
Becky: 
(Function 
Mapping) 

Area, 
Adding Up 
Pieces, 
(Function 
Mapping) 

Adding Up 
Pieces, 
(Function 
Mapping) 

Add Up 
Then 
Multiply, 
Area 

Ph
ys

ic
s 3

 

Adding Up 
Pieces, 
Shorthand for 
Limits  

Shorthand for 
Limits, 
Adding Up 
Pieces, Bill: 
Add Up Then 
Multiply 

Shorthand for 
Limits, 
Adding Up 
Pieces, Area 

Adding Up 
Pieces, 
Region in 
Space 

Add Up 
Then 
Multiply, 
Area 

Ph
ys

ic
s 4

 

Function 
Mapping 

Becky: 
Function 
Mapping,  
Bill: Adding 
Up Pieces, 
Bill: Area  

Adding Up 
Pieces, 
Generic 
Answer, 
(Area) 

Adding Up 
Pieces, 
(Function 
Mapping), 
(Generic 
Answer) 

N/A 

Ph
ys

ic
s 5

 

N/A Becky: 
Function 
Mapping,  
Bill: Area, 
Bill: Adding 
Up Pieces 

Adding Up 
Pieces, 
Scales the 
Result 

Adding Up 
Pieces 

N/A 

Ph
ys

ic
s 6

 

Area,  
Adam: 
Adding Up 
Pieces, 

N/A Adding Up 
Pieces 

Adding Up 
Pieces 

N/A 

Table 4.8.3: Breakdown of symbolic forms (or other resources) by students, by item 
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CHAPTER 5: DISCUSSION AND CONCLUSIONS 
 
 This chapter discusses the results as presented in Chapter four.  The symbolic 
forms are examined (and other cognitive resources I documented) that were drawn on by 
the students throughout the interviews, focusing first on the symbolic forms students 
drew upon during the mathematics-day interview and then focusing on the symbolic 
forms of the physics-day interview.  This leads to a discussion on the intersection and 
disjunction between the symbolic forms activated in these two different contexts.  The 
relationships between the nature of the interview items and the symbolic forms that the 
students drew on during the interviews are examined.  Additionally, the apparent 
difficulties in moving from univariate (or one-dimensional) integrals to multivariate (or 
multi-dimensional) integrals are explored.  Finally, this chapter looks at the relationships 
between the presentation of integrals in mathematics and physics textbooks and the 
symbolic forms that the students activated during the interviews.  Based on this 
recommendations are made for future research that can be done to further the 
understanding of how students apply mathematics to physics and engineering and how 
curriculum design can be informed through this research. 
 
5.1 Discussion of Resource Activation during the Interviews 
 
Resource Activation in the Mathematics-Framed Interview 
 
 Table 4.8.2 in Chapter four details the symbolic forms and other cognitive 
resources that the students gave evidence of drawing on during the mathematics-framed 
interview.  First, I want to remark about the variety of symbolic forms activated.  Of the 
four “major symbolic forms,” three of them were activated by the students from every 
pair.  This provides one interesting result from this interview: The problematic add up 
then multiply symbolic form is absent from the students work during the mathematics-day 
interview.  That is, there was not a single pair of students that showed any evidence of 
thinking of the integral in terms of adding up the “quantity” in the integrand and then 
multiplying that resultant sum by the “quantity” indicated by the differential.   
 As discussed in Chapter two, the framing employed by the students will affect the 
choice of resource activation.  Descriptions of traditional mathematics courses state that 
they often contain equations and expressions that do not necessarily carry any physical 
meaning (Torigoe & Gladding, 2007; Dray & Manogue, 2004b).  Therefore, in some 
sense there is no “quantity” of the integrand (by “quantity” I am referring to the object 
that the variable refers to, such as a force, a pressure, a velocity, and so forth).  There is 
also no apparent “quantity” indicated by the differential.  Rather, the symbols used for the 
integrand and differential most often represent numerical values.  The integrand is 
comprised of some function that contains a dependent variable.  The differential is 
usually an indication that the computation of the anti-derivative should be done with 
consideration to that particular variable.  Thus, it could be that as students are given 
expressions in a mathematics-framed setting, they are not looking for the variables to 
represent any particular quantity.  Thus we might expect a lack of the add up then 
multiply form during the mathematics-framed interview. 
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 Next, as seen in Table 4.8.2, the area symbolic form figured heavily in the 
students’ thinking during the mathematics-framed interview.  Each interview pair 
activated this particular form multiple times during the interview.  The activation of this 
form would not be surprising for the first interview item, since it specifically asked the 
students to determine a way to figure out the area between the two wires.  It is natural 
that if the students created an integral, the integral would be connected to the concept of 
area.  However, this symbolic form was activated multiple times throughout the 
interview, and was widely present across all of the pairs of students.  This is true even for 
interview items that simply asked the students to compute an integral.  There is one 
exception to this, namely Becky, who did not often draw on the area symbolic form 
during either interview except in a few places where she agreed with the work that Bill 
had already produced.  I discuss the case of Becky later in this chapter.  Additionally, the 
area between [] and [] symbolic form, which is a special case of the area form, was 
activated regularly for three of the four interview pairs (there was not sufficient evidence 
for it during the interview with Adam and Alice).  Thus it is possible to conclude that the 
area symbolic form figured heavily in these students’ thinking during the mathematics-
day interview and that it possibly represents one of the more common types of symbolic 
forms for the integral that students might employ in a mathematics setting. 
 After the area symbolic form was the function mapping symbolic form in terms 
of how often it was activated during the mathematics-day interview.  Each student pair 
drew on this form multiple times throughout the interview.  This suggests that in a 
mathematics-framed setting, students are more inclined to understand the integral as a 
pairing of the integrand function with some other function, which can be found through a 
relationship mediated by the differential.  This result is also not necessarily surprising 
given the traditional nature of calculus instruction, which is often seen as procedure-
focused (Meel, 1998; Park & Travers, 1996).  Yet one counterexample to this claim 
exists in Chris and Clay, who did not rely as much on the function mapping symbolic 
form, but instead drew heavily on the adding up pieces symbolic form.  In fact, this 
symbolic form was activated in every mathematics-day interview item during their 
interview.  Often it played a central role in their discussion of the integrals.  This 
occurred even in items where the task simply involved a computation of an integral.  As 
soon as they began talking about what the integral meant, they would return to the idea 
that it was a summation of many small pieces that eventually added up to the overall 
total.  The key idea in most of their conceptual thinking was the use of representative 
rectangles to describe how the integral worked and why certain properties were true.  
This symbolic form also played a prominent role in their physics-day interview, which I 
discuss shortly.   
 Much of the students’ work seemed based on the activation of these three major 
symbolic forms.  The other symbolic forms and resources were evidenced in several 
places, but did not have a central role in the way that the major forms did.  However, the 
fact that each interview pair drew on a range of different resources shows that the 
students did have what we could call a “large pool” of cognitive resources at their 
disposal for thinking about the integral in a mathematics-framed context.  They had 
resources for dealing with the meaning of a multiplier on the front of the integral, the 
difference between definite and indefinite integrals, and the relationships between visual 
representations and the symbols of the integral.  In fact, several of the students held 
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multiple resources for understanding these, and were able to draw on more than one 
during the same episode in order to discuss the meaning of the integral.  For example, 
Bill, Chris, Clay, Devon, and David each discussed the meaning of the -2 in the integral 
“ dxxf

D )(2 ” both from the perspective of the -2 interacting with f(x) to create a new 

function as well as from the perspective of the -2 scaling the result of the integral.  
Additionally, Chris and Clay viewed a multiplier in front of an integral they had created 
as corresponding to the area of a “symmetric graph.”   
 These findings seem to corroborate with the perception that students do, in fact, 
learn from their mathematics classes (Dray & Manogue, 2004a), in contrast to the idea 
that they cannot apply mathematics to physics and engineering because they do not know 
the mathematics.  Thus the results of this study do not support a deficit perspective of 
students (NCSM, 2008) and support an underlying notion of cognitive resources, which is 
that students do have productive cognitive resources available to them.  The difficulties 
students may experience in applying mathematics to physics and engineering may not 
necessarily be due to a lack of mathematical knowledge.  Instead, it may be rooted in 
which resources the students “choose” to activate (and why) in a physics and engineering 
setting.  It is possible that students are not activating resources they hold that would be 
productive and are instead activating resources that are not the best fit for the task.  I talk 
about this more after I have discussed the symbolic forms the students activated during 
the physics-day interview. 
 
Resource Activation in the Physics-Framed Interview 
 
 There is a marked shift in the symbolic forms that appear to have been activated 
in the physics-framed interview setting.  Unlike in the mathematics-day interview, the 
students relied somewhat less on the area symbolic form and significantly less on the 
function mapping symbolic form during the physics-day interview.  Instead, in most cases 
they drew heavily on the adding up pieces symbolic form (or the similar add up then 
multiply form).  There are only a few exceptions to this, and I discuss the specific cases 
of these students later.  Furthermore, there is a drop in the overall range of symbolic 
forms that the students activated during this interview.   
 In the cases of Clay, Chris, Devon, Adam, and Bill most of their thinking seemed 
largely based in the adding up pieces symbolic form.  Ethan, on the other hand, seemed 
to stably draw on the add up then multiply symbolic form.  Bill, Chris, and Clay also 
showed evidence of sometimes activating an add up then multiply form.  This finding is 
worth noting.  Bill, Chris, and Clay all drew largely on the adding up pieces form, but 
also at times drew on the add up then multiply form.  It appears possible that these two 
forms can exist simultaneously in a student’s cognition.  This finding is supported by the 
fact that multiple students, three out of the nine to be specific, seem to have both of these 
forms in their cognition and drew on both of them during the physics-day interview.  The 
number of instances that some students employed the problematic add up then multiply 
symbolic form was certainly less than the number of instances they used adding up 
pieces, but it nonetheless appears that the two symbolic forms can co-exist in their 
cognition.  Thus, we cannot observe a student who seems to be activating an adding up 
pieces form and conclude that they must not hold the add up then multiply form.  It would 
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take more research to understand how these forms are compiled in students’ cognition 
and how students choose which of these forms to activate. 
 The area symbolic form played a diminished role during the physics-day 
interview.  Devon did not draw on the area form at all, though Bill, Adam, Chris, Clay, 
and Ethan all did to some extent.  The amount that they drew on the area form was 
reduced compared to the mathematics-day interview, and was certainly significantly less 
than the amount they drew on the adding up pieces form.  Becky did not often draw on 
the area form in either the mathematics-day or physics-day interview, except 
occasionally in agreement with Bill’s work.  Similarly, the function mapping symbolic 
form was activated significantly less during this interview.  It did not play a role at all in 
Bill’s or Ethan’s work, and Chris, Clay, and Devon relied on it only occasionally.  It was 
drawn on somewhat more by Adam and Alice, though less than during the mathematics-
day interview.  Becky was the only student to rely heavily on the function mapping form 
during the physics-day interview. 
 Finally, the students seem to have drawn on a smaller subset of the symbolic 
forms than they did during the mathematics-day interview.  Generally, there was no 
activation of the graph-related resources, including the symmetric graph and facing the 
other way resources.  The students’ work often made extensive use of graphs, so it is not 
possible to say that the absence of these resources is due solely to the lack of graphs used 
in the students’ work.  Instead, it appears that the physics-framed items were less 
amenable to producing a standard two-dimensional graph in the plane.  Similarly, there 
was an absence of resources around the indefinite integral.  In the interview item with 
acceleration and velocity, I had intentionally not placed limits on the integrals to generate 
conversation.  In most cases the students simply attached limits to the integrals, such as t0 
and t1 or vo and vf, and continued working.  When I asked them about the limits, the 
conversation reverted to an explanation of what limits mean in general.  Only in two 
cases did the students discuss the meaning of not having limits on the integral in the 
context of this interview, and both times at my prompting.  On the other hand, the 
students did activate the region in space symbolic form more often.  Devon drew on this 
resource twice during the interview and Ethan drew on it once.   
 
5.2 Intersection and Disjunction between Resource Activation 
 
 These results provide us with four findings regarding the four major symbolic 
forms, which I recap here for convenience.  (1) The area symbolic form was prevalent 
during the mathematics-day interview for all student pairs, but was less prevalent during 
the physics-day interview for all student pairs.  (2) The adding up pieces played a small 
role for most students in the mathematics-day interview (with the exception of Chris and 
Clay, who drew on it extensively), but played a significant role in most of the students’ 
thinking during the physics-day interview (with the exceptions of Becky and Ethan).     
(3) The function mapping form was activated frequently for all student pairs in the 
mathematics-day interview, but was activated only occasionally in the physics-day 
interview, especially with Ethan, Bill, Chris, and Clay, who provided only scant evidence 
of its activation.  (4) The add up then multiply symbolic form was not evidenced at all 
during the mathematics-day interview, but was drawn on heavily by Ethan, and 
occasionally by Bill, Chris and Clay, during the physics-day interview.  However, due to 
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the design of this study, these results cannot necessarily be generalized to the entire 
population. 
 Likewise, we can see three basic findings about the activation of the other 
symbolic forms and cognitive resources during the two interview contexts.  (1) Students 
drew on a large range of symbolic forms while working with the integral in the 
mathematics-day interview, but drew on a smaller subset of these forms during the 
physics-day interview.  (2)  Though graphs were often used during the physics-day 
interview, the students provided less evidence of “graph-specific” symbolic forms 
pertaining to the integral than they did during the mathematics-day interview.                
(3) Symbolic forms related to the indefinite integral were more common during the 
mathematics-day interview than they were during the physics-day interview. 
 These findings already begin to provide a picture of the differences in symbolic 
form activation in mathematics-framed versus physics-framed settings.  In mathematics-
framed settings it appears that students might rely more on resources that pertain to either 
the graphical nature of a function, or to the computational procedure of finding an anti-
derivative.  The functions typical to a mathematics classroom, such as f(x) = 2x2 – 3x or 
f(x) = ex+2, are easily drawn as graphs in a two-dimensional plane.  When working with 
functions like these during the mathematics-day interview, the students often acted first 
to draw the graph of the function in the plane.  Many of the students then used this graph 
to mark off a fixed region “underneath the graph” and discussed the integral as 
calculating the area of that fixed region.   
 Similarly, much attention in a mathematics course on integrals is spent going over 
calculational procedures for finding the anti-derivative of the integrand.  Usually the 
integral is taught after the derivative and is demonstrated to be the “inverse” of the 
derivative.  The meaning of the integral can be taken to be “undoing a derivative,” which 
corresponds to the function mapping symbolic form.  The students showed ample 
evidence of understanding the integral symbol template as representing a function that 
originated as the derivative of another function.  The integral then “looks” for this 
original function.  That is, the integral reverses the process of differentiation. 
 By contrast, it appears that the adding up pieces and the related add up then 
multiply symbolic forms dominate in the physics-framed setting.  In the physics-day 
interview, the students most often drew on notions related to partitioning the domain into 
tiny pieces, finding the quantity over each piece and adding them up.  In fact, the only 
real difference between these two symbolic forms is what exactly is being added up.  
Thus, when the students were confronted with tasks related to those they would see in a 
physics classroom, the area and function mapping forms became somewhat dormant 
while the adding-related symbolic forms became dominant. 
 
Characteristics of the Tasks and Symbolic Form Activation 
 
 If we look at the nature of the tasks given in the mathematics-day and physics-day 
interviews, we can see some relationships between the tasks and the type of symbolic 
forms the students activated in working with each item.  First, consider the integrals that 
were explicitly presented to the students in the mathematics-day interview.  They 

consisted of the integrals 
2

2
3

1

2 x dx
x

 , sin( )x , 
0

2

xe dx ,  dx ,  dxt , and 2 ( )
D

f x dx  .  
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These integrals were meant to resemble integrals normally seen in a mathematics course.  

They all make exclusive use of the dependent variable x.  The expressions 2
3 ,2 x

x
, 

)sin( x , xe , and 1 are all one-dimensional functions that can be relatively easily graphed 
in the x,y plane.  Many students demonstrated an initial inclination to graph the functions 
that were given as the integrand.  Often the students did not even attend much to 
accurately representing the graph, except for sin(x) and ex, which graphs appeared to be 
memorized.  They often drew a “squiggly” graph and said something along the lines of 
“let’s just say this is the graph of the function.”  It was enough to recognize the functions 
as being graph-able in the x,y plane.  From there, many of the students drew vertical lines 
up from the horizontal axis, which made the left and right side boundaries of a fixed 
region.  This was usually followed by “shading in” the fixed region.  Thus, the relative 
ease of graphing these types of functions seems to have provided a frame for the students 
to work with.  We can see the relationship between the types of expressions used in the 
integrals, their ability to be easily graphed in the plane, and the activation of an area 
symbolic form. 
 Once the concept of the integral has been established in a mathematics course, 
considerable attention is given to the computation of various types of integrals.  During 
subsequent calculus courses, entire chapters are devoted to studying the anti-derivatives 
of increasingly complicated functions.  In the mathematics-day interview, the integrals all 
had functions that could be considered “routine” expressions, in the sense that they are all 
common functions to work with in a calculus class.  Students learn early on the 
derivatives and anti-derivatives of sin(x), xn, x–n, and ex.  When the students were working 
with these integrals in the interviews, they quickly, and often without explanation, 
determined their anti-derivatives.  This led to discussions about the integral as reversing 
the derivative process.  Thus, the types of functions used here may be linked with an 
understanding of the integral as “finding an anti-derivative” that matches with the 
integrand.  We can see the relationship between the types of expressions used in the 
integrals, the ease of finding their anti-derivative, and the activation of the function 
mapping symbolic form. 
 On the other hand, consider the items used during the physics-day interview.  The 

integrals that the students were explicitly given to work with were the following: 
600

0
R 

dt , F=
S

P dA , a dt dv  , and 
f

i

y

y
y

U F dy    .  Though sharing similar symbol 

templates to those used in the mathematics-day interview, there are significant 
differences in the integrals used during the physics-day interview.  Each integral makes 
use of variables that are connected to physical quantities and measurements, such as 
revolutions per minutes, time, pressure, area, acceleration, velocity, energy, force, and 
distance.  These meanings associated with the variables in the physics-day interview are 
absent in the mathematics-day interview.   
 Another significant feature of these integrals is that none of the integrands are 
represented as “functions of the differential.”  By this I mean that the integrand is not an 
explicit function written in terms of a dependent variable, which coincides with the 
variable of the differential.  The integrand R is not written as a function of the differential 
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variable t.  Similarly P is not written as a function of A nor is a written as a function of t.  
The function Fy does provide an indication that it is a function with y as a dependent 
variable, but the formulation of the function is not provided.  The function-relationship is 
tacit.  Also, in some cases it may not be possible to write the integrand as a function of 
the differential variable.  For example, it does not make sense to try to formulate a 
function for P in terms of the variable A.  That is, it would not make sense to write the 
integral 

S

P dA  as something like dAAA
S
  )2( 2 .  This formulation does not properly 

take into account the meaning of the variable A, which is meant to denote the area of the 
surface.  Instead, an integral such as this one is usually calculated by breaking dA into 
component pieces, such as dx and dy.  Then the pressure could be written as an explicit 
function in terms of x and y.  But the integral as it is written does not necessarily express 
the relationship between P and A.  This is in stark contrast to the mathematics-day 
integrals, where the integrand is explicitly written as a function of x, where x is also the 

variable of the differential, as in the example 
2

2
3

1

2 x dx
x

 .   

 
The Function Mapping Symbolic Form in Both Contexts 
 
 Consider a student attempting to activate the function mapping symbolic form 
with the integral 

S

P dA .  This form suggests that the integrand, P, originated from 

another function and that the derivative of this other function with respect to A resulted in 
P.  However, if we had such an original function, what does it mean to take its derivative 
with respect to A?  A derivative process with respect to A might not be meaningful for 
students.  Also, would we view P then as a function of A?  What exactly is P(A)?  What is 
its explicit formulation?  Again, a formulation of P as a function of A may not be 
meaningful to students since A is representing the size of an area, and not necessarily a 
specific location in the domain.  Finally, how is it that mapping P(A) with its original 
function explains why this integral calculates the total force?  Even if one could find an 
anti-derivative of P(A) it may not provide any meaningful reason for why the anti-
derivative should result in the overall force.  The anti-derivative lacks the explaining 
power of some of the other symbolic forms.  It is easy to see how the function mapping 
symbolic form quickly becomes less productive in this particular situation.  We have a 
good example of attempting this in the case of Becky, who seemed to predominantly 
draw on the function mapping form during both interview sessions and showed little 
evidence of activating the other major symbolic forms. 
 Becky appeared to draw on the function mapping form in every item in which she 
participated during both the mathematics-day and physics-day interviews.  She had 
completed three of the four calculus courses, and was currently enrolled in the fourth, the 
multivariate course.  She was able to quickly “solve” the integrals she and Bill were 
given and was able to explain the rules of integrals to show how she arrived at her 
answers.  She gave clear explanations about what she saw as the difference between 
definite and indefinite integrals.  She provided some evidence of holding the area 
symbolic form, though it did not appear to drive her thinking as much.  The evidence for 
this is two-fold.  First, she did not draw graphs herself and did not talk about the “area 
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model” of the integral until after Bill had provided a graph and started talking about the 
integral in that way.  When I specifically asked her to look at the integral “  dx ” using a 
graph, she essentially passed the task over to Bill, citing his ability to work with graphs as 
better than hers. 
 

Interviewer: So Becky, you were talking about “I’ll write that as 1, dx.”  So if you 
were to represent that graphically, how could you represent what that integral 
is saying? 

Becky: A graph…Good call… [to Bill] Do you want to try a graph?  You’re 
better at graphs than I am. 

 
Second, she expressed the perception that she was not well-versed with graphs and did 
not feel as comfortable working with them.  When she and Bill were trying to explain the 
need for a constant “+ c” to be added onto the anti-derivative, Bill attempted to use a 
graph to provide a reason.  She expressed that she did not use graphs often.     
 Becky: [to Bill] You like graphs, huh?  That’s great.  I never, ever draw graphs. 
 These were not isolated cases and are representative of her approach during the two 
interviews. 
 During the physics-day interview, Becky continued to draw heavily on the 
function mapping symbolic form at the relative exclusion of the other major forms.  This 
seemed to correspond to a general discomfort for her during this interview.  There is 
evidence of this throughout the entire interview.  While working on the problem of 
determining the mass of a box, Becky stated, “Honestly, I have no idea what to do if it’s 
varying.”  As Bill made progress on the item by drawing on the adding up pieces 
symbolic form, Becky would ask him to explain what he was doing, adding comments 
such as “I have no clue” and “Honestly, I have no idea.”  Then after Bill provided his 

thoughts on the next integral, “ 
600

0
R dt,” she again stated, “Sure, works for me.  I have 

no idea.”  Since she had remained quiet during most of the item, I asked her to comment 
on what Bill had done. 
 

Interviewer:  What would you say to that, Becky? 
Becky:  Honestly, I don’t do any problems like this.  I don’t like problems that are 

word problems, personally.  But I wouldn’t really know how to interpret it 
much more than what we’ve explained. 

 
While they worked on the integral of pressure over area, “

S

P dA ,” I asked them to 

explain the relationship between P and dA.  After Bill provided his thoughts about it, 
Becky interjected, 
 

Becky:  Nobody ever does it in terms of that problem, never do problems in terms 
of real life like that.  [Bill laughs]  To be honest, they don’t.  You do it on 
paper, but you don’t actually get to see something. 
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 While Bill made use of the adding up pieces symbolic form often throughout the 
interview, Becky seemed to struggle with these items.  While it is possible that a range of 
issues contributed to her discomfort with the items, it did seem to correspond to the way 
she thought about the problems.  Her usual approach, which was based mostly in the 
function mapping symbolic form, did not help her deal with these problems as well.  
Thus, while she held productive resources pertaining to the integral, such as the function 
mapping and area forms, their activation for the physics-day interview items did not 
seem as helpful.  Becky becomes an example of a “successful” mathematics student who 
demonstrated that she had sound mathematical knowledge and a pool of productive 
cognitive resources, but then struggled to apply this knowledge to a physics setting. 
 
The Adding Up Pieces Symbolic Form in Both Contexts 
 
 By contrast, consider the adding up pieces symbolic form in the physics context.  
This form takes the integral as dividing a region or object into pieces, finding a small 
amount of a quantity within each piece of the partition, and adding up these small 
amounts in order to capture the overall total.  If we reanalyze the integral “

S

P dA ” from 

this perspective, we can see this symbolic form’s utility in a physics-framed setting.  If 
we start with a particular region, S, this symbolic form will take the region and partition it 
into many small pieces (potentially “infinitely” many pieces).  The differential dA 
corresponds to these small pieces.  Within the tiny area of each piece we have a particular 
pressure at that point.  The pressure over that tiny piece yields a small amount of force 
over that same tiny piece.  Thus each tiny piece is thought to contain a small amount of 
force.  The forces throughout all of these pieces are then added up in order to produce the 
overall force exerted on that region.  This symbolic form allows the student to do three 
things: (1) to use the differential as a means of looking at the region, or object, (2) to 
retain the physical meaning of the variables in use in the integral, and (3) to provide a 
reason for why the integral calculates the total force on the region.  Thus activating this 
form is helpful in interpreting these mathematical symbols in a physics-framed problem 
in a productive way.  I use the case of Chris and Clay to show the utility of this symbolic 
form in understanding integrals in these physics-framed items.   
 Chris and Clay regularly used the adding up pieces symbolic form during both the 
mathematics-day and physics-day interviews.  Thus, they showed comfort and flexibility 
in drawing on this symbolic form.  When they were given the task of explaining the 
integral “

S

P dA ” and why it calculated the force, Chris and Clay began by stating that 

they would want to express P as a function of A, showing evidence of drawing on the 
function mapping form.  They seemed stuck for about one minute as they continued to 
think about the integral from this perspective.  The turning point for them came as they 
begin to think about the relationship between the pressure and the area. 
 

Chris: Pressure times area… 
Clay: Right, because F equals P times A.  Like, force is equal to pressure times 

area. 
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Once they settled on the idea of thinking about the relationship between P and A, Chris 
began working on a graph to show the relationship.  He started with a two-dimensional 
graph representing the surface area, S (see Figure 5.2.1a). 
 
 
 
 

 
 
 
 
 
Chris: [Find a] particular pressure at one point.  So we’d want to calculate… so it 

would need to be a three-dimensional graph, this axis would be the P value at 
a particular point [draws in third axis.  See Figure 5.2.1b].  So that means our 
area would have to be with respect to x and y.  So in order to calculate force, 
we’d have infinitesimal cubes, again, which we could calculate.  And we’d 
have pressure being dP. 

 
 
 
 
 
 
 
 
 
 Chris used the idea of relating pressure to area to talk about finding the pressures 
at particular points over the surface.  This gave him the idea to draw in a “pressure axis” 
which then gave rise to small “infinitesimal cubes” over the surface.  Each cube 
represented a little bit of pressure, or “dP,” over the small area, dA.  As they continued 
down this path, they gained momentum in their explanations.  Clay pushed this idea 
further by extending it to the integral. 
 

Clay:  And by making it an integral, you have all the small bits of area times the 
pressure at that location.  And then you have a total force because of that. 

 
At this point they had provided evidence of drawing on the adding up pieces symbolic 
form, which continued to guide their thinking for the remainder of the item.  Clay used 
the “adding” concept in the integral to state that “you have a total force because of that.”  
Thus, this symbolic form seems to have aided in making sense of the integral equation.  
Chris then relied on this symbolic form to explain the overall idea of the integral. 
 

Chris:  We’re adding up, here we have force equals pressure times area.  So since 
we have this being pressure [references “P axis,” see Figure 5.2.1b]… so we 
have pressure times dx times dy.  And since dx dy is an area, then we have a 

Figure 5.2.1a 
         y 
 
 
 
 
    x 
 

Figure 5.2.1b 
         y        
          P 
 
 
 
    x 
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pressure times an area.  So we’re actually finding, so the volume of this 
[points to box] essentially is force. 

… 
Chris:  So, um, since we’re finding the integral, so these infinitesimally small 

cubes which consist of pressure and then dx and dy which would be dA.  So 
we’re finding the, we’re integrating over the infinitesimally small volumes, 
which each one composes of a force.  So we’re integrating a force and adding 
up all the infinitesimally small pieces of force to find the total force. 

 
 Chris and Clay transitioned from drawing on the function mapping form to the 
adding up pieces form as they worked on this item.  Once they activated the adding up 
pieces form they began to make progress on explaining what the integral meant as well as 
how it calculated the total force.  It gave them a framework for understanding why the 
integral equation made sense.  Hence, as stated earlier, we see evidence that drawing on 
this form is productive in a physics-framed setting and that it is helpful in order to 
analyze the region or object, retain the physical meaning of the variables in use in the 
integral, and provide a reason for why the integral calculates the total force on the region.   
 
The Add Up Then Multiply Symbolic Form in Both Contexts 
 
 Related to the topic of the adding up pieces form is the add up then multiply form, 
which only appeared during the physics-day interview.  It seems that there is something 
about the form that facilitates its activation during physics-framed contexts.  Like the 
adding up pieces form, it relies on dividing the region or object of interest into pieces, 
then looking at a quantity within each piece.  The quantities within each piece in this case 
are the quantity of the integrand.  In the case of the integral “

S

P dA ,” the quantity within 

each piece is thought to be pressure.  Thus, tiny pressures are added up over each piece, 
determining the overall pressure over the whole surface.  This resultant pressure is then 
multiplied to the area, which is the variable of the differential, to determine the force.  
Why then would this form only be activated in a physics-framed setting? 
 This form is dependent on looking at the quantities involved in an integral.  As 
previously discussed, integrals found in mathematics-framed settings typically do not 
carry associated meaning.  Thus, there is less opportunity to look for a quantity when the 
function involved does not seem related to any quantities.  For example, in the integral 

“
2

2
3

1

2 x dx
x

 ,” the function in the integrand does not suggest any particular quantity.  

This contrasts with the integral “
S

P dA ,” where the integrand represents pressure, which 

is a physical quantity.  Thus, there appears to be less motivation to draw on this symbolic 
form, which specifically deals with quantities, in a mathematics-framed setting than in a 
physics-framed setting. 
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5.3 The Difficulties Transitioning from One Dimension to Multiple Dimensions 
 
 One noteworthy difference between the productivity of the symbolic forms that 
students activated during the mathematics-day interview and the physics-day interview 
centered on the “dimensionality” of the problem.  By this is meant the dimension of the 
function and differential used in the integral.  For example, the integral dxe x

2

1
 contains 

the function ex which is only dependent on one variable, x.  Hence, this is a one-
dimensional function, or a univariate function.  The differential, dx, has as its variable, x, 
which again, is a one-dimensional variable.  The limits are 1 and 2, which correspond to 
single values of the variable x.   
 Many of the integrals used in physics settings are quite different in nature.  The 
integral dV

R   can be used for finding the mass of a box, where ρ refers to the density 

of the box, V is its volume, and R is the spatial region making up the box.  The integrand, 
ρ, consists of a function that indicates the density at a given point in the box.  However, 
the box is three-dimensional in nature, meaning that ρ might depend on three spatial 
variables, x, y, and z.  That is, it could be thought of as the function ρ(x,y,z), which 
depends on more than simply x, unlike the previous integral.  Furthermore, the variables 
are not symbolically represented in the differential dV.  Here the variable V is also multi-
dimensional in that it also can be thought to be made up of x, y, and z, yielding the 
differential units dx, dy, and dz.  Also, the “limits” on the integral, R, refer to an actual 
spatial region instead of two simple numerical values that can be placed in for the 
variable x.  That makes this integral much more complex than the previous integral.  
However, the symbolic template is nearly identical to the more simple integral dxe x

2

1
.  

Integrals making use of multivariate functions and differentials are more common in a 
physics context, making them somewhat different in nature than those typically seen in a 
mathematics course. 
 
The Area Symbolic Form in Both Contexts 
 
 One instance where the dimensionality of the integral played a significant role 
was in the productivity of the area symbolic form.  As previously discussed, the area 
form was activated often throughout the mathematics-day interview by all of the students.  

When the students were given integrals such as 
0

2

xe dx ,  dx , or 
2

2
3

1

2 x dx
x

 , they 

commonly initiated the discussion by drawing the graph of the integrand.  As they 
continued to talk about the meaning of the integral, they would mark out vertical lines at 
the numbers dictated by the limits of integration (and often invented limits for the integral 

“  dx ”).  This produced a bounded region in the plane, which they had a strong tendency 

to shade in, as an indication that the integral was represented by the area of the region.  
This symbolic form provided a useful framework for the students in explaining the 
meaning of the integral, how the parts of the integral fit together, and what the integral 
was calculating.   
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 On the other hand, there were a few instances where this symbolic form became 
less productive during the physics-day interview.  Essentially, if the integrand could be 
represented as a one-dimensional function whose graph could be created in the plane, 
then the form remained productive for expressing the meaning of the integral.  However, 
when the students drew on this form during items with “multivariate” integrals, this form 
appeared to have lost some of its utility.  The two integrals of this nature in the interview 
were the integral of pressure “ dAP

S ” and the integral of density “ dV
R  .”  Bill drew 

heavily on the area form in both interviews and provides an example of the productivity 
of the form in the two contexts. 
 During the mathematics-day interview, Bill regularly activated the area symbolic 
form as a means of making sense of the integral.  After he and Becky had calculated 

(numerically) the integral “  
2

1

2
3

2 dxx
x

,” I began asking them about different parts of 

the integral symbol template. 
 

Interviewer: When you see the 1 and the 2, what does that mean? 
Bill: It means to me that if we’re looking at this on a graph, this is 1 and this is 2.  

Let’s just say it looks something like that [draws in squiggly graph], it would 
be the area in between 1 and 2 [draws in vertical lines and shades in region]. 

 
The area symbolic form offered a useful framework for discussing the meaning of the 
integral.  The integrand was represented by a squiggly graph, the 1 and 2 were 
represented by vertical lines marked out on the x-axis, and the integral itself was the area 
of this fixed region.  In the next item, Bill was discussing the meaning of the integral 
“ dxe x

0

2
” and was trying to justify why the limits would end up yielding a negative area. 

 
Bill: Let’s see, for this… if I drew e to the x… [draws ex graph].  When I look at 

this, when I try to justify why it’s negative area and not positive area, cause 
you normally...  Like with the identity [a reference to a rule], it would be from 
0 to 2, but it would be negative.  So if it was redrawn, like that [draws in –ex 
graph].  

 
 Again, Bill drew on the area form to analyze the meaning of the integral, and 
attempted to use it to explain why the integral would produce a “negative area.”  By 
drawing a graph in the negative region of the plane (i.e. “–ex”), it made more sense to Bill 
that it would be a negative area, and hence a negative value for the integral.  It allowed 
him to discuss the conceptual meaning of the symbols.  These episodes are not isolated 
cases, but are representative of Bill’s work throughout the mathematics-day interview.  
Thus the area form provided a useful cognitive resource to activate in thinking about 
these integrals. 
 Next, consider some of Bill’s work during the physics-day interview.  As he and 
Becky were trying to describe the integral “ dAP

S ” and why it calculated the total force, 

Bill was again drawing on the area symbolic form.  (Note that in the following excerpt he 
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talks about a graph of F, though Becky later corrects him that it should be P and he 
changes F to P.) 
 

Bill: If we had, if we plotted this.  Area versus, change in area versus F, total F.  
[draws graph with A-axis, F-axis, and a squiggly graph.  See Figure 5.3.1].  It 
would be something like that.   

 
 
 
 
 
 
 
 
 
 
Bill: …So if we took the integral of that, it would be, this would be, it would be 

all this [shades in the region underneath the F-graph].  And that would be the 
total force it would exert.  … I feel like I skipped a step. 

 
 In attempting to make sense of this integral, Bill again drew on the area symbolic 
form.  He created a graph, and though at first he named the graph F, Becky later 
corrected him that it should be P.  He shaded in the region and claimed that “all this 
[area] would be the total force it would exert.”  However, Bill appeared to feel that this 
explanation was lacking and followed this explanation with, “I feel like I skipped a step.”  
He seemed to experience a degree of uncertainty that he did not exhibit during the 
mathematics-day interview.  During that interview, he confidently drew on the area form 
to explain the integrals.  Here the area form seems to be missing something for him.  A 
few moments later, I asked Bill and Becky to explain the meaning of the differential, dA.  
Bill referred back to his drawing of the graph while he talked. 
 

Interviewer: So conceptually, what does dA mean? 
Becky: Change in area. 
Bill: Yeah, the change in area [points to horizontal axis].  Like if you compared, 

because area isn’t just automatically changed over time.  It’s hard to say… 
But I think if you took the, if you measured the pressure and there’s that much 
area [puts chalk on a point on the horizontal axis], and you took the pressure 
of some other lesser area [puts chalk on another point on the horizontal axis], 
and you subtracted, that would be what dA is, the change in area. 

 
 Continuing to draw on the area symbolic form, Bill attempted to use the graph he 
had constructed to explain the meaning of dA.  The use of his graph led him to an 
explanation that might be more closely related to univariate integrals.  For example, in a 
mathematics course, an integral such as 

2 2

1
x dx  might be explained by graphing the 

function x2 and finding the area between x = 1 and x = 2.  The x-values underneath this 
portion of the graph range from 1 to 2.  By using this one-dimensional graph to 

Figure 5.3.1 
         F 
 
 
 
 
     A 
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understand the integral, Bill is drawing the conclusion that A is ranging between two A-
values, like in this integral. Thus he believes that the “value” of A must be changing in 
this scenario.  Different points along the horizontal axis represent different sizes of A.  
Thus the meaning of dA is to look at one area and then another smaller area and then to 
subtract to get the difference between the two areas. 
 By activating the area form in this context, Bill ended up feeling less confident in 
his explanation as well as drawing an incorrect conclusion about the meaning of dA.  His 
one-dimensional graph did not offer a useful context for describing the integral.  We can 
see that while Bill productively used this symbolic form in several instances, it did not 
allow him to satisfactorily explain the meaning of this multivariate integral.  Instead, it 
was not until Bill began drawing on the adding up pieces form that he made progress in 
fully explaining the meaning of the integral and why it calculated the total force.  I now 
describe this transition. 
 
The Productivity of the Adding Up Pieces Form in Multivariate Cases 
 
 After Bill had drawn on the area form to explain the integral, he appeared 
unsatisfied.  At this point both Bill and Becky became silent and did not continue to work 
on the item.  They showed no signs of making any more progress, so I inserted a prompt.  
I asked them to think about the table I was sitting at as the surface area, S, and I described 
a non-uniform pressure that was exerted on the table from one end to the other.  I then 
asked them whether this integral would be useful for describing this situation.  Bill 
jumped in immediately with an answer. 
 

Bill:  I would say yes, because this integral is describing a situation where there is 
non-uniform pressure and a defined total area.   

… 
Bill:  I believe that, uh, I’m just trying to relate this to rectangles.  If we just took 

the area of this piece of the rectangle here, this part of the table, and found the 
total force exerted on that.  You would get some kind of estimate.  Because if 
you added all those… it wouldn’t be exact, it would be an estimate.  But as 
you make that area smaller and smaller and smaller, and then it would get 
better and better, until it gets close to 0 and it would be an integral.   

 
 Here Bill had switched his thinking and showed evidence of drawing on the 
adding up pieces form.  He was now talking about dividing the surface area into 
“rectangles” where each rectangle would have some amount of force exerted on it.  These 
could be added up to get an estimate.  Then as the area of these rectangles became 
“smaller and smaller” it would “become an integral.”  After some discussion, Bill 
summarized his thinking and showed strong evidence of drawing on the adding up pieces 
form, which enabled him to explain why the integral calculated the total force. 
 

Bill: [Draws a rectangle on the board to represent the table]  Let’s just say this is 
dA [references a small strip at one end of the rectangle].  This whole thing is 
dA, this whole area [again references small strip].  And you have pressure 
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pushing on that, on all that area.  So you can multiply P times dA and you get 
the total force pushed, exerted on that part of the table.  

… 
Bill: Yeah, if you make that area smaller and smaller and smaller and then add up 

those infinite, those really small areas on the whole table, you get the total 
force. 

 
 By activating the adding up pieces symbolic form, Bill explained the meaning of 
dA, the relationship between P and dA, and how the integral calculated the total force 
exerted on the surface.  Thus we can see the productivity of this form when dealing with 
multivariate integrals.  The area form did not provide Bill with a context for explaining 
these relationships in the integral, because it focused him on an apparently less useful 
one-dimensional graph.  The area form, then, is productive in some circumstances, but 
not as productive in others.  Meanwhile, the adding up pieces form became significantly 
productive in dealing with the multivariate integral. 
 
The Symbol “ [] ” in Multivariate Contexts 

 
 Another instance where the dimensionality of the integral played a role in the 
productivity of students’ cognitive resources was in the interpretation of the symbol 
template “ [] .”  In univariate cases, the students held resources that were productive for 

making sense of this symbol in a way that matches commonly accepted notions about this 
symbol.  However, in multivariate cases, the resources that some students activated did 
not yield an interpretation that matches commonly accepted notions about the symbol.   
 First, let me be clear that the students do appear to hold productive resources for 
handling this symbol in both the univariate and multivariate cases.  As described in 
chapter four, the students may hold a cognitive resource that recasts this symbol as 

“shorthand notation” for the more standard-looking limits of integration “ 
[]

[]
.”  In 

univariate cases, this is appropriate since the dimension of the variable of the differential 
is one.  For example, in the integral dxx

D  )12( , the differential has the variable x, 

which is often considered to be a one-dimensional variable.  Thus, D could be interpreted 
as being a particular portion of the domain of the function 2x + 1, meaning that it could 
take on values such as D:(1,2) or D:(-2,5) and so on.  When Adam and Alice were 
working with the integral “ dxxf

D )(2 ,” Adam explained to Alice the meaning of the 

D on the integral. 
 

Adam: Well I see, well it says, with the domain.  I picture, there’s no value, 
there’s no boundaries, there’s no values for the boundaries.  You just put D to 
represent what boundaries there are going to be.  So, in an assignment you 
could put, like, the domain would be, like, 1 to 2. 

… 
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Adam: Let’s say, like 1, 2, or something like that [writes D:(1,2)].  Like I would 
imagine in a book, it would just, like, list a couple of different domains [writes 
D:(2,3)].   

 
Adam demonstrated the possession of a cognitive resource that considered the template 

“ [] ” as shorthand for the other template “ 
[]

[]
,” since D stood in place of numbers such 

as (1,2) or (2,3). 
 Adam also provided an example of a symbolic form that interprets the symbol 

template “ [] ” in the multivariate case.  After the previous explanation that he gave to 

Alice, he continued by expanding the meaning of the symbol for a multivariate integral. 
 

Adam: I guess just as far as the domain goes, sometimes there’s a double integral 
[writes  R ].  There would be an R right here.  Which would be the region. 

   
Adam then drew a figure in the plane which he labeled R.  Thus he showed that he also 
possessed a symbolic form that takes this symbol to mean a region in the plane. 
 All of the students gave evidence of holding the “shorthand for limits” cognitive 
resource.  However, in the multivariate case some of the students attempted to activate 
this resource which provided interpretations of the symbol that do not fit with the 
commonly accepted convention.  While Chris and Clay were working on explaining the 
meaning of the integral equation “ dAPF

S ” they drew on this resource to interpret the 

symbol S.  They replaced this symbol template with the symbol template “ dAPF
s

s
2

1
.”  

They offered the following explanation for doing this (see Figure 5.3.2). 
 

Clay: s1 is the minimum, where you’re starting from, I guess. And s2 would be 
the last one you’re integrating, but that would be inclusive of all the ones in 
between. 

Chris: s1 would be the first square here [points to lower left-hand corner of the 
surface], and then s2 would be this square here because it’s where both x and 
y reach the maximum [points to upper right-hand corner of the surface]. 

 
 

 
 
 
 
 
 
 In the interview with Bill and Becky we have a similar interpretation of S as being 
shorthand notation for a range of values.  While they were working with the integral, they 

Figure 5.3.2 
 
      s2 
 s1 
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changed the template to “ dAPF
S

 0
.”  I asked them to explain further why they could 

change the S to be 0 to S.   
 

Becky: I think in reality, it’s trying to say that it’s from the total, like, I mean we 
could say S is, let’s say 5.  You’re trying to find from 0 to 5 or you could do 
from 1 to 6.  So it doesn’t really matter where you do it from, at least that’s 
how I interpret it, as long as you get the total amount in it.  

… 
Bill: I pretty much agree with that, by not saying the bounds, I think it just implies 

that it’s just a range from whatever to whatever.  Like if it’s 0 to S, or 1 to S 
plus 1. 

 

Bill and Becky interpret the symbol “ [] ” as being shorthand for the limits of integration 

“ 
[]

[]
.”  In their explanation they claim that S could take on a particular value, such as 5, 

and then the limits of integration would need to be a distance of 5 apart.  Thus the limits 
could be anything such as “0 to 5,” or “1 to 6,” or “1 to S+1.”  The cognitive resource 
“shorthand for limits” appears to be active in their thinking at this point. 

 For Chris, Clay, Bill, and Becky, the symbol template “ [] ” was interpreted as 

being a shorthand notation for the limits of integration “ 
[]

[]
.”  This interpretation of the 

symbol template “ [] ” does not fit as well with commonly accepted notions for certain 

types of problem, particular when the integral is multivariate.  Placing the symbol S on 
the integral sign in this way generally means that the entire region S should be partitioned 
and the pressure should be found over each piece.  It does not necessarily signify, 
however, that there is one particular “starting place” for the addition, nor an “ending 
place” for the addition.  This contrasts with the univariate case, where there is a definite 
“starting” and “ending” point for the addition because of the one-dimensional nature of 
the variable of the differential.  The flexibility of the symbol is somewhat lost when 
replaced with the other limits notation.   
 These four students all successfully drew on the adding up pieces to make 
meaning out of the integral; however, their interpretation of the symbol S did not reflect 
the typical meaning given to that symbol.  While this may not have affected their 
understanding of the rest of the integral symbol template, this resource may create the 
potential for confusion when the correct interpretation of the symbol becomes important.  
For example, in order to compute this integral, it would most likely have to be broken 
down into a multiple integration where the region S is separated into an x component and 
a y component.  The integral would then need to be calculated over each component 
individually.  If the symbol S has already been converted into a range s1 to s2, or into 
numbers such as 1 to 6, this could potentially be problematic for the student.  Suppose the 
pressure equation is given in terms of x and y, such as P(x,y) = x + y.  If we apply this 
cognitive resource to the symbol S as these students did, then the integral might become 
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something along the lines of dAyxF  
6

1
)( .  This formulation may require a much 

more rigid calculation method for this integral, causing less flexible solution strategies.  
Thus, this cognitive resource is more productive in some situations, especially those 
dealing with univariate integrals, but can become less productive if applied to situations 
dealing with multivariate integrals. 
 
The Cause of the Difficulties in Multivariate Cases 
 
 This chapter describes some of the difficulties that were apparent when the 
integrals were multivariate.  In general, the area symbolic form and the function mapping 
symbolic form became less productive for the students in explaining the meaning of 
multivariate integrals.  By contrast, the adding up pieces form became significantly 
productive in explaining the integral and how the integral fit into a larger equation.  
However, caution should be employed here to point out that there is not always sufficient 
data to explain the “cause and effect” of the difficulties in these multivariate cases.  There 
appear to be at least two components to dealing with multivariate integrals that could be 
at play, and possibly more.  First, there is the overall utility of the adding up pieces form 
and the potential ineffectiveness of the area and function mapping forms in multivariate 
cases.  It seems that the students’ possession and activation of the adding up pieces form 
is important for understanding and explaining these cases.  This provides one possible 
cause for students’ difficulties with multivariate cases: the students do not hold the 
adding up pieces form.   
 Second, there is additional conceptual baggage in multivariate integrals that does 
not necessarily exist in univariate cases.  For example, there are multiple variables to 
mentally juggle.  Often multivariate integrals are calculated by holding one variable 
constant (something that does not explicitly happen in univariate cases) while integrating 
over another variable.  As another example, it could be possible that univariate functions 
are easier to graph on a coordinate system than multivariate functions.  Conceptualizing 
this spatial region might require additional cognitive elements.  Thus it is possible that 
another explanation for the difficulties that students have is that they simply do not have 
a sufficient framework for understanding integrals in a multivariate context.  It is possible 
that a student could hold the adding up pieces symbolic form and productively draw on it, 
but that the student does not have an adequate understanding of multivariate cases, which 
inhibits the activation of the adding up pieces in a productive way.   
 This means that there are multiple possible explanations for the “cause and effect” 
of why students may have difficulties with multivariate integrals.  They might struggle 
because they do not have a well-compiled adding up pieces symbolic form to draw on, or 
they might simply lack a framework for understanding multivariate integrals.  It is 
possible that there are other alternatives for this difficulty as well.  Some students, such 
as Bill, do provide enough evidence to propose a hypothesis regarding their difficulties 
with multivariate integrals.  It appears that he struggled while trying to draw on the area 
symbolic form, but that once he drew on the adding up pieces form he was able to 
successfully explain the meaning of the integral and its relation to the integral equation it 
was in.  Thus, Bill held the necessary conceptual framework of a multivariate integral and 
it was the particular forms that he relied on that caused his difficulty.  For him, holding 



 114 

and activating the adding up pieces form was sufficient for overcoming this difficulty.  
But for other students, this may not be the case. 
 
5.4 Current Curriculum and Symbolic Forms 
 
 I have discussed how the interview items correlated with the kinds of symbolic 
forms the students activated.  There is likewise evidence that typical calculus and physics 
textbooks bear a resemblance to the symbolic forms the students drew on during the 
interviews.  If this is the case, then one can argue that current curriculum encourages the 
type of symbolic form activation seen in the students’ work during the mathematics-day 
and physics-day interviews.  Additionally, some of the intersections and disjunctions in 
symbolic form activation between the two contexts may exist in typical classroom 
settings. 
 Consider typical sections from standard calculus books (Briggs & Cochran, 2009; 
Stewart, 2008; Salas, Hille, & Etgen, 1999).  There are relationships between the material 
presented and the more common symbolic forms that the students drew on during the 
mathematics-day interview.  In Stewart’s Single Variable Calculus: Early 
Transcendentals, the chapter on integration opens with a discussion of the area 
underneath an arbitrary graph.  The first section states, “We begin by attempting to solve 
the area problem: Find the area of the region S that lies under the curve y = f(x) from a to 
b” (p. 355).  This paragraph is followed by a picture of a graph with the area shaded in 
between a and b on the x-axis (see Figure 5.4.1). 
 
 
 
 
 
 
 
 
 
This opening discussion resembles the students’ area symbolic form.  It draws a 
“squiggly” graph above the x-axis, marks off a and b, and represents these boundaries by 
vertical lines.  The result is a fixed region in the plane that is shaded in to show that the 
integral represents the area of the fixed, bounded region. 
 The next section of the book then describes the Riemann sum process.  The x-axis 
between a and b is partitioned off with equal segments and rectangles are drawn up to the 
height of the curve over each partition.  The areas of the rectangles are then 
systematically added up.  Many drawings are given that depict the region being divided 
into thinner and thinner rectangles.  The book then states, “From Figures 8 and 9 it 
appears that, as n increases, both Ln and Rn become better and better approximations to 
the area of S” (Stewart, 2008, p. 358).  It then provides a definition of the “area” of the 
region S as  

])(...)()([limlim 21 xxfxxfxxfRA nnnn



. 

Figure 5.4.1 
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We can see the adding up pieces in the process it describes through Riemann sums.  
However, this explanation is closely tied to the area of the region.  Thus it continues to 
reinforce the thinking typical in the area symbolic form. 
 The calculus textbooks reviewed in this section all spend the opening section 
developing the concept of the integral through the area “underneath” various graphs.  
They also all spend the second section on definite integrals by exploring the notion of 
Riemann sums.  The third section in each book is a discussion about the fundamental 
theorem of calculus followed by multiple sections developing various techniques of 
integration, such as the substitution rule.  This uniformity suggests a common approach 
to teaching integrals in a mathematics course.  The integral is conceptually grounded in 
the area of a fixed region, is explored in more detail using a Riemann sum process, and 
then culminates with the notion that an integral is an anti-derivative.  The majority of the 
attention over the next several sections and chapters is given to clever ways to determine 
the anti-derivative of various functions.  Thus one of the major ways that students are 
taught about the integral is that it is the process of finding an anti-derivative. It could be 
said that the reification of the anti-derivative process could be responsible for the function 
mapping symbolic form.  The relationship between the presentation of the calculus 
textbooks and the area symbolic form and the function mapping symbolic form can be 
seen.  The meaning of the integral becomes intertwined with either the area of a fixed 
region or the “game” of finding an anti-derivate.   
 Similarly there are relationships between the presentation of integrals in physics 
textbooks (Serway & Jewett, 2008; Tipler & Mosca, 2008), engineering textbooks 
(Hibbeler, 2006; Hibbeler, 2004), and the symbolic forms students activated during the 
interviews.  In Tipler & Mosca’s Physics for Scientists and Engineers, the center of mass 
is introduced by calculating the center of mass between two objects.  The text then 
prompts the reader to extend this concept to multiple objects.  “We can generalize from 
two particles in one dimension to a system of many particles in three dimensions.  For N 
particles in three dimensions, 

NNcm xmxmxmxmMx  ...332211 ” (p. 150). 
The text then describes the meaning of the center of mass relative to this equation.  
Following is a paragraph that states that the center of mass for a continuous object will lie 
somewhere along the line or plane that the object is on.  “To find the position center of 
mass of an object, we replace the sum in Equation 5-18 with an integral: 

dmrrM cm 


 ” (p. 150). 
 The center of mass in this section of the book is given as an integral after a 
discussion of the center of mass as a summation.  In fact, the book states that the 
summation can be “replaced” by an integral.  This connection between the integral and a 
summation resembles the adding up pieces symbolic form that the students often drew on 
in the physics-day interview.  The summation between the masses and lengths is 
extended to an “infinite number of objects,” giving the summation as an integral. 
 We can see the difference between the presentation of the integral in mathematics 
textbooks (Briggs & Cochran, 2009; Stewart, 2008; Salas, Hille, & Etgen, 1999) and 
physics  and engineering textbooks (Serway & Jewett, 2008; Tipler & Mosca, 2008; 
Hibbeler, 2006; Hibbeler, 2004).  These differences mirror the differences in the 
symbolic forms that the students activated during the mathematics-day interview and the 
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physics-day interview.  This shows the likelihood of the students’ epistemologies and 
framings about the two contexts to be influencing their choice of cognitive resources.  
Hence, there is validity to the idea that applying mathematics to physics and engineering 
implies more than simply learning the mathematical content in a mathematics course.  
Different meaning-making needs to happen within each context.  Students appear to draw 
on resources that match the type of context they find themselves in.  However, if the 
student has not activated the more useful symbolic forms in a physics context, this can 
produce difficulty in making sense of the integrals presented. 
 In light of the concern for the perceived disconnect between mathematics learning 
and the application of that knowledge to physics and engineering contexts, some 
educators have been developing curriculum to bridge the two disciplines.  The “Vector 
Calculus Bridge Project” at Oregon State University (Dray & Manogue, 2006) seeks to 
switch the emphasis of traditionally taught calculus concepts from the limit to the 
differential, from slope to rate of change, and from area to total amount.  They argue that 
these changes in emphasis will have the effect of making generalizations of the 
mathematical concepts to physical situations easier.  The “Studio Calculus/Physics” 
course designed at the University of New Hampshire (Meredith & Black, 2001) aims to 
help students “see the use of the calculus immediately” (p. 5) by mixing introductory 
calculus and introductory physics together into one class.  The students would take a 
double time-intensive course that is essentially a calculus class and a physics class in one.  
The material would be woven together so that as the students learn about the calculus 
concepts they would immediately apply them to the physics contexts.  The “Workshop 
Physics” presented by More and Hill (2002) at the University of Portland attempts to 
coordinate the timing of the concepts taught in a calculus course and a physics course in 
order to “take advantage of the opportunities each subject has to motivate and reinforce 
the other” (p. 2).  For example, in this curriculum the concept of the differential is closely 
tied to error calculations and Riemann sums are related to the electric field of a line 
charge.  The instructors of the two courses time their lessons to draw on each other’s 
material. 
 These curricular projects are attempting to remove some of the potential difficulty 
in applying mathematics to physics and engineering by blending the two topics more 
closely.  However, the impact and success of these curricula may be affected by the 
extent to which they facilitate appropriate cognitive resource activation.  As seen in the 
results of this study, the symbolic forms chosen by the students during their work 
affected the meaning they gave to the integral.  Some forms were apparently more 
productive in making sense of integrals in physics contexts than others.  Curriculum 
development should take into account the nature of the symbolic forms students hold in 
their cognition regarding integrals and when and how those forms are compiled or 
activated.  If the curricular projects do not consider the knowledge that students have 
available to them and how that knowledge could be activated in a productive way, then 
the curriculum may not be as successful at “bridging the gap” between mathematics 
learning and physics learning.  An analysis of the curriculum projects might prove 
beneficial in terms of their support of the creation and activation of symbolic forms that 
will help the students make sense of integrals in physics contexts. 
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5.5 Implications 
 
 This study has implications for both instruction and curriculum.  The results 
presented here suggest practices that could be done in both mathematics and physics 
classrooms to help students gain a robust understanding of the integral and to support the 
application of knowledge about the integral to physics and engineering.  Additionally, it 
suggests possible ways to present the concept of the integral in curricular materials that 
could support the application of this knowledge.  This study also has implications 
regarding perceptions of students’ mathematical preparation as they enter introductory 
physics courses. 
 
Implications for Instruction 
 
 In the results, the general importance of the adding up pieces symbolic form is 
visible.  It was a productive way for the students to think about the integral in both the 
mathematics and the physics contexts.  Furthermore, it was by far the most productive 
form that the students drew on during the physics-day interview.  By contrast, the area 
and function mapping forms typically became less productive during the physics-day 
interview.  If the intentional framing of the interviews as “mathematics” or “physics” was 
at all successful, then it is possible that when students encounter integrals in physics 
settings, it is generally much more effective to understand the integral as the addition of 
many small pieces.  What does this say about the ways calculus instructors might want to 
approach the topic of integration? 
 There are several ways to conceptualize the integral, and if one of these ways is 
overemphasized to the relative exclusion of the others, then the students will have less 
opportunity to gain a well-rounded understanding of the various interpretations of the 
integral.  Specifically, if integrals are introduced through the area perspective and then 
the majority of the time is devoted to the anti-derivative process, then students may not 
have sufficient time to digest the meaning of the integral as an “addition.”  Riemann sums 
are certainly a central part to instruction on the integral, but it is possible that not enough 
attention is given to this critical way of viewing the integral.  If instructors proceed too 
quickly past this important concept, then the students may not fully compile an adding up 
pieces symbolic form, or they may not fully understand how to employ it in the context 
of a problem.  This may cause difficulties later when the student needs this symbolic 
form to work with the integrals presented in their physics and engineering courses.  Thus, 
the results of this study imply that calculus instruction should devote sufficient time to 
multiple interpretations of the integral, and that the interpretation of the integral as an 
addition should be given enough time for the students to have the opportunity to compile 
the adding up pieces form.  This will help students be better prepared to understand the 
integrals presented in their physics or engineering courses. 
 There are also implications for instruction on the other end, in the physics 
classroom.  In a calculus course, there may be students who need to understand the 
concepts of calculus for a variety of reasons.  There may be students proceeding on to 
further mathematics courses, or others who need it for the biological sciences, or 
computer science, or other fields of study.  Thus, in the mathematics classroom, it is 
important that the integral is taught in such a way that several interpretations of the 
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integral are encouraged.  The goal may be to provide the opportunity for as many 
symbolic forms of the integral to be compiled as possible so that the students have a well-
rounded understanding that can be applied to future coursework in a variety of possible 
fields.  However, in this study there appeared to be strong evidence that the adding up 
pieces form is especially effective in understanding the type of integrals that are 
commonly found in physics courses.  How might physics instruction help students take 
advantage of this way of thinking?   
 In a physics classroom, the importance of this particular type of thinking should 
be highlighted.  If students have come from a mathematics classroom where they have 
spent time learning about the integral through a variety of interpretations, the physics and 
engineering instructors may wish to emphasize the particular ways of thinking about the 
integral that are especially useful in the physics and engineering context.  If it is generally 
less productive to attempt to interpret integrals through the area or function mapping 
symbolic forms, then instructors should explain that it might be more helpful to think 
about the integral as an addition over several pieces.  Since the adding up pieces form is 
apparently very useful, physics instructors could take some time to recap this conception 
of the integral and explicitly state that it may be one of the more helpful ways to 
conceptualize the integrals discussed in that course.  Furthermore, this approach could be 
important for students who have not compiled this symbolic form in their mathematics 
course (whether it is due to the lack of time spent on this conceptualization or because 
they simply have not yet cognitively compiled it) so that they might have a chance to 
reconceive the integral in this way. 
 
Implications for Curriculum 
 
 In a manner similar to the implications for instruction, this study has implications 
for curricular approaches to the integral.  Since many courses may follow a pattern 
similar to that outlined in the calculus textbooks discussed in this chapter, it may be 
worthwhile to reconsider how the integral is laid out in standard curriculum.  The integral 
is often motivated by a discussion of the area of a shape created by a graph in a 
coordinate system, which may lead to the compilation of the area symbolic form.  Also, 
since much attention is dedicated to the computation of the integral as an anti-derivative, 
the students might reify this process into the function mapping symbolic form.  However, 
the textbooks described in this chapter only dedicated one section to the integral as a 
Riemann sum, and these sections still emphasized the Riemann sum as a convenient way 
to find the area.  Thus, a standard calculus course’s curriculum does not appear to devote 
much attention to the integral as a process of adding up a quantity over several pieces.  It 
is also possible, then, that students do not spend much time working with problems in 
class or in homework where the integral is depicted as an addition.   
 This may mean that the common curriculum is not designed to allow students 
enough time to compile the adding up pieces form, nor to practice working with integrals 
in this context.  Instead, it may be necessary to revise common curriculum to allow more 
emphasis to be given to the integral as an addition.  This conception of the integral does 
not need to eclipse the other conceptions of the integral nor replace them.  But it may be 
important to allow the idea of the integral as an addition to receive as much attention as 
the other views of the integral.  Furthermore, the idea of the integral as an addition should 
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go beyond the area conception of the integral.  While it is true that a Riemann sum is a 
useful way to calculate the irregular areas underneath the graphs of functions, it could be 
important to talk about additions that do not necessarily reflect an area.  Discussions of 
other contexts that do not deal with areas might help students see the utility of thinking 
about the integral as an addition.    
 The so-called Harvard Calculus textbook (Hughes-Hallett, et al, 2005) provides 
an example of alterations that could promote the idea of the integral as an addition over 
several pieces.  In stark contrast to the other, more standard textbooks, this book opens 
the discussion of integrals with a problem about how far a car has travelled given that its 
velocity is known.  The problem is resolved by looking at approximations for the distance 
the car has travelled over two-second intervals, one-second intervals, half-second 
intervals, and so on.  Thus, the idea that the small pieces of the distance travelled over 
each time interval are found and then added up is used to solve the problem.  This 
resembles the adding up pieces symbolic form and would help the students toward 
compiling that form.   
 However, even this alternate approach does not necessarily give enough weight to 
the idea of the integral as an addition.  The opening section concludes with the idea that 
the area underneath the velocity curve is the distance travelled and then the area model 
claims the majority of the rest of the conceptual discussion. Like the other textbooks, the 
bulk of the sections are devoted to techniques for finding anti-derivatives.  While the 
techniques of integration and the area model are important components to learning the 
integral, the interpretation of the integral as an addition still does not necessarily receive 
enough attention.  Yet, the approach to the integral in this textbook is certainly more in 
line with promoting the integral as an addition over several pieces by using an example to 
motivate the integral which depends on adding up pieces of distance. 
 Here is where the work of Sealey and Oehrtman (Engelke & Sealey, 2009; 
Sealey, 2006; Sealey & Oehrtman, 2007; Sealey & Oehrtman, 2005) and the work of 
Dray and Manogue (2003, 2004a, 2004b, 2006) become important for the discussion of 
curriculum.  The work of Sealey and Oehrtman pushes into the boundaries of how 
students compile their understanding of the Riemann sum conception of the integral.  
This work could be used as a foundation for creating introductions to the integral as an 
addition.  By extending the amount of conceptual development this idea receives, the 
students will have more opportunities for constructing the adding up pieces form.  And if 
that presentation is based in what is known about how students come to understand the 
integral as an addition, these opportunities will be able to better support the compilation 
of this symbolic form and to better enable students to draw on it in subsequent work.   
 Sealey presents specific tasks that allow students to connect position, velocity, 
and acceleration to the Riemann sum concept.  The integral is portrayed as an addition of 
lots of small distances.  Dray and Manogue also present ways to introduce the integral 
through the general idea of “total amount.”  This means that the integral would be 
presented in contexts where a solution to the problem requires an addition over a 
particular quantity in a problem.  These tasks from Sealey and Dray and Manogue, the 
tasks found in the Harvard Calculus textbook, or other tasks like them can enrich 
students’ understanding of the integral.  It may help them build a more well-rounded 
understanding by better supporting the compilation of the adding up pieces symbolic 
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form.  It may also give them practice drawing on this form in physical contexts.  This 
would help prepare physics and engineering students for their future coursework. 
 
Implications for Perceptions about Student Knowledge 
 
 This study also has implications for the way students entering an introductory 
physics course might be perceived.  If students have difficulties applying mathematical 
knowledge to physics and engineering, it could be easy to ascribe this difficulty to a lack 
of mathematical knowledge.  That is, the students cannot apply their knowledge because 
they simply do not have that knowledge.  The results of this study described several 
students who demonstrated not only that they held productive knowledge about the 
integral, but that they held a large pool of productive knowledge.  These students 
explained multiple ways of interpreting the entire integral symbol template, described 
conceptual meaning for individual symbols that relate to the integral, and provided 
productive reasoning about integrals in a variety of settings.  Thus, for these nine 
students, it is not possible to say that they lack the necessary mathematical knowledge.  If 
these students encountered difficulties, which several of them did during the interviews, it 
could not be blamed on inadequate mathematical preparation or insufficient 
understanding about the integral. 
 This study does not attempt to generalize these students’ knowledge to the overall 
population.  Other types of studies would be required to attempt to make assertions about 
what students know in general.  Therefore, it is not possible to say that difficulties cannot 
be ascribed to inadequate mathematical knowledge.  However, this study does provide an 
example of a group of introductory physics students who knew a significant amount 
about the integral.  Furthermore, within this group there were students who did 
sometimes struggle to apply their understanding of the integral to problems that made use 
of physics contexts.  For these students these difficulties did not always arise because of a 
lack of knowledge.  Therefore, it is possible that the perception that difficulties are rooted 
in inadequate mathematical preparation may not describe the reality of the situation.  
Again, this study cannot make claims about the general state of student mathematical 
knowledge, but it shows that students who have productive understanding about the 
integral may still have difficulties.  Thus, there is more at play than the amount of 
knowledge students have. 
 
5.6 Future Research 
 
 This dissertation study sheds light on some of the cognitive resources that 
students hold regarding integrals and the contexts in which they might be activated.  This 
study cannot possibly describe all of the possible cognitive resources, or even symbolic 
forms, that students have about the integral.  Furthermore, there are many other calculus 
concepts that use specialized notations where students will compile symbolic forms.  The 

derivative )(xf
dx
d  can be arranged according to specific symbol templates.  The 

symbols could be arranged as []
[]d

d , 
[]
[]

d
d , []

[]

[]
[]

d
d , []’([]), or []’.  Each of these symbol 

templates holds the potential for students to create symbolic forms that blend these 
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symbols with a conceptual schema.  The limit )(lim xf
cx

 could be construed as []lim
[][]

, 

[]lim
[] 

, or []lim
[][] 

.  Again, these symbols may carry meaning for the students which could 

be compiled into symbolic forms. 
 With the myriad symbol structures from mathematics that are employed in 
physics and engineering contexts, there is much research left to be done in documenting 
and describing the cognitive resources, and specifically the symbolic forms, that students 
hold in their cognition regarding these symbols.  Further studies should be conducted in 
these areas in order to better understand the knowledge that students have and activate in 
both mathematics and physics contexts.  This understanding is important for building 
curriculum that will support the creation and activation of resources that are productive in 
applying mathematics to physics and engineering. 
 In addition to simply knowing the cognitive units that students possess, there is 
much work left to be done in understanding why students activate certain cognitive 
resources in a given situation.  In effect, there is research that needs to be done in 
understanding how students frame the contexts they are in and how that framing affects 
the choice of resources that are activated.  While research is being conducted in these 
areas (Gupta, Redish, & Hammer, 2008; Hammer, Elby, Scherr, & Redish, 2005; 
Tuminaro 2004; Hammer & Elby, 2003; MacLachlan & Reid, 1994), there is much more 
to do to fully understand the factors that influence student framing and why certain 
resources are activated over others.  Student beliefs play a key role in the framing of a 
context, meaning that the explicit documentation of students’ epistemological resources 
around calculus concepts in mathematics and physics contexts also needs attention.  More 
studies may be done to understand the beliefs that students hold about the mathematics 
context and the physics context and how that influences their activation of the symbolic 
forms of the integral as they are applying it to physics and engineering. 
 Finally, as there are already significant efforts underway to create curriculum that 
attempts to bridge the gap between mathematics learning and physics learning, the 
knowledge about student cognitive resources, epistemological resources, and framing 
should be incorporated into existing curricular projects.  The accepted notions about 
resources, beliefs, and framing should be tested through curricular devices that are meant 
to facilitate the creation of cognitive resources and their activation in productive ways in 
physics and engineering contexts.  Studies that compare the effects of these curricula on 
“student success” would also be needed to verify the impact that these attempts to bridge 
the gap are having. 
 
5.7 Summary 
 
 There is evidence that students hold productive knowledge about the 
mathematical concept of the integral.  The students in this study demonstrated that they 
held a range of symbolic forms that were productive in interpreting the symbols of the 
integral and in making meaning out of the integral.  Within a given interview item, many 
students were able to draw on multiple symbolic forms to understand the integral and to 
explain its conceptual meaning.  Furthermore, the students in this study demonstrated that 
much of this knowledge provided useful tools for making sense of integrals in a physics 
context.  Thus the results allow the conclusion that students (1) have productive 
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knowledge about the integral and (2) have knowledge that is productive in understanding 
the integral in a physics context. 
 However, there is also evidence that there are some differences between the 
symbolic forms the students activated in the mathematics-framed setting and those 
activated in the physics-framed setting.  Some symbolic forms, such as the area and the 
function mapping forms, were more common during the mathematics-day interview and 
were lesson common during the physics-day interview.  By contrast, the adding up pieces 
symbolic form was drawn on much more frequently during the physics-day interview.  
Furthermore, the adding up pieces form appeared more productive in understanding the 
integral in the physics-framed items than the other forms. Thus it appears that particular 
ways of making sense of the integral are more useful in applying the mathematics to 
physics and engineering contexts.  However, careful attention must be given to the 
creation and activation of the adding up pieces form as the elements of the form may be 
compiled differently, resulting in the problematic add up then multiply form.  This may 
happen even if the student already possesses the adding up pieces form. 
 There is also a potential difficulty in moving from univariate integrals to 
multivariate integrals.  The multivariate integrals are more common in a physics setting 
than in a mathematics setting and some of the symbolic forms that were productive in 
understanding a univariate integral did not appear as useful in making sense of a 
multivariate integral.  On the other hand, the adding up pieces form was, again, more 
productive in handling these cases than the other forms.  This supports the general utility 
of the adding up pieces form for understanding integrals in a physics or engineering 
context.  
 There is still much research to be done in fully understanding the cognitive 
resources available to students who are applying the concepts of calculus to physics and 
engineering.  This study opens up a vein of research that could lead to insights into the 
symbolic forms that students hold about a range of calculus concepts.  Additional studies 
could provide more understanding of the framing that students perform when working 
with mathematics in a physics or engineering context and the role of their beliefs in this 
framing and in the subsequent cognitive resource activation.  Curriculum research can 
benefit from the results of these studies as educators take into account the knowledge and 
beliefs students have and the framing that supports the activation of productive resources. 
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