Chapter 9: Summary and Speculations

In this dissertation, a new theoretical and mathematical framework is developed in
attempt to build a coherent model to study the student learning of physics. The theoretical
foundation is based on the many ideas and theories developed by researchers in cognitive
science and physics education. In the following sections, I summarize several key
elements in the new theory with emphasis on the numerical methods. I will not discuss the
applications in the study of student understanding of quantum mechanics.

Key Elements in the New Theory
Student Models

In our research, we describe the different student views and understandings of physics
concepts with “student models”. A student model is defined as a productive mental
structure that can be applied to a variety of different physical contexts to generate
explanatory results. The formation as well as the application of a model has strong
involvement of physical contexts, i.e., the models are highly context dependent.

Physics Models

For a particular physics concept, through systematic research, we can identify a finite
set of commonly recognized student models. These models usually consist of one correct
expert model and a few incorrect or partially correct student models. These models are
defined as Physical Models since they are common to a group of students with similar
background and the existence of these models can be verified repeatedly through research.

Student Model State

For a single student solving a set of problems related to a single physics concept, there
are usually two different situations:

1. The student can use one of the physical models and be consistent in using it in
solving all questions. The model can be either the expert model or another physical
model (e.g. an incorrect student model).

2. The student can hold different physical models at the same time and be inconsistent
in using them, i.e. the student can use one of the physical models on certain
questions and use another one on other questions although all the questions are
related to a same concept and the questions are seen as equivalent by experts.

Then the different situations of students using their models are described with different
student model states. The first case corresponds to a consistent model state and the second
case is considered as a mixed model state.

With a set of questions designed around a single physics concept domain, we can
measure the probability for a single student to be triggered into the different physical
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models in solving these problems. For different students, the distributions of probability
will be different. Therefore, we can use these probabilities to represent student model
state. Thus, the student model state is defined as a specific configuration of probabilities
for a student to use different physical models in problem-solving contexts related to a
particular physical concept domain.

Random Process in Model Triggering

How a student is triggered into a specific physical model is a very complicated process.
It depends on both the students’ background and the structural information of the
questions. The situation can be even worse when we study a large population of students
with diverse backgrounds. In this dissertation, I will not go into the details of model
triggering but rather characterize it as a conditioned random process that is constrained by
the background of the students and the physical features of the questions.

The meaning of this conditioned random process is defined as the following: In a well-
defined domain of physics context related to one physics concept, students can come up
with a finite set of models to deal with the various problem solving situations within the
context domain. What type of model is to be triggered by a specific physical context is a
random process to an external observer, however, the set of the possible models is
bounded and known (these are defined as physical models).

Model Space

For a specific physics concept domain, we can represent the complete set of physics
models with a set of orthogonal unitary vectors, e, , defined as the physical model vectors:

1 0 0
0 1 0

e =|.|se=|.];..e =, (2-2)
0 0 1

where “w” is the total number of physical models associated with the specific concept
under consideration (a null model is also included).

The space spanned by all these physical model vectors is defined as the model space.
Then the model state for a single student, the k™ student in a class, can be represented with
a unitary vector uy:

Jab
u, )= Jar (2-3)

Jay
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where <uk |uk> = iqﬁ =1 (2-4)

n=1

This normalization is constrained by the requirement that the physical models form a
complete set and the probability for a student to be triggered into a model in the set is
therefore 1.

Model Analysis

Model analysis consists a set of numerical algorithms developed based on the theory.
The algorithms are designed to provide quantitative evaluations of student models with
research-based multiple-choice questions. In the following sections, I specifically
summarize two basic algorithms. In chapter 5, additional methods are discussed to deal
with specific features of different types of multiple-choice interments.

« Model Evaluation

With a set of research-based questions, student responses can be used to infer the
models they used to solve the questions. Using a certain set of questions associated with a
single physics concept domain (e.g. Newton III), we can obtain the single student model
state as:

u, =| Uy Zﬁ \/a =|uk> (4-3)

Uz L

where k represents the k™ student and m is the number of questions used in the
measurement. In the equation, n, respondents the number of questions answered with
physical model n by the k™ student. Then we can construct the single student model
density matrix of the k™ student as:

gy \/nlknzk \/nlkn3k
b= J
D, =|uk><uk|= P :E N,y Ny Ny, N, Ny (4-4)
\/n3kn1k \/n3kn2k N3

which can be used to form the class model density matrix.

Pii P2 Pis | N | N pll(l pi(z pll(3
D==\py, Py Py|==2D==2 plz(l plz(z p]2(3 (4-6)

N i N | . K

Pai Pz Pa Ps1 Px Pis

By analyzing the class model density matrix, we can study the features of the models
used by the students in the class. A graphical representation, the model plot, is often used
to present the results of student models (See figure 9-1).
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Figure 9-1. Example from chapter 4 (figure 4-6)

« The Concentration Factor

Based on our understanding of student learning, the student responses are considered as
the output of students applying their models in various physical contexts. Therefore, if
students have a few consistent models of physics, the responses should be more
concentrated on those choices representing the corresponding models. On the other hand,
if students have no models, or have a wide variety of models and use them inconsistently,
their responses will be more randomly distributed among the choices. Therefore, the way
in which the students’ responses on multiple-choice questions are distributed reveals
important information on student models.

To study the student responses, it is convenient to have a simple measure that gives the
information on the distribution of the responses. It is defined as the concentration factor,
denoted as C, with a value in the range [0,1], where a large value represents highly
concentrated responses.

To formulate C, first sum up all the student responses on one question in a vector form
and get the total response vector for that question:

N
r=>71 =(mn,n,,..,0n,..,0n.)
k=1

where n; is the total number of students who selected choice 1. Since there is a total of N
responses, we have
dn, =N (3-1)

i

Define the scaled length of ¥ as
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This suggests to choose C as:

SR LT [
Jm-1""" JYm  (Jm-1)

where N >>m is required.

C =

(3-2a)

To use the concentration factor, the first method is to combine the concentration factor
with scores to form response patterns. A low score and low concentration type shows that
most of the students have no dominating model on the topic (at least as revealed by the test
being studied) and their responses are more like the results of random guesses. On the
other hand, a low score but high concentration type implies that the students probably have
a strong incorrect model on the related concept. If the results are from a pre-test, the
instructors can be informed by these incorrect initial student models and prepare for
appropriate instruction.

We can also represent the results on a “S—C” plot, using the score as the horizontal axis
and the concentration as the vertical axis. Then the response of each question could be
represented as a point on the S—C plot. The shift of the response can be represented with a
vector starting from the point representing the initial state towards the point for the final
state.

Application Examples

To illustrate how the algorithms are applied, I summarize two examples with FCI data
from UMd students. These two examples are all on the concept of Force and Motion
relation, which involve 5 FCI questions are associated with this concept (questions 5, 9,
18, 22 and 28).

Student Class Model States

As discussed in chapter 2, student responses to the five FCI questions involve three
physical models:

Model 1: It is not necessary to have a force to maintain motion and there is no such
thing as a “force in the direction of motion”. (Correct)
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Model 2:

Model 3:

A force is needed to maintain motion. This model also includes the ideas
that there is always a force in the direction of motion and that the force is

directly related to the velocity of motion. (Incorrect)

Other ideas and incomplete answers. (A null model)

For the three physical models in FM group, our associations of the responses
corresponding to the FCI questions in FM cluster are listed in table 9-1.

Table 9-1. Modeling of student responses for FM group (table 4-1)

Question Model 1 Model 2 Model 3
5 d a,b,c e
9 a, d b, c e
18 b a, e c,d
22 a, d b,c,e
28 c a, d, e b

Following the algorithm procedures, we can construct student model density matrix
and perform eigenvalue decomposition on it. The primary student class model states are
shown in figure 9-2. The data is from 7 tutorial classes and 7 traditional classed in UMd.
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Figure 9-2. Student models on Force-Motion (FCI, UMd, figure 4-10)

As we can see the initial states of both types of classes fall into the model 2 region,
which indicates that the students are having a consistent but incorrect model (strong
misconception) — “there is always a force in the direction of motion”. After the instruction,
the tutorial classes show some promising improvement towards the favorable model.
Although still in the mixed model region, the tutorial classes make a quite large favorable
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shift comparing to its problematic initial state. On the other hand, the situation for the
traditional classes is not so optimistic. Its final state doesn’t even cross the centerline, i.e.,
the primary model fails to make the transition to the favorable side. This situation
indicates that many students are still in favor of their initial misconception. Since the final
state is also very close to the centerline, the student model can be interpreted as very mixed
and inconsistent under equal influences from the correct physical model and the initial
misconception.

Concentration of Student Responses on FCI

The pre-instruction FCI data of 16 UMd classes are analyzed with a three-level
modeling scheme described in chapter 3. The results are very similar for all classes. This
is expected since the background of the incoming students is similar. Therefore, the results
of the pre-data analysis are combined. Table 9-3 is a list of the coding of the pre-test
response types for all 29 questions on the FCI test.

Table 9-2. Pre-instruction FCI response types (UMd, table 3-5b)

Types LL LM LH ML MM MH HH
No Two Weak Weak
Patterns peak | peaks One peak one-peak Two peaks one-peak One peak
) 5,9,18, 3,7,21,| 6,8, 11, 14, | 12,16, | 1,4, 10,
Questions | 15,241 ™ 5g" 712, 13,221 7 5" " 117 90,23, 25| 29 19,27

A look at the details of the questions suggests that most of the questions with LM and
LH types are dealing with two physics concepts, the relation of force and motion and
Newton III (see chapter 2 for details on the two concept groups).

Advantages of Model Analysis

This method makes more use of the data than score-based analysis, (traditionally if we
only calculate the correct answers, a lot of information is wasted) and allows us to study
the student models in a quantitative way. It can serve as a more comprehensive
quantitative evaluation for the student performance, especially with respect to their mental
models.

With this method, student raw data are transferred into states in the model spaces.
Since for each physics concept domain, the structure of the associated model space is
definite, the student model states obtained with different instruments can be directly
compared in the model space. The results can be used to analyze student understanding
and/or the features of the instruments. Model analysis can also provide more explicit
information on how to improve instruction. Since it gives more detailed knowledge of the
models the students have, it allows us to see more directly about the possible causes of the
student difficulties rather than just the difficulty itself. Therefore we can develop more
appropriate instruction strategies right to the weak points and help the student more
effectively.
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Speculations on Modeling the Learning Process

What tool can we use to effectively model the learning process? Many instruments and
methods have been developed for various contexts. A non-conclusive list includes open-
ended conceptual questions, student interviews, multiple-choice surveys and concept

mapping.
A Crucial Problem on Precise Modeling of Student Understanding

All these methods are influenced by an important factor in the measurement, the
communication between the students and the investigators (or the language issue for
simplicity). The student actual thinking can be miscommunicated, i.e., the students often
use the “words” or physical terms in ways different than what experts would expect.
Students and experts can use the same language but mean completely different things.
Therefore, student responses coded with the representations of simple language or other
similar formats (e.g. links in concept maps) can cause problems in convey the actual
thoughts used to generate those responses.

The Available Methods
o Student Interviews

A well-conducted interview is by far the most effective method to identify the “true”
reasoning of students. In interviews, the investigator can have the opportunity not only to
collect what the student are saying but also to probe in real-time what the students do mean
by using those words. Detailed analysis of a good interview can provide the most
insightful information on the student understandings.

Although student interview is an effective method, it is very time consuming to
conduct the research and to analyze the data. A well-distributed population of students for
the interview is also difficult to obtain. In addition, the experience of the investigators and
the quality of the interview protocols can also affect the results significantly. All these
make it impractical to use interviews as a general evaluation tool in instruction.

+ Open-ended Conceptual Questions

Open-ended conceptual questions, depending on the design of the questions, can
provide comparatively rich information on student reasoning. However, it still bears the
problem of miscommunication, since we don’t have a second chance to further probe the
students when we have confusions on what they are saying. Neither can we investigate if
what they say really means what it is meant to be. The data analysis of the open-ended
questions is also time-consuming, which makes it difficult to implement this method in
large classes.

+ Multiple-choice Questions
Multiple-choice questions often provide the least information on student thinking

especially when using score based evaluations. If the questions are not properly designed,
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the results can even provide misleading interpretations. However, multiple-choice
instrument does have many advantages. The data collection and analysis are easy to
conduct which make it an ideal instrument for large classes.

+ Concept Mapping

Concept map often raises a lot of disputes on what actually is being measured. As far
as the “communication” issue is concerned, when students draw links between different
concepts denoted by “words” on the paper, which the students have heard for many times,
it is fairly difficult to decide what those links actually mean. For example, suppose we
give students four concepts described with “waves”, “amplitude”, “frequency”, and
“wavelength”. Through pure memorization, many students know that all the “words” are
related (regardless what these words actually mean to the individual students). Therefore,
the links in the concept maps constructed by the students can be quite similar to those from
experts (experts and novices can have differently structured concept maps, but the
information that can be extracted from such structures is limited and does not provide
applicable guidance). What can this tell us about? It seems that a simple concept map
only give the associations between different “words” memorized by the students. The
links themselves does not provide much information, if any. What is important is the
quality of the links, i.e., the content of the understandings that the links represent, and it is
unlikely to represent such subtle issues with lines between words. Although by analyzing
the structure of the whole concept map, we can obtain certain information on the student
knowledge structure. Concept mapping often fail to provide precise information on
specific student understandings.

The Method of Model Analysis

Model analysis integrates student interviews and multiple-choice questions together.
The instrument, the model-based multiple-choice test, can be easily implemented in large
classes to obtain quantitative evaluations on student models and the results are validated by
research. The key elements of this method include the followings:

1. Through systematic research and detailed student interviews, common student
models are identified and validated. The student models are reliable for a large
population of students with similar background (e.g. the students in calculus-based
introductory physics classes). These student models are then used to model the
learning of students with similar background.

2. The multiple-choice questions used with model analysis are developed based on the
knowledge of student models identified through qualitative research. The choices
of the questions are designed to represent the common students models and are
validated through research.

3. The numerical algorithms use the student full responses rather than just the scores.
Student responses are analyzed in model space and the results can give explicit
information on the student understandings (models).
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Model analysis relies heavily on qualitative methods. By conducting systematic
research, it is expected that the identified student models reflect the majority of different
types of student understandings, and the multiple-choice instruments do not contain
significant communication problems. In other words, we use interviews to identify the
student actual thinking under certain contexts and use multiple-choice instruments to
measure the students’ using of these identified different understandings. The combination
of the two methods can partially solve the communication problem and provide an
effective and stable tool to probe large classes.

Once a reliable package is developed, instructors with some training can easily

implement model analysis instruments in large classes to obtain immediate feedback from
students with comparatively rich information on the student actual understandings.
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