Chapter 4: Model Analysis Algorithms II: Model Estimation

Introduction

Student mental model states are not directly measurable. The only observable data that
we can get from an experiment is student responses in a variety of environments including
interviews and different problem-solving situations. According to our model of the
learning process, each question is considered as an instance of a physics context and
should trigger students for associations to certain models. The student responses are
considered as the outcome of the students’ applying these models into the physics contexts.
Using student responses as input, with proper algorithms, we can obtain quantitative
information of students using their models.

In PER, the instruments most commonly used to study student understandings include
free response questions, interviews, and multiple-choice questions. Free response
questions and interviews often provide very rich information on student understandings.
But they are also very difficult to analyze and expensive to conduct. Multiple choice tests
have the advantage of being easy to analyze and cheap to conduct in large scale. But the
traditional way of analyzing scores doesn’t provide much useful information especially on
student real understandings of physics.

The goal of this chapter is to develop an algorithm/tool to do numerical analysis of
student data on multiple choice tests to obtain quantitative evaluations of student models.
In order to do so, it is important to understand the general behavior of our students. As
indicated by PER, for a same physical concept, a single student can have

+ adominant model (not necessarily a correct one), which is used consistently
through out various questions related to a same concept

« amixed model state where the student uses several models (correct and incorrect
ones) in an inconsistent way (slightly different questions on the same concept can
trigger different models)

« or no model at all, which often lead the student to give a response based on random
guessing (no serious logical reasoning involved).

In general, an average student in our introductory physics class is often found to be in a
mixed model state where different models are used inconsistently.

Consider the case where we have a whole class of students and each student has a
unique model state (consistent and inconsistent, correct and incorrect). Then the student
responses are generated by a large number of different model operations (triggering and
applying) with all sorts of models (correct, incorrect, mixed and random). Therefore, the
results can be very complicated and a simple analysis using scores alone often fail to
provide useful information on the student real understanding of the physics concept. For
example, a low score can be caused by a consistent incorrect model, random guessing, or a
temporarily triggered incorrect model in a mixed model state. These different situations
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reflect important information on student understanding of physics. But none of these can
be obtained with analysis based solely on scores.

In education research, factor analysis is a very popular tool that researchers often use to
study the possible models underlying student answers on a test.' It calculates the
correlation between student scores on different questions and uses this correlation (which
measures the consistency of student scores on different questions) to infer possible
“factors” (models) from the data. For more details on factor analysis, please see related
references in the end of this chapter. In the later part of this chapter, I will give a more
detailed comparison between factor analysis and model analysis.

A major disadvantage of factor analysis is that it only evaluates the consistency of
student scores and doesn’t look at the systematics of incorrect answers. Underlying this is
the assumption that the individual student is consistent with their models. For example,
suppose we give students a test containing two groups of questions, one group on Newton
[T and one group on Force Motion. If all students have consistent models related to the
two physics concepts, the correlation (consistency) of students’ scores on the questions
within same group should be higher than the correlation of scores on questions from
different groups. In this case, factor analysis will give two factors, which can be inferred
as two “models” that students use consistently to solve problems in the two groups.

As we can see, factor analysis does not consider the possibility that the students may
each possess more than one model and may be inconsistent in using these models. With
the above example, if the students have more than one model on Newton III and/or on
Force Motion and are inconsistent, their scores will show a great deal of randomness and
no factors will be obtained. This result has been demonstrated in the literature (a good
explanation can be implied from the discussion in this chapter).” A more detailed analysis
on the factor analysis is discussed in later part of this chapter.

From the above example, we can also see that factor analysis does not provide explicit
meanings on the nature of the inferred “factors”. In fact each of the two factors only
implies a broadly defined “model” that affects the consistency of student scores. This type
of “model” does not give the operational details on how a student may use it to generate a
response. Therefore, the “models” corresponding to the factors from factor analysis are
fundamentally different from the student models we are talking about. According to our
understanding of learning, the actual process to generate consistent/inconsistent scores is
very complicated and can not be described by the results from a factor analysis.

For example, consider the case that one group of questions on a single physics concept
is given to a class of students. Suppose each individual student has more than one model
and is inconsistent in using these models (see the random process in model triggering
described in chapter 2). Since the individual student may use different models on
questions related to a single physics concept, the correlation between scores is low and no
dominant factors can be identified. This implies that the students’ behaviors are random
(sometimes giving correct answers and sometimes giving incorrect ones with no systematic
relation. But different types of randomness are involved). Students with inconsistent
scores can be consistent on giving incorrect responses of the same type. We may observe
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student responses switching between correct answers and incorrect ones that can be
associated with a single incorrect model. This type of random process happens in model
triggering and is fundamentally different from the random behavior when students generate
answers by guessing (no model involved), or by human errors (mistakes). With no
information on the incorrect responses, factor analysis won’t work with such model-based
random processes.

Now consider the case where each individual student is consistent in using a model,
1.e., in the class, some of the students use one correct model consistently while others use a
second (incorrect) model consistently. In this case, student scores will have very high
correlation/consistency on all the questions (either all correct or all wrong depending on
the models used). Then factor analysis will identify one factor from these data, which
reflects the consistency of student scores on this set of questions. But still this factor does
not have any information on why students are consistently giving correct or incorrect
answers. All we can tell is that there might be one hidden factor underlying the student
scores on this set of questions so that the answers from the individual students will either
be correct or incorrect to all questions.

What makes the students behave like this is not explicitly reflected by the result. In
fact, in this case, factor analysis implies a wrong story — only one “factor” in student data
rather than that that students are consistently using different models in generating their
responses. With this example, even in cases where students all have consistent models,
factor analysis fails to give a correct description of student modeling situations. In
addition, suppose each question is designed with a substantial number of choices, which
makes a small probability on guessing out a correct answer. In this situation, factor
analysis will again fail to identify the difference between students who always get the same
type of incorrect answers, which indicates a coherent incorrect model, and students who
get all different kinds of incorrect answers, which is apparently by random guessing (no
coherent model). The information of students using their incorrect models is embedded in
the incorrect answers chosen by the students. Consistent incorrect models will result in
consistent incorrect answers and we have to look for this information in order to decide the
real story about our students. Since factor analysis uses only scores, it can’t provide
information on how and why the students are doing wrong.

As a short summary for the above discussions, since factor analysis is based on scores,
there is no way for it to distinguish the different model operations among students. The
results of factor analysis only give the information on the consistency of student correct
scores on different questions, and this is not enough to extract the real structure of student
models.

More sophisticated versions of factor analysis often include a student ability term to
account for possible student “latent” models.” But again information on student “models”
is implicit and derived solely on the correlation of the scores, which contains no
information on student incorrect responses.4 Therefore, factor analysis, even the modified
versions of it, doesn’t provide explicit information on what makes students produce
high/low scores, what makes a question be easy/difficult, or what makes a student perform
consistently/randomly on similar questions related to a single concept.
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Therefore, to understand student modeling with multiple-choice data, we need to
analyze the complete structural information of responses from each student. R. Thornton
has conducted research using students’ incorrect responses to study their models where

. . . .. . 5
student mixed model state is characterized as a “transitional student view”.

In data processing, if the results are based on calculating the total number of students
holding different types of models, then the results only contain the proportion of students
inferred as having different models by their responses and the structural information for
individual student responses is lost during the averaging process. As a result, the
possibility that individual student can have multiple models at the same time is not fully
represented, and the structural information of the individual student model state is not
retained.

In this chapter, I introduce a new method to analyze the structural information of the
individual student’s responses and to obtain quantitative evaluations of student model
states including detailed information on students use of mixed models. Since the
development of this method depends heavily on our understanding of student models, and
the results also provide explicit information on student model states, this tool is called
Model Analysis.

The basic approach is to study the information contained in all the student responses
rather than just the correct ones. The students’ full response patterns are analyzed and
stored in a model density matrix that retains part of the structural information of the
individual student responses. This model density matrix is then analyzed to extract
information on student models.

In the following sections, I will first introduce ways to identify students’ models based
on their responses on a multiple-choice test. With this modeling process, student raw
responses are transformed into model-based responses. Using these model-based
responses, a model density matrix (for a class) can be constructed, which preserves
important information on individual student model state. Then the density matrix is
decomposed to obtain eigenvalues and eigenvectors. These eigenvectors can be used to
represent the common student model states and the eigenvalues give the prevalence of the
respective models. Different ways to present and analyze the model states will be
discussed in detail. In the final part of the chapter, I will use this method to analyze FCI
data and discuss the results. This method can be used to investigate a single student model
state as well as the overall model states of a class.® Due to the availability of test data, the
method developed in this chapter is focused on evaluating the model states for a class.

Identifying the Physical Models

Before we can make measurements on student models, we need to know the physical
models associated with the topics of study. Then we can design appropriate instruments
such as multiple-choice concept tests to probe students’ use of these models. Therefore,
the first step to do model analysis is always a systematic and detailed investigation of
student difficulties on a physics concept. In these researches, we often give students free-
response conceptual questions to probe their general understandings of the physical
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concepts and conduct interviews to obtain more details of their understanding. The
interviews can also be used to confirm and elaborate what we have learned from the
student responses on short answer questions.

Based on these detailed studies, we can define the set of physical models as those
found to be common to the students. Each set of physical models usually consists of one
correct model, a few incorrect ones and a null model to account for uncertain student
behaviors.” Different physics concept domains may have different sets of physical models
associated with them and the structure of these models may also be affected by the
background of the students. As often observed in research, students models may involve
not only misuse of physics principles but also inappropriate understandings of the physics
concepts completely different from those traditionally used by physicists. For example,
for a physicist, velocity and acceleration represent two distinct concepts. But for some
students, these are combined in a single undifferentiated concept of “motion”. In other
cases, students may differentiate a single physics concept into two parts. For example, a
student may decide that some moving objects “want to stop” (a box sliding on a rough
floor), while others (a thrown baseball) “want to keep going”. A physicist would classify
both the same but say that one (the box) is acted on by an outside force (friction).
Therefore, when we study student models, we have to be very specific about both the
physics concept and the background of the students. We also have to exercise considerable
care and effort in determining and selecting common student models.

Once the physical models are determined and confirmed by research, we can start to
design multiple-choice questions that can be used to study students’ use of these models.
Not all types of multiple choice questions are appropriate to use with model analysis. The
questions have to be carefully designed so that the choices of the questions represent
attractive results corresponding to the common student models. Each physical model
needs at least one choice to represent it. The design of these choices should also avoid
situations where students with different physical models can legitimately generate the same
choice. To reduce the measurement uncertainty, chances of random errors, and incorrect
model assignment to students who do not hold the model, it is also necessary to include a
significant number of choices in each question. All questions need to be tested and
confirmed by research to make sure that the results one is getting from the tests agree with
the interview results.

Based on these criteria, questions designed to intentionally eliminate the attractive
distracters are not appropriate. On such questions, students unable to generate the correct
responses will be forced to make a guess or to use “exam skills”. Thus, the results do not
contain accurate information on why students get the questions wrong.

The FCI questions are developed based on research and the distracters are designed to
represent the incorrect models found in interviews. Usually, there are several concept
groups in a test. With the FCI test, I will focus on the questions that probe student
understanding on two physical concepts, Newton III (N3) and Force-Motion (FM). For
simplicity, the FM group is used as the example in developing the algorithm.
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The FCI test has 5 questions in the FM group (5, 9, 18, 22 and 28, see chapter 2 and
Appendix A for details). As discussed in chapter 2, student responses to the five FCI
questions involve three physical models:

Model 1: It is not necessary to have a force to maintain motion and there is no such
thing as a “force in the direction of motion”. (Correct)

Model 2: A force is needed to maintain motion. This model also includes the ideas
that there is always a force in the direction of motion and that the force is
directly related to the velocity of motion. (Incorrect)

Model 3: Other ideas and incomplete answers. (A null model)

These physical models represent different types of reasonings and we can represent
them with three orthogonal vectors, ej, e;, and e; defined as the physical model vectors,
which also span the model space (see chapter 2 for details). For convenience, the graphical
representation of a 3-D model space (figure 2-4) is reproduced in figure 4-1.

Uy

Figure 4-1. A 3-D model space.

The student models can be analyzed in two ways. One is to model the whole class for
the class’s model state. The other is to model an individual student to find the single
student’s model state. Since the resolution of the estimated model state depends on the
sample size and there are only 5 questions but 3 physical models in the FM group, the
uncertainty for an estimated single student model state will be very large. As discussed in
chapter 2, this uncertainty is estimated with a solid angle. According to Eq. 2-5, with 5
measurements (5 questions), the uncertainty for the estimated student model vector is /10,
1.e., an estimated single student model vector can be in an uncertain direction within a solid
angle equal to 7/10.

With a class, since there are many students as input, the uncertainty of the estimated
class model state will be much smaller. In the following discussion, I focus mostly on
analyzing the class model state.
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Modeling Responses of a Single Student

For the three physical models in FM group, the associations of the responses
corresponding to the FCI questions in FM cluster are listed in table 4-1.

Table 4-1. Modeling of student responses for FM group

Question Model 1 Model 2 Model 3
5 d a,b,c e
9 a, d b, c e
18 b a, e c,d
22 a, d b,c, e
28 c a, d, e b

Then the student raw responses are collapsed into model-based responses. Using table
4-1, each student’s response for each question can be modeled by one of the base vectors
(e1, €2, and e3) in the physical model space. For example, if a student answers the five
questions with “a”, “d”, “a”, “d” and “b”, the five responses are transformed to four
vectors as (010), (100)", (010)", (100)" and (001)" respectively. The five vectors are then
summed up to get an overall model response vector for that student, which in this case is
found to be (221)". Define the model response vector of the k™ student as . Assuming
we have a total of N students in a class, rx can be represented as:

Ny
r.o=|n, k=1,2,...,N @-1)

L

where n, is the number of questions in the concept group that the k™ student answers
using the nth physical model. Obviously,

Ny + Ny + N3 =m (4-2)
where m is the total number of questions in the group (5 in this case).
Error Analysis on Item-Based Modeling (IbM)

The above modeling procedure is an item-based modeling (IbM) process. That is,
when we detect a response from a student, the corresponding physical model is assigned as
the student’s model state in that instance. But there are many random process involved. A
student can generate a response by random guessing or by incorrectly applying a model
unrelated to the response. Therefore, we have to analyze the uncertainty of this modeling
process. The following is a discussion on the mathematical analysis of the uncertainty
using item-based modeling method. We will see that in most situations, such uncertainty
does not significantly degrade the results. Therefore, although I show the mathematics as
how one may handle the problem, it is not applied in later analysis.
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To simplify the discussion, I use a 3-model example similar to the FM case discussed
previously. Assume we have a group of “m” questions with 3 physical models denoted as
M, M, and M3. Mj is defined as the random null model. Let each question have “L”
number of different choices. Define Qi, Q2, and Q3 as the three types of responses
corresponding to the three physical models. These represent the types of responses not the
real response itself. For example, a question can be designed with multiple choices
corresponding to one model and all these responses will be characterized with the same Q,,
for that model. Define q;, gz, and g3 as the probability for a student to be triggered into the
corresponding physical model states. Obviously, we can write

Gt @tg=1

That is, a student has to be triggered into one of the physical model states (since one of
the categories is “none of the above models”). When a student is triggered into a certain
physical model state, it is still not guaranteed that this student will generate a response
corresponding to this physical model. We can define a set of ability variables, o, (n =1,
2, 3), as the probability for a student using model 1 to correctly generate the answers
corresponding to that model. This probability can be measured with interviews where
students solve a problem aloud. Since students often have more experience with their old
models than with the new ones, the abilities for applying the different physical models may
be different. For the random model, the ability to guess a response is considered to be 1.

In the context of the N3 and FM examples, the logical reasoning and mathematical
operations involved in both the correct and incorrect physical models are similar.
Therefore, for simplicity, a single ability variable, a., is assumed for all the non-random
physical models.

Suppose we detect a response of Q. What are the probabilities for the student to be in
any of the different physical model states? For simplicity, in this example, it is assumed
that Q1 and Q2 each consists of 1 choice and the random response Q3 consists of “h”
random choices, where L =h + 2.

Define p,, as the probability of a student in n™ physical model state (M, to generate a
uth type of response (Q,). Then the p,i’s can be found as in table 4-2, where
1

BIZOH'(I_OL)%, BZZ(I—OL)%, Bszf-

Table 4-2. The probability for a student to generate Q; with different Mn’s

The first term describes the probability of a student
triggered into M; generates a Q;. The second term
represents that a student with M; generates a
response other than Q; but still picked Q);.

The student triggered into M2 but unable to
generate Q2 and picked Q1.

1 The student triggered into a random model and

Ps :q3f=q3B3 guessed Ql

1
Pn :q1a+q1(1 _a)f = qlBl

1
Py =q,(1- a)f =q,B,

61



A detailed schematic for p;; is shown in figure 423

OL4> Q1 1
M; Select Q
1
1 A/v
-
—> Ngne Guessing
1

Figure 4-2. Schematic for pi;

As we can see, it is possible for a student in different physical model states to generate
a same response but with different probabilities. Once a definite response is detected, the
inferential probabilities for a student to be in either of the physical model states are directly
related to the py,’s. For example, if p;; 1s much larger than the other p,;’s, when a Q; 1s
detected, the student will have a much larger probability to be in a M; state.

Then define P, as the inferential probabilities of a student that have generated a '
type of response but is in nth physical model state. The P,, can be found as
_ P

P T ow
2Py
n=1

nu

where w is the total number of physical models. With this example, if a Q1 is detected, the
probabilities for the student in different physical model states are

P, = Py » Py = P » Py = Pat
Py + P2 T P35 Py + P2 T P35 Py + P2 +P3y

Obviously iPW =1
n=1

That is, a student has to be in one of the physical model states (which explains why a

random model is always needed). Similarly, we can find the p,,’s for other responses (u=
2, 3) as in table 4-3
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Table 4-3. The probability of a student to generate Q2 and Q3 with different Mn’s
Q2 is detected Q3 is detected”

1 h
P :q1(1_0~)f:q1B2 Pi3 :Ch(l_a)f:(hﬁzh

1 h
Px» =q20t+q2(1—0c)f=q2[31 P :qz(l_a)f=q2[32h

1

h
Ps :q3f:CI2B3 P33 :q3f:q3ﬁ3h

"That the h is included in pn3 1s because the probability to guess
one of the h random responses from the total L choices is h/L.

The process of a student generating a response can be represented as in figure 4-3.

4yl M1 by 5 QI
Boh
Q2 P2
A question > M2 Br—X —% Q2

B3h

Figure 4-3. A three-model example of possible paths for a student to generate a response

Based on the p,,’s, we can calculate the P,,’s for all the different situations. The final
results are put in a matrix form as:

P, P, P,
P= le P22 Pz%
P, P, Py

This P is defined as the model-reliability matrix of a test. As an example for an average
student, suppose we have

a=0.8,q1=05q=04,q3=0.1,L=5,andh=3

The reliability matrix for this example P, is calculated to be
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0.92 0.05 0.36
P, =10.04 090 0.28
0.04 0.05 0.36

The diagonal elements represent the probabilities of correct matches between responses
and student model states while the off-diagonal elements represent the “cross-talk” from
mismatched model states and responses. Therefore, larger diagonal elements indicate
higher reliability for the corresponding item-based modeling schemes. With this example,
the modeling for M; and M, is comparatively reliable with uncertainties around 10%. The
modeling for the random model M3 is quite unreliable with a total uncertainty equal to
64%. Since M3 is a random model and often affects less than 10% of the students (see the
analysis with real data in later part of this chapter), the low reliability of this model
measurement will not cause large errors to the overall results.

From a signal processing point of view, one often uses signal-to-noise ratio (SNR) to
evaluate how much the “cross-talk” can degrade the accuracy of a measurement. For a n™
response, define SNR,, as the SNR between the signal from a correct match and those from
the “cross-talks”. SNR,, can be calculated as (in dB)

Pnn

SNR, = 1010g1

m
For the example here, the different SNR,,’s are found to be
SNR; =10.6 dB, SNR,=9.3dB, SNR;=-2.5dB

The negative value of SNR3 means that the noise is larger than the signal. If a value of
zero is obtained, it represents the case where the signal and the noise are at the same level
and the item-based modeling is not usable (50% uncertainty).

The Implications for Question Design

To design a reliable test, we want the reliability matrix to have large diagonal elements.
Table 4-4 lists some results for the diagonal elements of P under different conditions.

Table 4-4. Diagonal elements of P at different settings

a=0.6 a=0.8 a=0.8
qi = 0.5, qQ2 = 0.4, qi1 = 0.1 qi = 0.5, qQ2 = 0.4, qi1 = 0.1 qi = 0.7, qQ2 = 0.2, qi1 = 0.1
P11 =(0.867 P11 =0.921 P11 =0.955
Pzz =0.819 Pzz =(0.894 Pzz =0.778

As we can see, a 30% variation of the student ability and model triggering probabilities
only result in 10% changes of the diagonal elements. Therefore, if o and g,,’s are not too
ill conditioned (close to zero), the reliability of the test should be acceptable (P, ~ 0.8).
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The change of the q,’s reflects a restructuring of student model states, which is part of
the data and is dependent on the individual students. Smaller q,’s lower the reliability of
the detection of less favorable models; however, it also increases the reliability of the
detection of models that are popular. On the other hand, the decrease of a reduces the
reliability on the detection of all the models. For this case, one must carefully design the
questions so that the physics and mathematics involved are well matched with the level of
the students, to make sure that the majority of students won’t have operational difficulties
on the content of the questions. The student ability also depends heavily on correct
interpretation of the questions. Therefore, the wording and structure of a question should
also be straightforward to the students to minimize any possible confusions. A
misinterpretation of a question can also result in a triggering of an inappropriate model.
This must be evaluated through interviews.

Student abilities of applying different physical models in various contexts can often be
evaluated with problem-solving interviews. Based on research, we can also develop
multiple-choice questions to assess the ability. For example, on a test we can design a
cluster of questions to measure a particular model starting with several simple questions to
identify the triggering of certain models. Our data analysis indicates that within a cluster
of questions with similar context settings, usually only one physical model is triggered (see
chapter 5 for details). Then with similar context settings, we can include a few questions
in which students need to apply their models. By analyzing the responses on the questions
in the cluster, we can extract information about student ability in applying the
corresponding physical model. Again, all the design of the questions and the
interpretations of the results should be based on rigorous qualitative researches.

From table 4-2 and table 4-3, it is easy to see that in order to increase the SNR, a larger
L is helpful. With L =5 in the example, the probability of a student guessing any non-
random response is about 20%.

In the previous discussion, I have assumed that each non-random physical model only
has one corresponding response. In some cases, students can generate responses with
some variation on certain insignificant features. For example, on the FM concept, the
major incorrect model emphasizes whether there is always a force in the direction of
motion. However, in solving different problems, students may come up with a variety of
responses on the behavior of such a force (changing or constant, what causes it, etc.). All
these different responses still reflect the common incorrect physical model. Therefore, in
these cases, having more than one choice to include the different possible student
responses can help the detection of student models.

Finally, the most important criteria for a test to be usable with item-based modeling is
that a choice in a question cannot be related to more than one physical model. A example
is question 33 in the FMCE test (see Appendix A), where students with four different
models can legitimately generate the same response (more details are discussed in chapter
5).” In such cases the uncertainty for the item-based modeling is very high (>75% when
there are four possible models). As discussed earlier, when the uncertainty is greater than
50%, the noise is larger than the signal. Therefore, the item-based method is not usable in
such cases and we have to use other methods to extract the information.
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Student Model Density Matrix

In the next few sections, I will discuss the details of the mathematical formulation of
the model evaluation algorithm. Before going into all the mathematics, I would like to
define the variables and indices as in table 4-5.

Table 4-5. Definition of variables and indices

Items | Description
k indices for students
N total number of students
m total number of questions in a concept group
W total number of physical models in a concept group
n, W indices for different physical models and student class model states
D student model density matrix
Pnu an element of D
Dy student model density matrix for the k™ student
pmuk an element of Ry
\4 student model vector matrix — eigenvector matrix of D
Vv, the u™ eigenvector of D
Vun an element of V
uy the k™ student model vector obtained with student responses
Ik the k™ student model response vector
6“2 the eigenvalue corresponding to the nt® eigenvector of D
e, the base vector representing the nth physical model

In this section, I introduce a crucial element in this algorithm — the student model
density matrix denoted as 2. Student responses will be represented with this D in the
model space. This matrix retains the structural information on individual student responses
with respect to different physical models. For the three-model example discussed earlier,
the density matrix is a 3x3 matrix.

Creating the Single Student Model Density Matrix

To create D, the first step is to find the individual student model states. The student
model response vector ry, when normalized, gives the estimation on the probabilities for a
single student to be triggered into the different physical models. As defined in chapter 2,
the student model vector, uy, is obtain by taking the square root of the elements of the
normalized mode response vector:

Uy | \/K
W = Uy Zﬁ AL =|“k> (4-3)

Uz L
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As we can see, uy represents the probability amplitude.

Then we can construct the single student model density matrix of the k™ student as:

| Ny \/nlkn2k \/nlkn3k
J— J— k —
D, = |“k><“k | = {pnu }— ; SR LETR O Ny Ny gy (4-4)
\/n3kn1k \/n3kn2k LET

Eq. (4-4) indicates that p*,, = p*,,, and all elements are positive. Then we can write:

D =D/ (4-5)

Table 4-6 is a list of a few typical single student model density matrices for different
student model states. The calculation is based measurements with a group of five
questions on a concept domain with three physical models (m =5, w = 3).

Table 4-6. Samples of single student model density matrix
Student Model | Student Model Student Density

Responses Vector Matrix
1 1 00
(500) 0 0 00
0 0 00
2 4 20
L 1 1 210
410 5
(410) Js 0 0 00
1 V3 Ak V6 0
—| 2 —1J6 2 0
320 5
(320) s 0 0 0 O
1 V2 |22 V2
@21) 5 2 ;|2 2 J2
1 V2 420

Creating the Class Model Density Matrix
As discussed earlier, the uncertainty of our determination of individual student models

depends on the number of the questions in the group, i.e., we need m >> 3 for the example
here, which is not satisfied. But if we have a lot of students in a class, we can construct the
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density matrix for the whole class and evaluate the student model states of the class. The
density matrix for the class is obtained with Eq. (4-6).

Pii Pz Pis | N | N p]l(l pll(z p]1(3
D=py Py Py|==2D==2 p];l plz(z plz(s (4-6)

N o N | . .

Par Pz Pas P31 Pz Paz

where
| R
pnuzﬁgipnu

From this definition of the class density matrix, we can see that the diagonal elements
of the density matrix equals the number of student model-based responses (in percentage)
corresponding to each of the physical models, which can be written as

m N N m N
20, =>>n, =>m=N-m,
n=1k=1 k=In=1 k=1

Notice that according to the discussion on measurement resolution, for good results, we
need N>>w, which is usually satisfied.

Since D is symmetric and all data are real, it is a Hermitian matrix. Therefore, we can
perform eigenvalue decomposition on it to get its unique set of eigenvectors and
eigenvalues. Since the matrix is nonnegative definite (all data are > 0), the eigenvalues are
all real nonnegative numbers, which are denoted by o’ L 022, ... 6%. Define the
eigenvectors of D as v, (a column vector) with u = 1,..., w as indices for different class
model states. Then the matrix of eigenvectors can be written as

V=[Vl, .0y Vs ey Vi

This matrix transforms 2 into a diagonal form. For a 3-D model space we can write
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s 0 0
w=3

viov=[’]=| 0 & o
0 0 o

We can reconstruct the class model density matrix from the eigenvectors and
eigenvalues. Suppose we are given the student class model states represented by v, with
eigenvalues GHZ . We know for each v, defined similarly as in equation (4-3), the
component corresponding to the nth physical model is vy,,. Therefore, this model state will
have a contribution equal to v,,* from the n"™ physical model. In addition, from the
eigenvalues, we know that O'HZ represents the weight on v,. Then the frequency of the
student responses reflecting the n™ physical model, Ry, will have contributions from all
the class model states and can be calculated as

Pun =Z}Gp~(vp~en)2 =Zc5fl-viu (4-10)

This result can be verified with (w = 3)

2 2 2
GVt OV O3V | | Vir Vo Vi

_ 2 H _ 2 2 2 .

D—V[Z ]V =101V O,Vy O3V |*| Vi Vyp Vi

2 2 2
G1Vir O,Vsy O3V | [ Vs V3 Vg

It is easy to see that the diagonal elements are the same as equation (4-10), and the off-
diagonal elements can also be obtained with

3 3
Puw = ;Gi (Vu 'en)(vv 'en) = %Givmvvn
which follows directly from the spectral decomposition of D,
3 2
D= EGH|VH><VH |

The eigenvalues and eigenvectors of D will be used to study the student class model
states. These eigenvectors represent the model states of the class of students. Before
going into more details of how to use these eigenvalues and eigenvectors, it is helpful to
know the meanings of all these new elements such as the density matrix, the eigenvalues,
and the eigenvectors. In the following discussion, I will only focus on the student class
model states.

The Meaning of Model Density Matrix and Student Model States

The purpose of introducing the model density matrix is that this matrix can store
important structural information about the individual student models. In general, there are
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three typical model conditions for a class of students. A class can be in either one of these
types or in a mixed situation formed by a combination of these types.

1. Most students have the same physical model (not necessarily a correct one) and
they are always consistent about it.

2. Students have several different physical models but each student has only one
model and is consistent about it. Thus the class of students can be partitioned into
several groups each with a different but consistent physical model.

3. Many students in the class can each have multiple physical models and they are not
consistent in using these models.

The model density matrix has very different forms corresponding to these different
types of situations. The diagonal elements of the D reflect population of students with
model based responses corresponding to the different physical models and the off-diagonal
elements indicate the mixing of students using the different physical models in generating
their responses. Large off-diagonal elements indicate low consistency in using the
physical models (very mixed student model states).

For the above three situations, if most of the students are in favor of one clear and
consistent model, one of the diagonal elements will be much larger than the other diagonal
elements and the off-diagonal ones will be almost 0. If the individual students are still
consistent in using their models but different students may have different types of models,
the off-diagonal elements are still zero. If a significant number of students are inconsistent
in using their models, the off-diagonal elements of D will be comparatively large.

In general, the diagonal elements give the distribution of the probability of students’
using the different physical models, while the off-diagonal elements indicate consistency
of the individual students’ using their models. Figure 4-4 shows three examples with
different student modeling situations.

When students have consistent models, the density matrix will only have diagonal
elements and the base vectors for the physical model space, e, e, and es, are the
eigenvectors of the density matrix (see figure 4-4 (a) and (b)). Then the class model states
are the eigenstates of the physical model space. The eigenvalues are the diagonal elements
of D, representing the proportions of the students with the corresponding models.
However, in most cases students often have inconsistent models, so the density matrix will
have both diagonal and off-diagonal elements and the class mode states will not be the
basis vectors of D.

From case (b) and (c) in figure 4-4, it is easy to see that the students with consistent
models and inconsistent mixed models can generate the same model-based responses
corresponding to different physical models (the diagonal elements). Therefore, even if we
model the student responses with the physical models but only count the numbers, which
can produce the diagonal elements, there is still not enough information to tell if the
models of the individual students are mixed or consistent. With a model density matrix,
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information for such differences is stored in the off-diagonal elements and can be extracted
for further analysis.

1 00 05 0 O 0.5 0.2 0.1
0 0 O 0 03 O 02 03 0.1
0 0 O 0 0 02 0.1 0.1 0.2
(a) (b) ()
Consistent Consistent Inconsistent
one-model three-model three-model

Figure 4-4. Samples of student class model density matrix: (a) an extreme case
corresponding to the first type of class model condition where everyone has the
same physical model (model 1); (b) the second type of class model condition where
the class consists of three different groups of students each with a consistent
physical model; (c) the third type of class model condition where many students
have multiple physical models and are inconsistent in using these models.

Now let us see how exactly the information of the individual student model states is
stored in D and what the eigenvalues and eigenvectors represent. Consider a class with N
students. The k™ student model vector is represented with |uy), where k =1, ... N. Then
the class model density matrix is

1 X 1 X
D=—3%D =—> |u Nu 4-11
NE ‘ NE' | @10
Define the eigenvectors of D as vi, ..., vy, with eigenvalues as %1, 6%, ... 6°y. ThenD

can also be written as
D=3 fv)fv| @12
Using Eq. (4-11), we can write
1
Z)|Vu>=§ki|uk><uk|vu>zci-|vu> (4-13)

Define ay as the agreement between the k™ student model vector uy and the uth
eigenvector:

a =<uk|vu>=<vu|uk> (4-14)
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Then Eq. (4-12) can be rewritten as
1 N 1 N
Z)|Vp> = §E|uk><uk |Vu> = EZ{&”“ Ju) =0 '|Vu>

Therefore, we have

1 N
121 |Vu>=§]§auk |uk>
1 N
|Vu>=mk§apk-|uk> (4-15)

Thus an eigenvector of D is a weighted average of all the individual student model
vectors with weights equal to the agreements between the eigenvector and the single
student model vectors. Therefore, the class model states represented by these eigenvectors
are the set of states that most resemble the salient features of all the individual student
model vectors.

Eq. (4-15) also indicates that the structure of |v,) will have more contributions from
student model vectors that are similar to |v,). Therefore, if there exist a group of |uy)’s that
are very similar to each other but different from the rest, this group of |ui)’s will have a
common effect to make one of the eigenvectors (|v,)’s) similar to them.

If we left multiply Eq. (4-15) with the same eigenvector, we have

) G, - Ea“k (Vi) . Eaik =1
2 1 N 2
P (4-16)

This result indicates that the u™ eigenvalue is the average of the squares of the
agreements between the p eigenvector and the individual student model vectors. Since
the agreement a 1s a dot product of two vectors, it is possible for a,, to have negative
values. The outcome of the dot product gives the agreement of two model vectors in
probability amplitudes. On the other hand, auk2 is always positive and gives the agreement
based on response output (the model vector is amplitude based and the squares of the
elements of a model vector produce the normalized model responses). Therefore, an
eigenvalue represents the average response-based agreement between the corresponding
eigenvector and all the individual student model vectors.

It can be inferred from Eq. (4-16) that the eigenvalue is affected by both the similarity
of the individual student model vectors and the number of students with similar model
vectors. In order to have a large eigenvalue, it is needed to have not only large individual
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auk2 , but also a good number of them, which implies that more students in the class have
more similar single student model vectors. That is, the students in the class behave more
similarly to each other (the consistency between students is high).

In cases when the performances of students are very similar to each other, an
eigenvalue will be mostly determined by the number of students with model vectors
similar to the eigenvector corresponding to that eigenvalue.

As an example, suppose there are N students in a class and they can be partitioned into
several groups where students in each group are similar to each other and have a same
single student model state. Students belong to different groups will have different single
student model states. These single student model states can be mixed states, but we
assume them to be orthogonal to each other so that the similarity between different student
model vectors are 0. (This assumption also determines that the total number of such
student groups obtained with this method will always be less than the dimension of the
model space — this method will collapse all the students into three groups that best
resemble the actual situation.). Define N, as the number of the students in a group with a
same student model vector v,,, which can be a mixed state of the physical models.
According to Eq. (4-15), each group of student model vectors will produce an eigenvector
exactly the same as themselves because in this case, a,i will be either 1 or 0. Thus, the
eigenvectors of D will be the same as these student model vectors. The eigenvalues can be
calculated with

1Y N
2 2
R INE T T

Therefore in this case, Guz reflects the population of the students with the model vector
represented by v,.

If the students are not consistent to each other and have different model states, the
eigenvalue will not have a direct association with a group of students. However, it still
partially reflects the size of a more consistent group of students. In general, when auk2 has
values close to a 0/1 binary mode, the eigenvalue will contain more information on the
student population distribution for the different model states.

In the above discussion, there are two types of consistency involved that will affect
different aspects of the results. The consistency of individual students using different
physical models is reflected by the off-diagonal elements of D and determines the
structures of the class model states (mixed models or pure physical models). The
consistency among different students determines the eigenvalues.

Student Class Model States

When students have inconsistent models, as in case (c) of figure 4-4, the class model
density matrix will not be a diagonal matrix. To find the eigenvalues and eigenvectors of
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D in such situations, we can perform eigenvalue decomposition. For the three-model
example here, the eigenvector matrix, V, can be written as

Vit Vi Vi3
V=|vy vy vy (4-17)

Vi Vi Vg3

and the three eigenvectors are

Vi Vi Vi3
Vi={ V| Vo =1Vy | Vi3 =| Vo3 (4-18)
Vi V3 Vi3

Each of the eigenvectors can also be represented with the basis vectors as

1 0 0
VHZZ;leen:le 0+v,,[1]+vy|0], u=1,23
" 0 0 1

Then we can represent v; by a vector in the physical model space with coefficient, v,
as component on the ™ base. For the example in figure 4-4(c), the eigenvalues and
eigenvectors are found to be:

066 0 0 0.81 -0.58 0.14
[22]=] 0 020 0|, V=052 058 -0.63 (4-19)
0 0 0.14 029 0.58 0.7

The eigenvectors for student model states can be represented as in figure 4-5. In the figure,
only the components of v; are shown. The eigenvalues are represented as points on the
correspondent eigenvectors. In general, the new eigenvectors have components on all
basis vectors.

As discussed in the previous section, the class model vectors are the weighted average
of all the individual student model vectors. As a result, a class model state contains all the
signature information from all the individual student model states with contributions
controlled by the similarity between them. Therefore, the structure of a class model state
often represents an outstanding salient feature embedded in a large number of the
individual student model states. The prevalence of such features is described by the
eigenvalues.
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Figure 4-5. Student class mode state vectors

A large dominant eigenvalue indicates that many students are similar to each other and
the single student model vectors for different students are similar. On the other hand, if
students are all different from one another, the individual student model vectors will have
different structures. As a result, it is difficult to find a vector that agrees well with a large
number of different single student model vectors. In such cases, there will be no dominant
eigenvalues. Therefore, the eigenvalues can be used as a measure to tell if the students are
similar or different from one another. The obtained class model states usually have
components from all the basic physical models. To see how the class model states agree
with the physical models, we can calculate the agreement with a dot product of the v,’s
and e,’s. Since the class model states represent the probability amplitude, the probability-
based agreement between a physical model and a student class model state is defined as the
square of the dot product between the two model vectors

(Ve,) =v2, (4-20)

The higher the agreement the better the student models agree with the physical models.
For a more complete evaluation, the eigenvalues also need to be considered. Since larger
eigenvalue indicates more students with single student model states similar to the
corresponding class model state, we would like to have a large eigenvalue for the model
state that agrees best with the favorable physical model.

Evaluating and Presenting Student Model States

Class model states derived from the class density matrix can be used as an evaluation
to assess class performance. In the following sections, I will introduce a few tools
developed to present these student model states and to obtain numerical evaluations on
various features of student models.

Model Plane Plot

In many cases, students often have model states structured with dominant components
on two physical models, a correct one and a major “misconception”. In this case the null
model element is often very small (for a three-model situation). For many examples in our
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data analysis, the measured null elements are around 5%. Then, we can construct a two-
dimensional model plane by using the two physical models as axes. Each class model state
obtained from the class model density matrix is represented with a point on this two-
dimensional model plane. As shown in figure 4-6, a class model state, v,,, is represented
by point B on the model plane with o,*v,,” as the horizontal component and &,*v,” as the
vertical component. Obviously, when the eigenvalue for a specific class model state is
small, the model point will be close to the origin. As discussed earlier, small eigenvalues
represent insignificant model states (less popular). If there exists a dominant state, with an
eigenvalue lager than 0.8, this state alone is often enough to represent the whole class. In
such cases, usually only the dominant state is plotted and it is considered as the primary
model state.

AModel 1
1
2
1 'V3u 2
o
6“2( 1 ‘V}pz)

5
Viu < A
2 .
olvie| AU BENG
0 csuzvzu2 Vzuz 1 Model 2

Figure 4-6. Sample student model plot

Since the eigenvector is unitary, the sum of squares of the three components should be
equal to the eigenvalue, 0“2. Under such constraint, if the third model (the null model)
component, v3,, is zero, the point representing a model state will be on a line going
through point (0, Gf) and (Gf, 0). This line is called as the ideal model line. 1f v3, is not
zero, then the model line will go through the points (0, Guz(l_w“z)) and (GHZ(I-V3H2), 0).
Thus by showing the two model lines together, the third component of the eigenvector can
be represented with the shift between the two model lines.

In figure 4-6, all the model lines are represented with dashed lines and the ideal model
lines are in solid lines. For the extreme case of a 100% model concentration, i.e., o
equals 1, the ideal model line will go through the points (0, 1) and (1, 0), which is the
upper boundary of the model region. No model points can exist above this line. This also
gives a way to represent the eigenvalues — the distance between the ideal model lines and
the upper model boundary where larger distance corresponds to a smaller eigenvalue.
According to our experience with student data, the square of the third components
(represents the null model) of the primary model vector (eigenvector with largest
eigenvalue) is often small (~ 0.02). Therefore, we can make an approximation to write

76



2 2 2
o, (1-v3)) =0y,

This indicates that the model points are often very close to their ideal model line. Thus the
distance between a model point and the upper boundary is approximately equal to the
distance between its ideal model line and the upper boundary, which is directly associated
with the eigenvalue. Therefore, on the model plot the distance between a model point and
the upper boundary line can be used to get an estimation of the eigenvalue of the
corresponding model state.

As we can see from figure 4-6, model points on the boundary line (100% concentration
on one eigenvector) will have an eigenvalue equal to 1. The model point at (0,0) has the
largest distance (= 0.707) and the eigenvalue is equal to 0 (under the assumption of V3H2
being negligible). Thus the eigenvalues of model points at other places on the model-plane
can be approximated with

1

V2

02;(1— d]:(l—d-\/i) (a-21)

where “d” is the distance between the model point and the upper boundary line.

Also in figure 4-6, a centerline, going through point (0, 0) and (0.5, 0.5), separates the
model plot into two regions. The lower right part is the region for model states with
preference on the incorrect model (model 2) and the upper left region is for model states
with more preference on the expert model (model 1). When model points are close to the
centerline, their model components on model 1 and model 2 will have similar values,
indicating more mixed model states. When the model points are closer to the two corners
at (1, 0) and (0, 1), one of the model components will be much larger than the other, which
implies that the student model states are more consistent and close to the physical models.
The point of (1, 0) and (0, 1) represent pure physical models of “Model 2” and “Model 1.
In such situations, D is diagonal and student model states are identical to the physical
models.

Angular Presentations of Model States and Model Mixing Features

When analyzing student model structures, we can project the student model states on
the plane spanned by the two dominant physical models. Then we can use the angles
between the physical models and the projections of the student model states to represent
the mixing feature of a model state. Using ¢,,, to represent the model projection angle on
the plane spanned by the nth and the },tth physical models, we can write (see Eq. 2-3):

Ja.
o, . = arctg(
nu \/a

Notice that ¢, is generally defined so that it can be used for both the measured single
student model states and the calculated class model states. Then we can represent the
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student model states on an angular distribution plot shown in figure 4-7b. The angular
distribution plot is evenly partitioned for an easy estimation on the mixing features of
student model states.

When analyzing class model state, the model plot shown in figure 4-8 is a better tool
since it gives the eigenvalues and is plotted in terms of probability. Define the model
angle on the model plot with ®@,,, then we can write:

_ 4

= th ((I)ml )
qn

tg(@,,)

Then the boundaries separating different model regions in the model states angular
distribution plot can be translated into the model plot as two straight lines from the origin
with a slop equal to 1/3 and 3 respectively (see figure 4-8, and tgz(n/6)=1/3).

A Model pn A%

Model n Mixed Model p
Region Region Region

Ja.

¢11H ; > ! > (I)nu
\/a Model n 0 /6 /3 /2
a) Model projection angle b) Model states angular distribution

Figure 4-7. Schematics of model projection angle and model states angular distribution.

In the three-model example, the model plot is partitioned into four regions, the
“model 1 region”, the “model 2 region”, the “mixed region” and the “secondary model
region” as shown in figure 4-8. The “model 1 region” (and “model 2 region”) contains
models with dominant model 1 (and model 2) components. For the example described in
table 4-1, models in the “model 2 region” will then indicate a strong misconception on FM
and models in the “model 1 region” will imply good understandings on FM.

Model points in the “mixed region” can represent a mixed model state, where no
physical model is in domination and the individual students are inconsistent in using the
different physical models. The “secondary model region” represents model states with
small eigenvalues and therefore they are usually considered secondary with much smaller
effects on the overall class performance. In most cases from our data, there is often one
primary model state with an eigenvalue 3 to 4 times larger than the second largest
eigenvalue. Therefore in these cases, showing the primary model state alone can provide a
good overview of the student model situations.
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Figure 4-8. Model regions on model plot

The model plane allows us to visually present most information about the student
model states on the same graph. We can also put the pre and post model states from
different classes together on the same plot, making it much clearer to see the patterns and
shifts of the different student model states. Furthermore, it allows us to do quantitative
analysis of the student model changes.

Model Improvement

Based on the model plane plot, we can construct a numerical evaluation, the fraction of
possible model improvement, denoted as M, to evaluate the shift of the student models on
pre and post tests. Figure 4-9 shows a typical model plot with point A as the initial state
and point B as the final state.

Expez‘t Model (Model 1)
1
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ST
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Figure 4-9. Shifts of model states
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Define S; and S, as the two vectors to represent the initial and final student model
states. The third vector, Sy, represents the most favorable final state, assuming model 1 is
the favorable physical model. For each initial S, the best shift it can get is S — S;. The
real shift, however, is S, — S;. The fraction of possible model improvement is then
calculated with

M:(SO_SI)'(S2_SI) (4-22)

(S, =S,

Using Eq. (4-22),,M has a value within the range (-0, 1] (1 for the most favorable shift).
The negative values indicate a shift towards the unfavorable model. We can also re-scale
the unfavorable shift to be within the range [-1, 0]. To do so, we need to locate an
unfavorable model state and replace the vector Sy with the vector starting from the initial
state to the unfavorable state. Thus Eq. (4-22) will have two forms depending on the
direction of the student models changes and can give a scaled evaluation from —1 tol.
Although this calculation uses a two-model example, the general formulation is the same
for multi-dimension model spaces.

Relative Model Mixing Rate

As discussed in previous sections, the diagonal elements of the class model density
matrix give the probabilities of the class using different physical models. With same
diagonal elements, the off-diagonal elements can have different values corresponding to
different structures of the measured single student model states. Therefore, with a given
distribution of the diagonal elements, the largest model mixing happens when all students
have the same model state that gives the probability distribution equal to the diagonal
elements. In a three-model example, under this maximum model mixing situation we can
write the class model density matrix as:

P \/pllp22 \/pllp33

D = VP 2P P22 VP2P33

\/933p11 \/933922 P33

Define vy, as the relative model mixing rate between physical model n and physical
mode p. Then we can write

P

Vo =
PanPuu

where p,,, is the measured off-diagonal elements. The relative model mixing rate gives the
similarity between a measured class and the possible maximum model mixing situation
with same diagonal elements. Therefore, if there exits several groups of students each with
a quite consistent model state (similar to case b in figure 4-4), y,, will give a value close to
0. If all students are having a similar model state, y,,, will give a value close to 1. In this

(4-23)
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case, the common student model state is close to the one reflected by the diagonal elements
of the class model density matrix. Thus vy, can give us an estimation on whether the
students in a class are having similar mixed model states or they may have different types
of model states (consistent and mixed). Such information is also reflected in the
eigenvalues, however y,, can give a comparatively direct estimation on the relative model
mixing situation between any two physical models of interests. To use yy,, it is necessary
to show that Eq. (4-23) always generates a value between 0 and 1. The mathematical proof
is discussed in Appendix C.

Measurement Concern on Model State

The model angle of a measured student model state has a non-linear dependence with
respect to the measurement in terms of numbers of questions. For example, suppose there
are two physical models and the total number of questions used in the measurement is m.
The measured model angle can be calculated with:

where n; (ny) represents the number of questions that the student uses physical model 1
(physical model 2). Obvious, n; + n; =m. Then the angular dependence of the measured
student model state can be graphed as shown in figure 4-10.
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Figure 4-10. Angular dependence of measured student model state
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As we can see, the uncertainty of the measured model angle is not liner and it gets
larger when the model angle is closer to 0 or /2 (model state close to physical model 1 or
2). In the center (perfectly mixed model state), the uncertainty is reduced. Therefore,
when setting the resolution for measuring single student model states, we need to take into
account this non-linear effect. If most students’ model states are close to the physical
models, we need to increase the number of questions used in measurement.

Application Examples
Student Model States from FCI data

In this section, I discuss some application examples with FCI data. The main goal of
this exercise is to see how this tool performs in practical situations. The data set used in
the analysis includes pre and post FCI results from 14 Physics 161 classes at UMd
(calculus-based physics for engineers). Our study will focus on two groups of questions of
the FCI test, the N3 group and the FM group. In the literature, it has already been shown
that on FCI test the performances of the students from tutorial classes and traditional
classes are very different.'’ Here I will also compare the results from the two types of
classes. The purpose is not to rediscover any of the known differences but to look for new
ways of studying the problem and extracting information, which is unavailable with
traditional analysis methods.

» Modeling the Test

The three physical models of the FM group have already been discussed in the
previous sections. Now we need to model the N3 group consisting of 3 questions (2, 11,
and 13 see chapter 2 for details). For FCI questions, the N3 group can also be summarized
into three physical models (see chapter 2 for detailed discussion on the physical models
with Newton’s Third Law).

Model 1: The force has the same magnitude and opposite direction (correct).

Model 2: The force is related to the dominant agent (mass, velocity, acceleration,
etc.)!! (incorrect).

Model 3: Other irrelevant ideas (null model).

The model scheme for the corresponding student responses is listed in table 4-7.

Table 4-7. Modeling the Responses of the N3 Group (FCI)

As we can see, the modeling of the N3 group is a little more complicated than the FM
group described in table 4-1. The N3 concept domain involves multiple physical features

Question Model 1 Model 2 Model 3
2 e a b, c,d
11 e , a,c
13 a c, b d, e
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such as mass, velocity, acceleration, etc. Ideally, we would like to have for each physical
agent a few questions with different contexts so that we can isolate the student
understandings on the different physical features and have more independent information.
Unfortunately, the FCI questions are not designed to isolated these physical features,
therefore, we have to collapse all the incorrect student models into one generally defined
“dominant agent” model.

« Student Class Model States

To find the averaged student model state, I analyzed the data from seven tutorial
classes with about 500 students and seven traditional classes with about 300 students. The
average results are obtained by putting all the students from the same group of classes
together. Table 4-8 lists the calculated results of the averaged density matrices,
eigenvalues and eigenvectors for the two types of classes.

From the diagonal elements of the class model density matrix, we can roughly see the
distribution of student responses on the physical models. In table 4-8, it appears that, with
similar initial situations, the tutorial classes have larger first diagonal elements, r;;, for
their density matrices on the post test, showing larger shifts towards the favorable model.
The primary model vectors of the post density matrices for the tutorial classes also have
larger elements on the favorable physical models, indicating the individual students are
more consistent in using the favorable physical models. In the following sections, more
details of the student models are discussed using the new tools developed in the previous
sections.

Table 4-8. Results form student FCI data (UMd)

Tutorial Traditional

Eigen| Eigen vector Eigen| Eigen vector
value [vl  v2 v3 value [vl  v2 v3
0.41 0.27 0.05| 0.18 [-0.61 0.76 -0.22]0.38 0.24 0.06| 0.20 |-0.57 0.79 -0.25
Pre |0.27 0.50 0.09| 0.75 {0.78 0.63 0.03|0.24 0.51 0.11| 0.72 | 0.81 0.59 0.02
0.05 0.09 0.09| 0.07 |-0.16 0.16 0.97|0.06 0.11 0.11] 0.08 |-0.17 0.19 0.97
0.75 0.21 0.04| 0.82 [0.32 0.94 -0.11/0.55 0.35 0.16| 0.88 | 0.59 0.62 -0.52
Post |0.21 0.21 0.03| 0.14 {0.95-0.33 -0.03|0.35 0.35 0.16| 0.10 [ 0.76 -0.65 0.09
0.04 0.03 0.04| 0.04 {0.06 0.10 0.99]0.16 0.16 0.12| 0.02 | 0.28 0.450.85
0.27 0.23 0.02| 0.17 |-0.40 091 -0.11]0.27 0.22 0.03| 0.18 |-0.390.91 -0.12
Pre |0.23 0.69 0.07| 0.79 | 0.92 0.40 0.01 |0.22 0.68 0.08| 0.78 [ 0.92 0.39 0.01
0.02 0.07 0.04| 0.04 [-0.26 0.10 0.99]0.03 0.08 0.05| 0.04 |-0.06 0.11 0.99
0.66 0.28 0.03| 0.82 [0.49 0.87-0.05/0.46 0.25 0.03| 0.23 |-0.67 0.74 -0.10
Post [0.28 0.31 0.02] 0.16 [0.87-0.49 -0.03]0.25 0.50 0.05| 0.74 {0.74 0.67 -0.00
0.03 0.02 0.03| 0.02 [0.05 0.03 0.99]0.03 0.05 0.04| 0.04 |-0.07 0.08 0.99

Density Matrix Density Matrix

N3

'™

1. Student model states for the N3 group.

Based on the calculation in table 4-8, the averaged results of student model states in N3
group are plotted in figure 4-11. The results of the individual classes are also plotted in
Appendix C. As discussed earlier, model 2 (the horizontal axis) represents the major
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misconception and the model 1 (the vertical axis) is the favorable physical model. Since
the largest eigenvalues for all the classes are around 0.8 and are 3~5 times larger than the
second largest one, the primary model can well represent about 90% of the students and
should give a pretty good description of the class performance. Therefore, only the
primary models (models with largest eigenvalues) are plotted in the graph.

The graph shows that the initial states of both types of classes are very close to each
other and these states are at the boundary of the model 2 region. The student initial model
can be interpreted as a quite consistent incorrect model with a strong belief that “an object
with dominant agent will exert larger force during the interaction”. After the instruction,
the tutorial classes move to the model 1 region showing that most students (o, ~0.8) are
having a more consistent model in favor of the correct concept. The traditional classes
only make to the mixed model region on the model 1 side, indicating that their model
states are still very mixed and inconsistent with significant influence from the
misconception. From the model plot, we can see that the tutorial classes have a much
larger shift (about twice as much) towards the favorable physical model.

Model 1 Averaged N3 Model States
1
0.8
o Tut-Pre
0.6 1 = Tut-Post
A Trd-Pre
0.4 . ® Trd-Post
0.2 - ..................................
0 ‘
0 05  Model2 !

Figure 4-11. Student models on Newton III (FCI, UMd)

2. Student model states for the FM group.

Similarly the averaged results of the student model states for the FM group are plotted
in figure 4-12. (The results of the individual classes are shown in Appendix C.) As we can
see in this case, the initial states of both types of classes fall into the model 2 region, which
indicates that the students are having a consistent but incorrect model (strong
misconception) — “there is always a force in the direction of motion”. After the instruction,
the tutorial classes show some promising improvement towards the favorable model.
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Although still in the mixed model region, the tutorial classes make a quite large favorable
shift comparing to its problematic initial state. On the other hand, the situation for the
traditional classes is not so optimistic. Its final state doesn’t even cross the centerline, i.e.,
the primary model fails to make the transition to the favorable side. This situation
indicates that many students are still in favor of their initial misconception. Since the final
state is also very close to the centerline, the student model can be interpreted as very mixed
and inconsistent under equal influences from the correct physical model and the initial
misconception.

Model 1 Averaged FM Model Plot
1.0
0.8
¢ Tut-Pre
06 5_ ® Tut-Post
A Trd-Pre
041, ® Trd-Post
02 | """"""""""" N
0.0 0.5 1.0

Figure 4-12. Student models on Force-Motion (FCI, UMd)

3. Numerical evaluations

The numerical evaluations reveal similar results. In table 4-9, the quantitative
evaluations are calculated.

Table 4-9. Improvement of student class model states (FCI, UMd)

Conte).(t Classes Possible Model
Domain Improvement (W)
N3 Tutorial 0.70
Group | Traditional 0.38
FM Tutorial 0.62
Group | Traditional 0.29

The results also show that the students of the tutorial classes have about twice as much
improvement towards the favorable model. It appears that the FM group is more difficult
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for the students compared to the N3 group, but the tutorial classes still have improvement
about twice larger than the traditional classes.

Comparison with Factor Analysis

In the beginning of this chapter, I have discussed certain problems with factor analysis.
After the introduction of the basic algorithms in model analysis, I would like to make more
detailed comparison on the two methods.

Different assumptions and data models

The fundamental assumptions of factor and model analysis are different. The model
analysis is constructed on our understandings of student models. It has physical models
first, i.e., the basis of the physical model space for a physics concept domain is already
determined and model analysis is used to study all different possibilities of students using
their models. On the other hand, factor analysis is to factor out a possible model. When a
factor is found out, the physical interpretation for such a factor is still uncertain and not
unique. With model analysis, the physical meaning is always clear and represents the
dynamical process of student modeling in learning. Based on the student model states, we
can even reconstruct the model density matrix and make predictions on other tests with
similar physical contexts.

Density matrix and correlation matrix

In factor analysis, a correlation matrix is used where the diagonal elements are always
equal to 1 and the off-diagonal elements indicate the correlation between the student scores
on different questions. With model analysis, we have a model density matrix where the
diagonal elements represent the probability of students using the different physical models
and the off-diagonal elements represents the consistency of the individual students using
these models.

Different models of random process

With model analysis, there are three types of random processes (see chapter 2 for
details). The first one is the random process happens in the model triggering where the
context can trigger a variety of student models. The second one is that a student can
produce a response by random guessing. The third one is the random error due to human
mistakes.

In factor analysis, there is only one random variable corresponding to human errors and
guessing. The data model is often written as

S=T+e

where S is the student score, T is the “true” score, and “e” is the error. 12 Since only the
score is evaluated in this model, there is no direct information that can be obtained to study
the student underlying models. In addition, for some questions, students with different
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models can sometimes produce the same score. This can create very confusing results if
only the score is considered (examples are discussed in chapter 5).

An example on differences between model analysis and factor analysis

Suppose we give four multiple-choice questions to a class of 100 students (m=4,
N=100). All four questions are based on one physics concept domain, which has two
physical models, model A and model B (w=2). Consider two cases:

Case 1: All students in the class are consistent and half of them use model A and the
other half use model B.

Case 2: All students are equally mixed between model A and model B.

The following calculations are performed on computer simulated data generated based
on the definition of the example. For case 1, the results from both methods are calculated
in table 4-10. As we can see, with model analysis, the results represent that the whole
class has two consistent models with equal weightings. The result from factor analysis
gives a single factor. This result indicates that all the students are consistent — the students
give either all correct answers or all incorrect answers. However, it doesn’t tell in which
way the students are being consistent. In fact, when the students are consistent the same
factor can be obtained regardless how many of the students get the questions correct or
wrong. Therefore, the results from factor analysis can only provide limited and indirect
information on student behavior.

Table 4-10. Results from model analysis and factor analysis for students with
consistent models

Model Analysis Factor Analysis
1111
Density 1o Correlation L1
Matrix 210 1 Matrix 1111
1111
. 2 1 2 1 . 2 2 .
Eigenvalues o, = E, o, = 5 Eigenvalues | o, = 4)Gj =0,(=2,3,4)
1
Class Model (0 Factors 11
States 0/ (1 2|1
1

When the individual students are inconsistent as in case 2, factor analysis often fail to
provide useful information. The results for case 2 are calculated in table 4-11. (In both
cases, eigenvectors with eigenvalues equal to zero are omitted.)
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The students are assumed to be equally mixed with model A and model B. Therefore,
in doing the calculation, the probability for a single student to use either model A or model
B is set equal for all the questions. As we can see, the results from model analysis indicate
a perfectly mixed class model state with 100% dominance (6°=1). The results from factor
analysis show no dominant factors. Since the students are inconsistent in answering the
questions, factor analysis only gives insignificant random-like correlation between the
different questions. Consequently, such situations are often interpreted as if there is no
factors in the test data.

Table 4-11. Results from model analysis and factor analysis for students with a equally
mixed model

Model Analysis Factor Analysis
1 -034 -034 -0.32
Density 1t Correlation -034 1 -032 -034
Matrix 211 1 Matrix -0.34 -0.32 1 -0.34

-032 -034 -0.34 1
o =1.36,0; =1.32,
c:=132,0;=0

Eigenvalues| o; =1, o5 =0 | Eigenvalues

1 0 -1 1

Class Model 1l Fact =1 11| 10} -1l
States NEAN! actors 20 -117\2| =17 210 | 21

1 0 1 1

This example shows that factor analysis cannot deal with the random process in model
triggering.

The Special Features of Model Analysis

To justify the using of Model Analysis, [ have to clarify two frequently raised
questions.

1. Is it worth doing the additional math? What is it that the model analysis can
provide and a simple evaluation of scores can not?

2. Can we only use the model response vectors rather than the model density matrix?
The score doesn’t tell the whole story

It is obvious that the major disadvantage of score based evaluations is that they don’t
provide any information on why students are doing wrong. Especially when the score is
low, the information on the behavior of the majority of students is completely lost. With
model analysis, the complete set of data is used and the results reflect the behavior of all
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the students including those giving correct, incorrect, and random types of responses. This
evaluation provides comprehensive information with clear and straightforward meanings.
On the other hand, what a score can really tell is often quite an argument and depends
heavily on the background of the students as well as the design of the specific questions
(how students fail to give correct answers is implicit with the score based evaluations).

According to our model of learning, the student data represents a multi-dimensional
output based on multiple underlying models. There are also different random processes
involved. The score-based evaluation only provides a one-dimensional data set, therefore
it is very difficult, if not impossible, to extract the multi-dimensional model based
information with one-dimensional data. Even when fancy statistical tools are used (such as
Latent Class/Model analysis, which is intrinsically similar to factor analysis), the result is
still constrained by its one-dimensional nature. Therefore, there can be many uncertainties
because different configurations of any multi-dimensional structure can often create a same
1-D projection. The results are also very much dependent on the selection of ways to
carry out the 1-D projection. Therefore, it is likely that sometime a score-based analysis
gives reasonable results and sometime it doesn’t work at all.

Score-based methods are also vulnerable to any model-based random processes in
model triggering (these appear to be colored noises compared to the white random noise).
For example, the modified versions of factor analysis often characterizes student
involvement or their latent models with an ability factor. It represents the probability of
students with a certain background to get a question correct. But the ability is a very
fuzzily defined concept. It still doesn’t say exactly why a student makes mistakes. From
our research as well as many others, it is observed that in many situations, students have
the “ability” if measured with math, language comprehension and logical reasoning. But
they often possess an incorrect mental model on the topic of the question. Therefore, their
failure to give a correct answer is due to that they are using their “ability” to generate an
incorrect answer, which is reasonable to them based on an incorrect model. Their “ability”
in using such models, including the correct ones if they have them, is not bad. However, in
these situations, the results coming out of the score-based analysis will often characterize
the students with a low “ability”, which implies a completely different story — students
with poor “ability” on basic mathematical/logical operations and students with good
“ability” but incorrect models can generate the same low score. The score-based
evaluation methods have no way to distinguish these two different cases.

Let’s see another example. Consider if we have a class of 100 students with average
score of 50% on questions in a concept group. From the score, what we know is that an
average student will most likely answer half of the questions correctly. But there is still a
lot more we would like to know. For example, what makes the students go wrong? (Are
they picking incorrect responses randomly or with some preference on certain incorrect
choices?) Are these students consistent with themselves (are they always using the same
model or using different ones at different times)? Are these students consistent with each
other (with regards to not only the scores but also the incorrect responses)? All these
questions are not likely to be answered by doing score-based evaluations.
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With model analysis, these questions can be answered and most of the information is
included in the model plot. Figure 4-13 is a scatter plot of some possible model states with
the same score equal to 50% (the data is from computer simulations for different possible
configurations of student responses). Due to the complexity of the calculation, there are
only a handful of simulated data points. But these should give the basic idea.

As we can see from the diagram, with the same score, it is possible for model states to
be in different places in a comparatively large region (marked with the dashed lines). I
will not go into the details of defining the boundaries of this region. Even with the limited
number of data points here, we can see very different physical meanings reflected by these
states.

Possible Model States at Score = 50%

Model 1
1

Upper
boundary

0 0.5 1
Model 2

Figure 4-13. Scatter plot of possible model states at

S =50% from simulated data. Point “A” represents
the case where all students have a perfectly (equally)
mixed model state. Point “B” represents the case
where half the students have a pure model 2 state (the
remaining half can have any type of model state
configurations between model 2 and model 3 but with
no model 1 element). All other points represent other
simulated cases where the model states are somewhere
between case A and B.
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As discussed earlier, the closer a point is to the upper model boundary, the larger the
eigenvalue will be. Therefore, for the example shown in figure 4-13, point “A” describes a
situation where the eigenvalue of the primary model is 1 indicating that the behaviors of all
the students are identical (which also implies that they all have the same single student
model state). Since the model state is also in the center of the mixed model region, the
student model is also a perfectly mixed state, which can be represented as

11
v,=—=| 1
1\/50

Point “B” represents another situation where the model state is a pure “Model 1" and
the eigenvalue of the corresponding state is 0.5 (it is on a model line half way between the
origin and the upper model boundary). This indicates that exactly half of the students have
perfect and consistent “Model 1”. The rest of the students, depending on the model states
of the second and third class model states (not shown in figure 4-13), can be either with
pure “Model 2”, pure “Model 3” or any mixed states of both (what is certain here is that
the second and third model states will be points on the horizontal axis with zero
components on Model 1 axis due to the constraint of S=50%).

All other model points represent some intermediate situations between these two
extreme cases. These variations on the student models are all under the constraint of the
score being 50%. Suppose we only have the information on the score, all these subtle
details of the student model states will then be unavailable. Therefore, Model Analysis can
provide a much more complete description of the student understanding than what scores
can tell.

Density matrix vs. model response vector

Working with the model response vector is much simpler than working with model
density matrix. For the case of a single student, the model response vector provides the
same information on student model structures as the density matrix does (under the
assumption that only one response vector is calculated for a single student). If we simply
add all the model responses from different students together and find an averaged model
vector, this model vector can only maintain the information on the distribution of the
student model-based responses generated with different physical models. All other
information concerning the consistency of students (described with eigenvalues) and the
structure of individual student models (described by the different model states) will no
longer exist.

As an example with 3 physical models, suppose we have 60 students answering a
group of 4 questions. If we sum up all the model responses, we can obtain an average
model response vector. For a same averaged response vector, there can be a variety of
different configurations of the individual model responses. Table 4-12 lists two typical
cases that will both generate an average response vector equal to 2/3(1,1,1)".
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As we can see from table 4-12, the two types of responses reveal very different student
model situations. For type 1, there are three groups of students and within each group all
students have a same consistent pure physical model. For type 2, there are also three
groups of students and within each group all students have the same mixed model state.
Since both cases produce the same average model response vector. It will be impossible to
distinguish these two cases if we only keep the average vector.

Table 4-12. Different model states with same average model response

Type 1 Type 2
Students = nl n2 n3 nl n2 n3
Average 20 20 20 20 20 20
1 2 0 0 1 0 1
2 1 0 2 0 1 1 0
3 1 0 0 2 0 1 1
1 00 1 05 05
Density = o 10 Hos 1 05
Matrix 3
0 0 1 05 05 1

These two cases are very simple examples of possible forms of student responses. In
reality, the student responses can be very complicated. Therefore, in order to retain the
detailed information on individual student mental model structures, it is necessary to use
model density matrix.

From these calculations, it can also be implied that in order to identify the mixed model
states, the number of questions in a concept group has to be larger than 1 (the larger the
better). According to the uncertainty relation between model states and measurement
instances, if we only have one question, the uncertainty for possible mixed model states is
the whole model space. That is the students can be in a definite physical model state at one
instance and get triggered in a different state at the next instance. And the probability of
such model triggering can not be obtained with only one question. In other words, with
only one question, the resolution is so low that it is impossible to detect any mixed model
states.

Limitations of Eigenvectors

As indicated from Eq. (4-15) and Eq. (4-16), the primary eigenvector contains the most
dominant features of all single student model vectors. The additional eigenvectors act as
corrections which reflect less popular features. When considering the class a single unit,
the primary eigenvector gives good evaluation on the overall model structure of the class.
However, if we regard the class as a composition of individual students, there can exists
colorful details that are often unable to be extracted with simple eigenvalue decomposition.
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For example, a class can contain several groups of students, where students in each
group all have very similar model states and students from different groups have different
model states. For the following two situations, eigenvalue decomposition can give good
results. 1. When the model states from different groups are very different (orthogonal),
eigenvalue decomposition will produce eigenvectors that represent these model states.

2. When one of these groups has a dominant popularity, eigenvalue decomposition will
produce a primary vector very close to this dominant state. That is, eigenvalue
decomposition can give good results when most students are similar to each other or when
students are very different (with orthogonal model states). In the case when students are
different but not “that” different (with different but non-orthogonal model states), and if we
want to identify the different groups with such different but non-orthogonal model states, it
is not helpful to use eigenvalue decomposition. In such cases, we can use model-based
cluster analysis to identify these clusters of student model states."> To identify clusters of
individual student model states, it is necessary to have a relatively high resolution in
measuring the single student model states. Otherwise, the identified cluster model states
can have high uncertainty and complicate the interpretation. As an empirical
recommendation, when the eigenvalue of a primary eigenvector is less than 0.65 and the
student model states are not orthogonal, it is suggested to use cluster analysis to study the
details of the student model structures. In our data, we often get primary eigenvalues close
to 0.8, which indicates that most students have similar model states. In these cases, the
primary eigenvector can give good evaluation of the class and the individual students.

Advantages of Using Model Analysis

Using model analysis tool, we can obtain useful results about the student models in
understanding physics, which are unavailable with score-based analysis. There are certain
advantages to use this method.

A major advantage is that with model analysis, the data is transferred into model space.
It is often a problem that the research in PER is very much dependent on the background
and context of the experiment. For example, with a similar topic researches by different
researchers are often affected by many factors including student background, instructions,
and research instruments. Due to the “human study” nature of the research, it is also very
difficult to repeat any experiment with the same exact condition. Just like in quantum
mechanics, once a measurement is performed, the original student states will also be
changed. Therefore, variations of the backgrounds of students and the different probing
instruments used in different studies all make it very difficult to directly compare the
results from different experiments. Using model analysis, the instruments are research
based and validated. This can significantly reduce the variations of the results due to the
use of individually designed probes. In addition, results from model analysis are
represented and analyzed in model space, which can reduce possible misinterpretations of
student real understandings due to the weakness of score-based evaluations.

Since model analysis is constructed based on student models, the physical meanings in
all the processes are straightforward. The model density matrix also retains a lot of useful
information of the student data. Therefore, it is a more useful format to store these data.
In addition, the results of student model states provide information on student real
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understanding of the related topics, which is very important in designing new instructions
to help students.

Summary

In this chapter, I have introduced a new algorithm to do quantitative evaluations of
student mental models. It makes more use of the data than score-based analysis,
(traditionally if we only calculate the correct answers, a lot of information is wasted) and
allows us to study the student models in a quantitative way. It can serve as a more
comprehensive quantitative evaluation for the student performance, especially with respect
to the student models.

With this method, student raw data are transferred into states in the model space. The
results can be used to analyze student understandings and/or the features of the
instruments.

Model analysis can also provide more explicit information on how to improve
instructions. Since it gives more detailed knowledge of the models the students have, it
allows us to see more directly about the possible causes of the student difficulties rather
than the just the difficulty itself. Therefore we can develop more appropriate instruction
strategies right upon the weak points and help the student more effectively.

The results from model analysis match very well with the recognized expectations
from other researches using different evaluation methods. These can be evidences for the
plausibility of the results from model analysis. In addition, model analysis also provides
more detailed quantitative information on the student models, which is otherwise
unavailable from traditional score-based evaluations. The density matrix can be used as a
new way to store the student responses, where a lot of information is retained and can be
easily extracted for different purposes. The various graphical representations of the data
also make the results much easier to understand.
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