• • PMT Circuits

ES168 – Fall 2009 Matthew Pallone

Photomultiplier Tubes

Optoelectronic device for photon detection

- o Consists of:
 - Vacuum Tube shielded
 - Photocathode
 - Dynodes
 - Anode
 - Accompanying circuitry

Various PMT Configurations

Fig. 7.12 Dynode structures of four common types of photomultiplier: (a) venetian blind, (b) box and grid, (c) linear focused and (d) circular cage focused. Typical trajectories of an electron through the systems are also shown.

PMT - Continuous Channel

- Potential difference along length of tube
- Often curved to prevent positive feedback
- Electrical circuits only considered for classical configurations

Dynodes

- Increasingly positive voltage applied to each dynode
 - Accelerates electrons through tube
- Secondary emission results in multiple electrons escaping
- Secondary electron yield is related directly to dynode voltage

Fig. 7.11 Variation of secondary electron yield δ with interdynode voltage for Be-Cu dynodes.

$$G \approx \delta^N$$

• • PMT Transit Time

- Electrons generated from same pulse of light can arrive at anode at different times
- Due to:
 - differing entry trajectories
 - electrons emitted with differing energies
- Results in Gaussian spread in transit time at some average transit time
- Can significantly effect accompanying electronics

PMT Bleeder Circuits

- High voltage applied across the cathode (K) and the anode (P)
- Dynode voltages regulated by resistors
- Configurations for grounding either cathode or anode
- Diodes may be added to help regulate dynode voltages during operation

Bleeder circuit output characteristic

- Region A: linear region for low output current (low incident light)
- As light intensity increases, dynode voltages begin to vary from ideal (shift to earlier stages)
- Region B: shift results in increased current amplification
- Region C: saturation occurs as voltage between last dynode and anode goes to zero.
- If large linear region is desired could use individual power supplies for each dynode.

Pulse-operation output

- Operating the PMT in pulse mode runs into the same nonlinearity problem
- Decoupling capacitors can increase the linear operating region
 - If pulse width is short, they can decrease the voltage drop between last dynode and anode

Figure 7-7: Bleeder circuits with decoupling capacitors added

• • Voltage distribution

- Saturation will always occur at some input intensity level
- Response can be further improved by using a "tapered bleeder circuit"
 - Alter resistor values so last few stages revive greater voltage gradient
- Voltage distribution levels are often listed for specific PMTs and applications

Cleaning-up Outputs

- Resistances should not be so small as to generate a lot of heat
 - Increased dark current, temp drift, and decreased power supply capacity
- A low pass filter on the high-voltage power supply can reduce noise
- Damping resistors can reduce ringing in output signal

Output Control Circuit

Figure 7-18: Output control circuits

- Variable resistor on power supply affects PMT gain
- Shorting some stages increases inter-stage voltages by remove stages – effective if gain too high otherwise
- Driving mid stage dynode with 2nd source or variable resistor

Observing PMT Output

[3]

Figure 7-21: Anode grounding scheme in DC operation

Figure 7-22: Anode grounding scheme in pulse operation

- Cathode and anode grounding circuits
- Coupling capacitor can be used to remove DC components from signal
 - •Pulse width < time constant</p>
 - Base-line shift if pulse period increases

Figure 7-23: Cathode grounding scheme in pulse operation

Output Current to Voltage

- PMT output is a current
 - Often desire voltage output for use in signal processing circuit
- Can use load resistor or op-amps to convert current to voltage
 - Load resistance limited by desired frequency response and output linearity
 - $F_c = 1/(2\pi C_s R_L)$

Output Current to Voltage

$$V_o = -I_p * R_f$$

Charge Sensitive Amplifier

Shielding

- PMTs very sensitive to magnetic fields
 - Especially "head-on" types
 - Effects travel path of electrons
- Light shielding and electrostatic shield also important

• • References

- 1. Knoll, G. Radiation Detection and Measurement. 2nd Ed. Wiley & Sons (New York: 1989). Chapter 9, p 251-286.
- 2. Wilson, J., Hawkes, J.F.B. Optoelectronics, An Introduction. 2nd Ed. Prentice Hall (New York: 1989) p265-270.
- 3. Hamamatsu Photonics. "Chapter 7: How to use Photomultiplier Tubes and Associated Circuits." Photomultiplier Tube, principle to application. March 1994.