
1

HTR logic (Main FPGA)
last changes in blu

Format of a single L2-Daq Data word :

L2Data_out[15:0] = { FiberAd[2:0]; QIEAd[1:0]; Link_Er, Link_DV , CapID[1:0], Range[1:0], Mantissa[4:0] }

FEATURES SUPPORTED

• One HTR board includes two identical logic sub-modules (Top and Bottom).
• Record a programmable number NDD of QIE time-samples per channel and NTP of TP samples in response
to a trigger. In any case: 0 ≤ NTP ≤ NDD; NTP+NDD ≤ 21 and 0 < NDD .
• Trigger arrives less than 6us after data (adjustable latency)
• Process TTC commands
• Testing features via VME
• Reject triggers violating TDR rule 1 [No more than 1 trigger per 3 BXs] and 2 [No more than 2 triggers per 25 BXs]
• Overflow Warning (when buffer occupancy > 75%) and Overflow flags.
• Empty Events generation (with correct EV#, BC# and ORBIT#) after Overflow Warning.
• L1-trigger path with error and CapID check (reset data if there is an error)
• Investigate fiber-to-fiber alignment with BC0
• TP Latency = ? Requirement is ~ 14 clock ticks (40 MHz clock) for the whole FPGA.
• Max trigger rate (assuming periodic triggers) ~ 1/ { [24x(NDD+NTP)+20 +6] x 25 ns}

FiberAd[2:0] indicates which fiber (0 to 7); QIEAd[1:0] indicates which QIE channel in the fiber (0 to 2)

2

FE-HTR Data format
Adapted from: http://www-ppd.fnal.gov/tshaw.myweb/CMS/TestBeam2002/Data_format_v2.pdf

NB: orbit message is different and not decoded yet in HTR

Last bit transmitted [GOL Reference
Manual -Version 1.3 , page 8].

Bits D(16) and D(0) are constant, they are both
received as LSB by the HTR, and they allow to
distinguish the two 16-bit half-words received.

It has been agreed to send some IDLE patterns over the link during each Abort gap

3

HTR-DCC Data Format - (output of the HTR DAQ-path)
Word Type S1 S0 Byte 1 Byte 0
HEADER 1 1 Zeroes EvN [7:0]
Ext. Header2 1 0 EvN [23:16] EvN [15:8]
Ext. Header3 1 0 PipeLength[7:0] HS RL EE SR OW OV HM CM

Ext. Header4 1 0 OrN [7:0] HTR_sub_module_Number
Ext. Header5 1 0 TrigType[3:0] + BCN[11:8] BCN [7:0]
Ext. Header6 1 0 Total number of TP words[7:0] DLL_lock TTCready
TP-DATA1 1 0 TP[8:0] = {FiberAd[2:0];ChAd[1:0]; 0; 0; CapID[1:0],QIE1Data[6:0] }
… 1 0 …
TP-DATAm 1 0 TP[8:0] = {FiberAd[2:0];ChAd[1:0]; 0; 0; CapID[1:0],QIE1Data[6:0] }
DAQ-DATA1 1 0 DAQ-Data[15:0] = {FiberAd[2:0]; QIEAd[1:0]; Er; DV; CapID[1:0],QIEData[6:0] }
… …
DAQ-DATAn 1 0 DAQ-Data[15:0] = {FiberAd[2:0]; QIEAd[1:0]; Er; DV; CapID[1:0],QIEData[6:0] }
Extra-Info1 1 0 Arrival time (BCN) of Bzero from Fiber1 [11:0] (to study the latency) or other info
 1 0 Arrival time (BCN) of Bzero from Fiber2 [11:0] (to study the latency) or other info
 1 0 Arrival time (BCN) of Bzero from Fiber3 [11:0] (to study the latency) or other info
 1 0 Arrival time (BCN) of Bzero from Fiber4 [11:0] (to study the latency) or other info
 1 0 Arrival time (BCN) of Bzero from Fiber5 [11:0] (to study the latency) or other info
 1 0 Arrival time (BCN) of Bzero from Fiber6 [11:0] (to study the latency) or other info
 1 0 Arrival time (BCN) of Bzero from Fiber7 [11:0] (to study the latency) or other info
Extra-Info8 1 0 Arrival time (BCN) of Bzero from Fiber8 [11:0] (to study the latency) or other info
 1 0 NDD = # of Daq-Data samples (per L1A) NTP = # of TP samples (per L1A)
 1 0 WordCount[11:0]
Pre-Trailer 1 0 Zeroes Zeroes
TRAILER 0 1 EvN [7:0] Zeroes

n = # of DAQ-DATA words ≤ 24x10 (depends on Zero-suppression). NB: the number of words with [S1 S0] = [1 0] must be a multiple of 2.
CM = Counter_Mode: if “0” real data; if “1” Internally generated counter data. A trigger is needed as in the real mode. Set from VME.
HM = Histogramming mode, need to change firmware to switch. OF= OverFlow. For debugging purposes (it should never happen).
OW= Overflow Warning. It should be reported to the aTTS by the DCC. SR = Status Request (from a TTC command, for the DCC)
EE = Empty Event (consequence of a past OW). An Empty Event includes only the first 5 header words and the last 3 words.
RL = Rejected previous L1A (when previous L1A violates the trigger rules i and ii of Trigger TDR 16.4.3)
HS = when in Histogramming mode, indicates which Set of fibers are used: when this bit is 0, histograms are from fibers 1-4 .
TrigType: if (TTC_L1A) trig_type <= 1; if (VME_L1A) trig_type <= 2; ….
EvN = counted internally, should be a copy of the TTCrx EvN unless an L1A is rejected (RL flag). EvN doesn’t increment with VME_L1A.

from v23

4

Quality of HTR data

Users of HTR data should verify that:

- bits Er = 0, DV = 1 in all DAQ-Data words
- DLL_lock = 1, TTCready = 1 in Ext. Header6
- the actual event size = WordCount[9:0] = (# of Daq-Data samples + # of TP samples) x 24 + 18
- For a given half-HTR, EvN [23:0] increases by 1 at every event
- EvN [23:0] is equal across all HTRs, if an EventCounterReset was issued by the TTC.

If this conditions are not verified, some debugging is needed. Please report the data to Tullio@umd.edu

5

Main HTR FPGA – top level

MAIN_CTRL

Control/Status

Hard_rst
Soft_rst
Start
Stop
Run_status

EvN, BCN, OrN, L1A

LocalBus
(from VME)

TTC signals

DAQ-Spy TP-Spy

Other
(LEDs, TPs, switches...)

Trigger_PATH

24
Compr.
LUTs

24
L1-Filter

INPUT STAGE

Clock
Change

0

1

8
Synchronization

FIFOs

Data_Sync FEbus_int

Fa
ke

_D
at

a

Fa
ke

_M
od

e

Input-Spy

DAQ_PATH

Pointer
FIFO

Daq_CtrlControl #s
FIFOs

24 + 24
L1 latency
pipelines

24+24
Derand.
Buffers

Event
Buffer

Output
stage

Muon
LUTs

24
Linear.
LUTs

D
C

I:
Se

ria
l R

=
30

 O
hm

∆

6

Synchronization FIFOs and Prog. Delays

{Ch1RX_D(15..0) ;Ch1RX_ER ; Ch1RX_DV}

Ch1_RX_CK

Each incoming FE-bus is synchronous with its own Recovered_CK.
This stage synchronizes the data to the System Clock x 2.
Consider the “Self-Addressing” architecture for these FIFOs (improve timing uncertainties).
To align TPG data, a delay must be added to the corresponding channel. This value of each delay is the value of the gaps on the
synchronization histogram. [Carlos].
Make sure that when the link is down there is a free-running RX_CK from the TLK2501, in order to write ER and DV.

Independent-Clocks
FIFO

DIN

WR_CK

WR_EN

DOUT

RD_CK

RD_EN

Ch8_RX_CK

CLK2X

“1”

{Ch8RX_D(15..0) ;Ch8RX_ER ; Ch8RX_DV}

“1”

“1”

“1”

Independent-Clocks
FIFO

DIN

WR_CK

WR_EN

DOUT

RD_CK

RD_EN

Programmable
Delay

∆ = 0,1,2 or 3

Programmable
Delay

∆ = 0,1,2 or 3

7

Clock Change stage
transform one 16-bit word @80MHz into the transmitted 32-bit word @ 40MHz and finally into three QIE words.

CLK2X

CLK2X CLK2X

CLKLSB

REG32

D

EN

CK

Q

REG16

D

EN

CK

Q

REG16

D

EN

CK

Q

REG16

D

EN

CK

Q
HIGH[15:0]

LOW_DEL[15:0]

LOW[15:0]

{Er, DV, Input[15:0]} = latch80

IN 1 IN 2 IN 3 IN 4 IN 5

CLK

CLK2X
Input[15:0]

32+2

LOW_DEL1 LOW_DEL2 LOW_DEL3 LOW_DEL4 LOW_DEL5

LOW 1 LOW 2 LOW 3 LOW 4 LOW 5

HIGH 1 HIGH 2 HIGH 3 HIGH 4 HIGH 5HIGH[15:0]

LOW[15:0]

LOW_DEL[15:0]

CLK2X

LSB

FSM
LSBerror

Here is reconstructed
the same word latched

at the GOL input.
Thus it’s easy to

extract the sub-fields
(Exp, Mantissa etc) of
the 3 QIE channels.

DV

Some combinat. logic before this FF
would be useful to ensure that data
propagation is bigger than the skew

between CLK2X and CLK

8

Control module of Main FPGA - MAIN_CNTR

TP&DAQ
OutSpy

FIFO

Cntr/Stat

TTC_L1A
TTC_Hard_rst
TTC_Soft_rst
TTC_Start
TTC_Stop

VME_Hard_rst
VME_Soft_rst
VME_Start
VME_Stop

{Hard_rst, Soft_rst, Start, Stop}

EvN, BCN, OrN
NB: EvN counts all and only the L1Accept from TTCrx, independently
from Start/Stop, thus it matches the TTCrx event_counter.

LocalBusTTC signals

Int_L1A (disabled by Stop, enabled by Start)

Fake_Data
@ Clk2x

Zero_latency_L1A

TP_Data
DAQ_Data

Fake_L1A

L1 latency pipeline

Input_Data
@ Clk2x

Pipe_Length[7:0]

Run_status

TP[5:2]

TP[1]

LED[1:4]

TTCdecoder

LastTTCcommand[5:2]

DataTrig
FIFO

HP_DATA[15:8] HP_CLK[2:1]

{Clk, Clk2x}

Rest of the FPGA

Connections to the boardHP_DATA[7:0]

XLocBusSlave

HTRsubcardN[7:0]

LEMO_L1A, LEMO_Hard_Rst
Commander

InSpy
FIFOs

push

RJ45_L1A, RJ45_BC0

TBD: "Resync" : command interpreted as a re-synchronization of all sub-systems readout to the same event. Event and bunch counters as well as readout
memories and pointers are reset.

9

HCAL L1 (Trigger) Path - Proposal
The data coming from the front-end (QIE) are in the 7-bit Mantissa-Exponent format. They have a resolution of about 0.25 GeV

and a maximum energy of 2714 GeV [CMS IN 2001/037, Fig.5]
The sequence of operations in the HCAL Trigger Primitive Generator (HTR board) is (see next pages) :

0) Reset the TP if any of the following: 32 bit-Link not OK; CapIDError; GOL_reconstructed_data[2:1] ≠ (0, 1);
1) Linearize the data with a LUT on a 10-bit transverse energy value. If we assign the resolution = LSB = 0.5 GeV this gives an

end-of-scale value of 512 GeV.
2) Apply a filter (still under study) for Bunch Crossing IDentification. The filter will likely sum two consecutive time-samples and

then perform a peak-detection (and maybe apply a threshold).
3) Sum 1 to 7 linearized channels of transverse energy. In case of overflow the output is set to the maximum.
4) The next step is the compression for the transmission of the Trigger Primitives to the Regional Calorimeter Trigger.

We use a LUT with 10-bit input.
5) The Muon window must be applied directly on the QIE-format, using a LUT with a 2-bit output, with the following meaning:

00: energy below low-threshold
01: energy within low-threshold and high-threshold
10: energy bigger than high-threshold
11: unused

6) The BCID information allow to select the 2-bit vector corresponding to the peak of the event (this avoids to flag as a muon the
tail of a more energetic event).

7) If there are multiple channels, the 2-bit vectors go into another LUT; this is to take care of cases where showers can leak into a
cell and incorrectly set the muon bit: “If two muons are input, and both are below the low threshold or above the high threshold,
then the output is 0. If both are above the low and below the high threshold, then the output is 1. If one is below the low threshold and
one is above the low threshold _and_ below the high threshold, the output is 1. If one is above the high threshold, then the output is 0
irrespective of the value of the second.“ [W.Smith]

10

Trigger-Path
Case without Sum of QIE-channels

ET
comp

7 10

Muon bit

Sum
Consecutive

Time-samples 9

TP

8

QIE-data Linear
And

cos θ
LUT

ET[9:0]

1

Compression
LUT

1
Muon LUT

1

delay

10

L1 Filter

Peak*
Detection

TP_Bypass

1
0

* In case that after the summing there is a "plateau" [e.g.: 0, 10, 10, 0] select all the relative maximum points.

11

New Trigger-Path : Sum n(<8) QIE-channels

ET
comp

7 10

Muon bit

Sum
Consecutive

Time-samples 9

TP

8

QIE-data INPUT
LUT

Lineariz.
and Et

ET[9:0]

2

Compression
LUT

2
Muon LUT

1

Delay
to synchronize

with BCID

10

L1 Filter

1

10*

Sum
in ET

* If overflow, set the result to the max value.Investigate 11-bit sum and LUT. Note that there is a unique compression LUT for a group of channels.
Each channel participating on the sum must have the possibility to be masked, to perform a sync histogram based on each independent channel (input
data from each deserialiser) [Carlos]
Doing the Peak-detection in parallel with the Sum decreases the latency, and it can be used to off-set the latency of the following sum of trigger towers.

TP_Bypass

1
0

2
2

2

Mask &
Reset

“NO-SHOWER” LUT
take care of cases where
showers can leak into a
cell and incorrectly set the
muon bit.

Peak
Detection

12

LUT Module

RAM

a do

di

we

LUT_MODE

INIT_DATA

INIT_ADDR

LUT_DIN
DOUT

CLK

0

1

NB: during configuration this LUT has non-zero outputs, so need to disable (Stop command) the SLB board
(software specification).
This is not done in this module in order to reduce the latency.

LUT_WRITE

13

LUT Initialization Scheme over VME-Local Bus

INPUT_LUTs COMPR_LUTs

I
N
P
U
T

S
T
A
G
E

DOUT

DOUT

DOUT

QIEData_1

QIEData_2

QIEData_24

TP_DATA1

TP_DATA2

TP_DATA24

TRIGGER PATH

Other Processing

Other Processing

Other Processing

DIN DOUT

INIT_ADDR
INIT_DATA
LUT_WRITE

DIN DOUT

INIT_ADDR
INIT_DATA
LUT_WRITE

DIN DOUT

INIT_ADDR
INIT_DATA
LUT_WRITE

NB: to configure a given LUT, from VME the access will be always at the same address. Then on the board VME FPGA the
correct address will be generated with a counter.

LOCAL BUS SLAVE

LUT_WRITE[24:1] LUT_WRITE[24:1]

In
LU

T1
O

ut
[]

In
LU

T2
4O

ut
[]

IN
IT

_A
D

D
R

IN
IT

_D
AT

A

IN
IT

_A
D

D
R

IN
IT

_D
AT

A

O
ut

LU
T1

O
ut

[]

O
ut

LU
T2

4O
ut

[]

LU
T_

M
O

D
E

DIN

INIT_ADDR
INIT_DATA

LUT_WRITE

DIN

INIT_ADDR
INIT_DATA
LUT_WRITE

DIN

INIT_ADDR
INIT_DATA
LUT_WRITE

LU
T_

M
O

D
E

14

Input LUT initialization at compilation time

ADDR[0]

ADDR[1]

ADDR[2]

ADDR[125]

ADDR[126]

ADDR[127]

D
A

TA
[0

]

D
A

TA
[1

]

D
A

TA
[2

]

D
A

TA
[3

]

D
A

TA
[7

]

D
A

TA
[8

]

D
A

TA
[9

]

D
A

TA
[1

0]

R
AM

12
8x

1

R
AM

12
8x

1

R
AM

12
8x

1

R
AM

12
8x

1

R
AM

12
8x

1

R
AM

12
8x

1

R
AM

12
8x

1

R
AM

12
8x

1

NOTE:
The Input LUTs in the Trigger Path
use Single Port Distributed Ram. The
128x11 memory needed is mapped to
11 128x1 distributed ram primitives
as shown in the figure.
The first bit of all 128 locations are
mapped to one instance of the primitive,
the second bit of all 128 locations are
mapped to the second instance and so on.
This information is needed when we need
to initialize the ram contents at power up.
The initial values can then be put in the
UCF file accordingly. Each of the 11
instances have to be initialized separately.

One 128x1 Distributed Ram Primitive

15

No energy extraction algorithm ⇒ QIE-data + address.
The 24 QIE-channels (in parallel with the 24 TP-channels) are temporarily stored in a pipeline (circular buffer) to wait for the L1A trigger decision.
The storage time is programmable between 2 and 255 clock ticks. Each L1A trigger selects a block of NDD time-samples per QIE-channel and
NTP time-samples per TP-channel. The selected data of the 24 channels must be inserted on the HTR/DCC data format. EV#, BC#, ORBIT#
must correspond to the appropriate data.
As of Pre-prod v25 firmware, the circuit starts writing on the Event Buffer only when empty and about 5 clock ticks after that, starts reading it. This
implies that, on a very high trigger rate, the HTR can send event fragments to DCC almost continuously.
Investigate how to align the DAQ-channels using SLB info.

9

18

11

11

24 DAQ
channels

9

Programm.
Pipeline

< 6.4 us

Programm.
Pipeline

24 TP
channels

16 28

9

Channel Link
to DCC

Derandomizer
buffer

Programm.
Pipeline

Programm.
Pipeline

L1A

ORN[7..0]

EVN[23..0]
BCN[11..0]

L2-DAQ Path

Hamming

16

Fiber & Ch_ID

WR_AD RD_AD

16 Event
Buffer

Daq
Control

Daq
Formatter

Pointer FIFO
This is basically a

queue of L1As
waiting to be

served

PIPELENGTH[7..0]

16

Trigger acceptance & Empty events
Wait for

L1A arrival

Does
L1A violate

Trigger Rules (I)
and (ii) ?

Overflow
Warning ?

Reject L1A ;
set RL=1

(RL=1 stored with
the L1A following
the rejected L1A)

Store no data,
only L1A pointer

with EmEv=1
(need pointer to

calculate Word_count)

Store data
and L1A with

EmEv=0

YES

YES

NO

Increase EvN
(should match TTCrx)

NO

The 2
processes

are decoupled
by drnd_buffer

and
pointer_fifo

Pointer_FIFO
Empty ?

In pointer_out
is EmEv=1 ?

Read
Pointer_out

Generate Empty
Event block

with proper flag

Generate
Normal

Data block

YES

YES

NO

NO

17

Derandomizer and trigger rules
The Derandomizer is not a simple FIFO as it handles the case of two L1A within a 4-tick interval (Trigger TDR 16.4.3).
Such an interval is smaller then the number of time samples (≈ 10) to be collected (Trigger TDR 7.3.1), thus overlapping.

11 12 13 14 15

CK

L1A

WR_EN

WR_ADDR

D(10:0)

WR_EN

WR_ADDR(5:0)

Q(10:0)

RD_ADDR(5:0)

Derandom. Buffer

Stretch &
Timing

WR_ADDR
generator

L1A

DATA_IN
11

11

9 11

9

Example with:
• # of samples = 5
• WR_ADDR of the first word = 11

11 12 13 14 15

CK

L1A

WR_EN

WR_ADDR

Example with:
• two L1As separated by two BXs
• # of samples= 5
• WR_ADDR of the first word = 11

16 17 18

11 12 13 14 15RD_ADDR

11 12 13 14 15RD_ADDR 14 15 16 17 18

Pointer FIFO
store the first WR_ADDR
(= pointer) of each block.

PUSH
POP

RD_ADDR
generator

1
2
..
..

24

SEL

{EmEv_in, RL_in}
2

{EmEv_out, RL_out}
2Timing

18

Generation of the Overflow Warning Flag
Derandomizer buffers are Synchronous dp-Rams 36 X 512 deep. They are the first elements
that can overflow in the HTR, in case of a high trigger rate.
Let: word_count = drnd_wr_addr – drnd_rd_addr

The overflow_warning flag (OvW) is generated by the simple scheme shown below :

word_count ≥ 384 = 75 % of 512

Set Q

Reset

word_count ≤ 256= 50 % of 512

OvW
SR-FF

This scheme introduces a sort of histeresys, to avoid that the OvW flag keeps toggling
when the buffer are around 75% full.

19

Example of minimum L1A spacing that does not violates the Trigger rules

(40 MHz)

20

Example of DAQ-output sequence

L1A

OvW

Normal
Data Block

Empty
Event

t

Normal
Data Block

Normal
Data Block IdleOutput Normal

Data Block
Normal
Data Block

Empty
Event

Normal
Data Block IdleIdle

(internal
Signal)

In this example there are no rejected L1As

Note that the OW included in each Data Block, latches the value of the internal OW at the beginning of each block transmission.

21

Pedestal calculation

Study the possibility to calculate the pedestal as an average of the input value during the abort gap. For instance
accumulate 32 inputs and then divide by 32 (simple shift).
If the abort gap is used for something else (IDLE patterns, etc), calculate the pedestal taking data during the
minor gaps (~38 BXs). For instance accumulate the 16 inputs and then divide by 16 (simple shift); this protects
from random latency effects, etc.
This must be done per channel.
Pedestal values should be sent out to the DCC and/or used for zero suppression and energy filtering.

22

Address Section
Details on http://www.physics.umd.edu/hep/HTR/preprod/Xilinx_addr_map.html

Loc_Bus_Addr[20:19] Loc_Bus_Addr[18:13] Loc_Bus_Addr[12:3]

Loc_Bus_Addr[9:3]

0

1

2

3

General
Sub-space

Testing
Sub-space

DAQ Path
Sub-space

Trigger Path
Sub-space

63 unused
62
61

3
2
1
0 unused

46
47
48

127
126
125

00
01

1023
1022
1021

02
01
00

02

Address
Space for
initializing
one
Input
LUT

Total No of Local Bus Address Lines is 21.

Therefore Total Space : 221 – 1. Divided into four Segments as shown above

25
24

Address
Space for
initializing
one
Output
LUT49 unused

Address
Space for
24 Output
LUTs

Address
Space for
24 Input
LUTs

23

More Design guidelines

Synchronous design:

always @ (posedge clk or posedge rst)
if (rst) begin
{ reset_instructions }
end // rst
else begin // clk
{ …. }
end // clk

Source Synchronous data transmission (of DAQ data) with inverted clock.
RX_ERR stretched to LED.
Assign SLEW RATE = SLOW for all outputs (investigate FAST for clock outputs)
Register all data outputs of the chip.
Each verilog module has the same name of the file.
Use parameterized modules when possible (more difficult when instantiating embedded features like RAMs).
Possibly avoid underscore “_” on long names : LongName better then long_name (it helps finding paths of internal
signals).

ISE 5.1i settings

If using DCI (Digital Controlled Impedance), set Match Cycle = 2 under Generate Programming File Startup Options (see Answer 12573).
Force FFs in IO cells, especially for Trigger Primitives.
It would be better to use a script.

24

Port Headers Style

The Verilog primitive modeling style established a preference in defining port interfaces in the following order for each
interface grouping (e.g., PCI bus, RS232 bus, LocalBus):

1. Outputs first
2. Inputs second
3. Control signals third
4. Clock and reset last.

When instantiating a module on a higher-level module do not map by order but use this format:
module_name instance name (

.InternalPortName1(ext_port_expr1), .InternalPortName2(ext_port_expr2))

More Conventions
• Polarity

– Use _n (for negative) or _i (inverted) suffix to infer objects that are active low.
• Registers

– Use _reg or _d to denote a registred signal.
– If registers are pipelined, use a number to indicate depth of pipeline:

data_1r data_2r data_3r -- depth of pipeline
enb_1rn enb_2rn enb_3rn -- depth + polarity

Maintaining a consistent style is highly recommended.

