
CMS Trigger/DAQ HCAL FERU System

Drew Baden University of Maryland October 2000 http://macdrew.physics.umd.edu/cms/

Overall Project Timelines

Honest assessment:

- About 3 months behind schedule.
 - Expected to start integration in Sept, won't be until Dec
 - Plan to stick to Prototype and beyond schedule
- Mostly due to Dzero hardware schedule slipping.

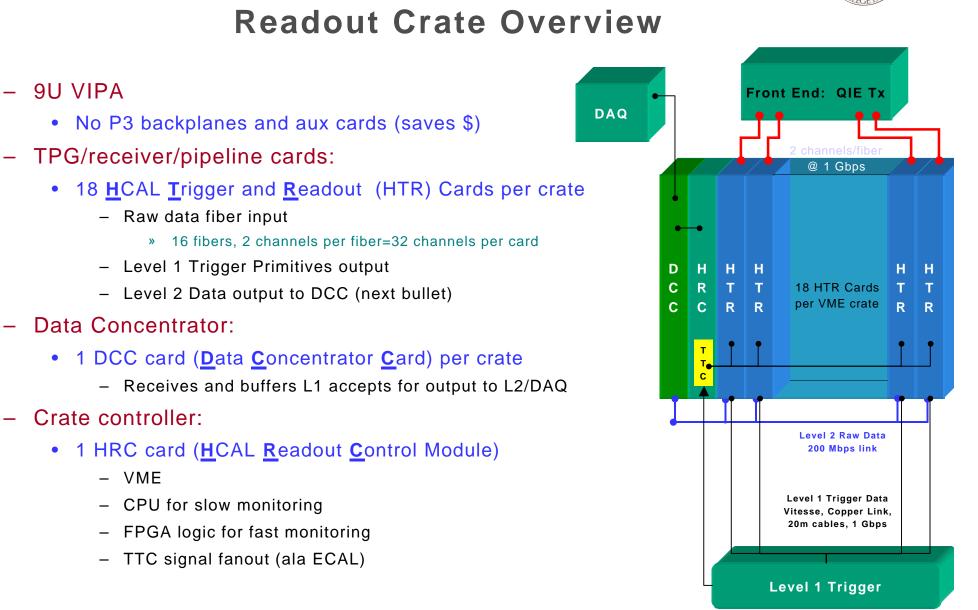
2000	2001	2002	2003	2004
Demonstrator	Prototype	Pre-production Prototype	Final Cards	Installation
– Limited Scope	 Hardware implementation 	 Production cloned from 	- Begins: Solution	– Begins:
– 1 st priority: functional test	is a priority	these	- Begins: A Fall 2002 - Duration 4-6 months O	Fall 2004
of requirements	 Full channel count 	 Integration effort not 	4-6 months O	
- 2 nd priority:		necessary	– Complete:	
hardware	– Integration:		Spr 2003	
implementation	Fall 2001	 Complete: Summer 2002 		
– Integration: Winter 2000			Alcove Tests	

Review of HCAL Parameters PLEASE NOTIFY OF CHANGES!!!!

- QIE Readout
 - 2 Channels per fiber
 - HP G-links
- HCAL Channels
 - Total: 4248 Towers, 463 HTR cards, 11 VME crates (as of Lehman)
- Trigger Primitives
 - Level 1 → Combine front/back HCAL towers into 1 Trigger Tower
 - 53° Overlap region under study for how to combine
- Data rates estimated using 15% occupancy at L=10³⁴

Region	Towers	Fibers	Trigger Towers
Barrel	4,968	2,304	2,304
Outer	2,280	1,140	0
Endcap	3,672	1,836	1,728
Forward	2,412	1,206	216
Total	13,332	6,486	4,248

System Specifications NEED SIMULATION CONFIRMATION


• Parameters

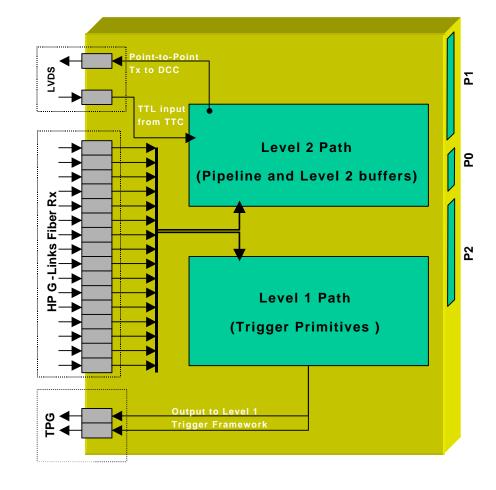
- 15% occupancy at high luminosity (10³⁴)
- 10 time buckets per Level 2 Sum
- 18 HTR cards per VME crate
- 24 VME crates total HCAL system
- 100 kHz average L1A rate

Amount of Data (kBytes)

	15%	Occupancy	100%
CRATE	2		14
HCAL Total	48		336

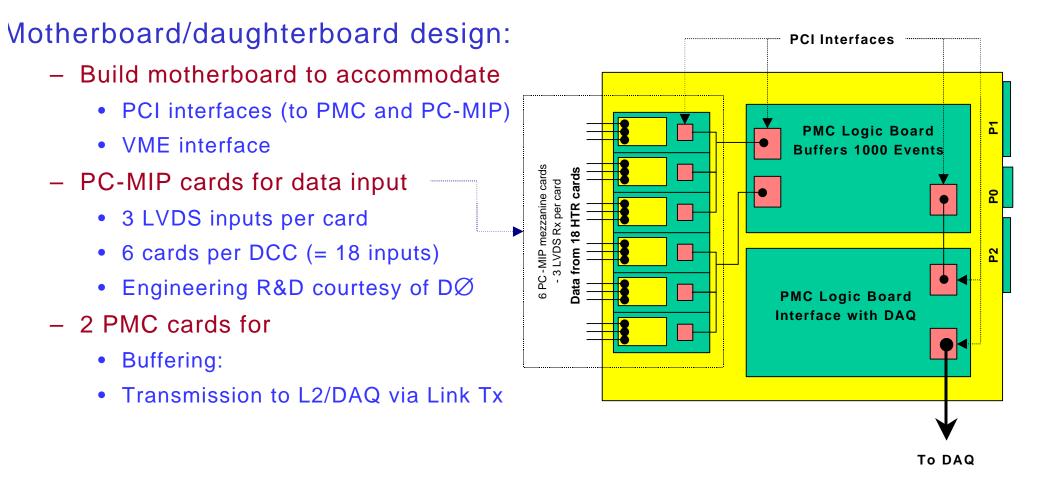
Total DAQ Data Rate	•		
@ 100 kHz L1A rate	(GByte/sec)		
	15%	Occupancy	100%
CRATE (DCC)	0.2		1.4
HCAL Total	4.8		116

- 9U VIPA

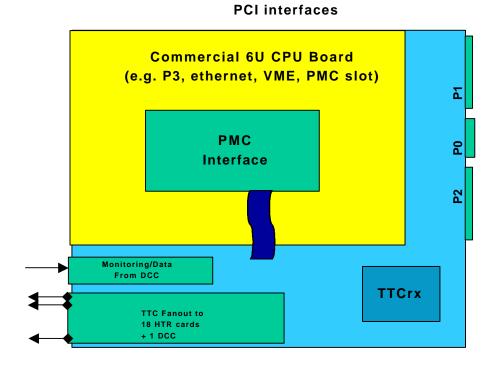


HCAL **T**RIGGER and **R**EADOUT **Card**

- All I/O on front panel
 - TTC (via TTCrx chip):
 - Single connector running LVDS
 - Raw data Inputs:
 - 16 digital serial fibers from QIE
 - DAQ data output to DCC:
 - Single connector running LVDS
 - Level 1 TPG data outputs:
 - Vitesse
 - 8 shielded twisted pair
 - 4 per single 9-pin D connector
 - LVDS possibility?
 - May be easier to implement...
- FPGA logic implements:
 - Level 1 Path:
 - Trigger primitive preparation
 - Transmission to Level 1
 - Level 2/DAQ Path:
 - Buffering for Level 1 Decision
 - No filtering or crossing determination necessary
 - Transmission to DCC for Level 2/DAQ readout



Data Concentrator Card



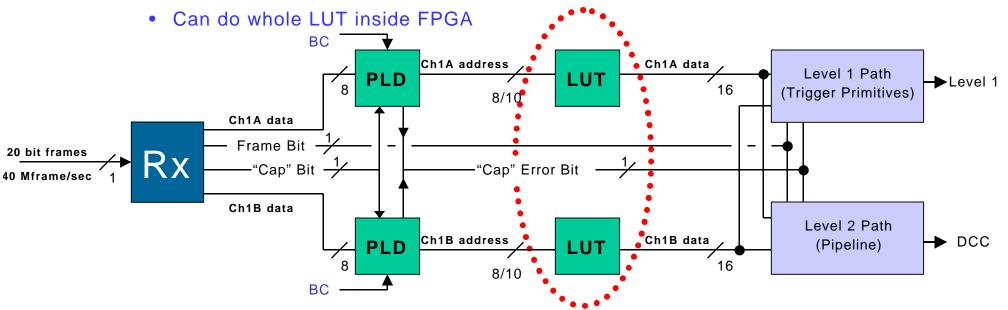
<u>H</u>cal <u>R</u>eadout <u>Control Module</u>

- Commercial-based prototype design:
- Build around commerical P3 6U cpu card
 - Cheap
 - "Ubiquitous"
- Functionality:
 - Input from DCC
 - To be determined
 - Monitoring and VME data path
 - TTC fanout
 - TTCrx (chip or daughtercard)
 - Fanout to all 18 HTR cards plus DCC
 - Slower Monitoring and crate communication
 - On CPU board via PMC card
 - Monitoring: (FMU, or <u>Fast</u> <u>Monitoring</u> <u>Unit</u>)
 - FPGA implemented on PMC daughter board
 - Busy signal output (not shown)
 - To go to <u>HCAL</u> <u>DAQ</u> <u>C</u>oncentrator (HDC)

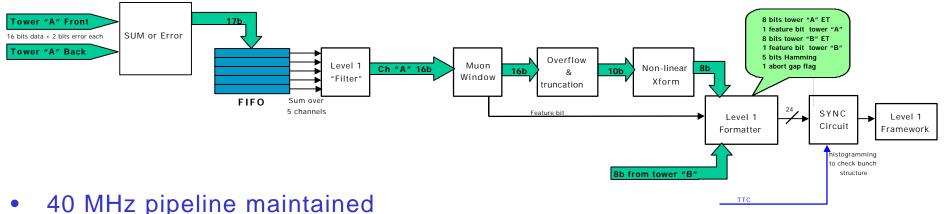
HTR Overview

- Specs
 - 18 cards per VME crate
 - 16 fibers per card, 2 channels per fiber = 32 channels per card
- Functions
 - Digital serial input data:
 - QIE capacitor calibration
 - Linearization
 - Tx/Rx error detection
 - Level 1
 - Trigger primitive preparation
 - 1 Trigger Tower = front+back HCAL Tower sum plus Muon feature bit for MIP consistency
 - Synchronized transmission to Level 1
 - Level 2/DAQ
 - Buffering for Level 1 Decision
 - Filtering
 - Optimize resolution and associate energy with crossing
 - Transmission to DCC for Level 2/DAQ readout

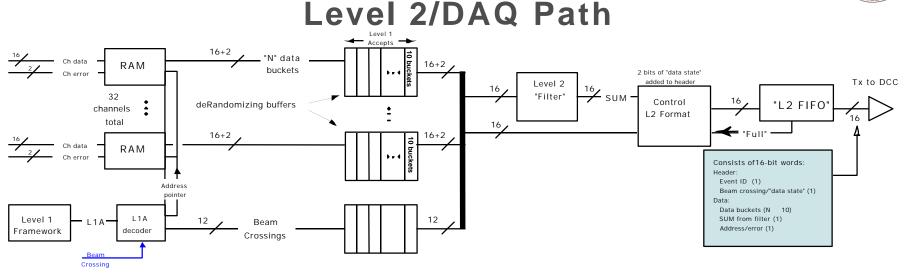
HTR Card Conceptual Design


- Current R&D design focusing on
 - Understanding requirements
 - Interface with FNAL and CERN people
 - Carlos da Silva has turned Tullio Grassi into THE US TTC expert!
 - Minimizing internal data movement
 - Large (and fewer) vs Moderate (and more plentiful) FPGAs
 - Altera APEX 20k400 for the demonstrator...
 - No card-to-card communication
 - Has implications with respect to summing in 53° region, and fiber routing
- Demonstrator R&D has begun
 - Will demonstrate functionality but not actual implementation
 - 25% of data inputs (4 fibers, 8 channels)
 - I/O on front panel
 - Full TTC, Level 1 Tx and DCC Tx
 - 6U VME
 - FPGA VHDL for LPD functions and PLD for synch chip
 - This will allow us to be sure we can design the 9U full 32 channel card

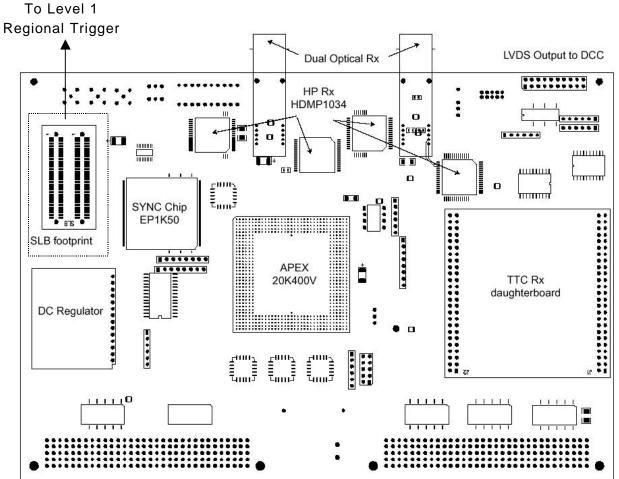
HTR Schematic


- Lookup table (LUT)
 - Input: QIE 8 bit floating plus 2 bits "cap"
 - Output: 16 bit transverse energy
 - Implementation:
 - 256 addresses X 16 bit data = 4k bits/channel
 - X 32 channels = ~128k bits/card
 - Remaining 2 bits (cap calibration) via FPGA algorithm

Level 1 Path



- Trigger Primitives
 - 8 bit "floating point" E to 16 bit linear E_T
 - Combination of HCAL towers into TRIGGER Towers
 - Barrel, Forward, Endcap: 1 TT = Front+Back Dept for single HCAL tower
 - 53° transition region under study
 - Rad damage region $\eta=2.5 \rightarrow 3$ add 4 depths
 - Muon MIP window applied, feature bit presented to Level 1
 - Relevant TTC signals from HRC card
 - Level 1 Filtering using simple algorithm and BCID and Monte Carlo guides


- 40 MHz pipeline into RAM, wait for L1 decision
 - 18 bits wide X 5µsec buffer = 3.6k bits/channel
 - 32 channels per card = 115k bits
- Level 1 Accept causes time slices clocked into derandomizing buffers
 - Assume 10 time buckets
 - Apply HCAL proposed trigger rule: no more than 22 L1A per orbit
 - Deadtime < 0.1% given 100 kHz L1A
 - Accommodate 44 buffers: 10 x 18 x 44 = 8k bit/channel
 - 32 channels per card = 253k bits

HTR Demonstrator Design

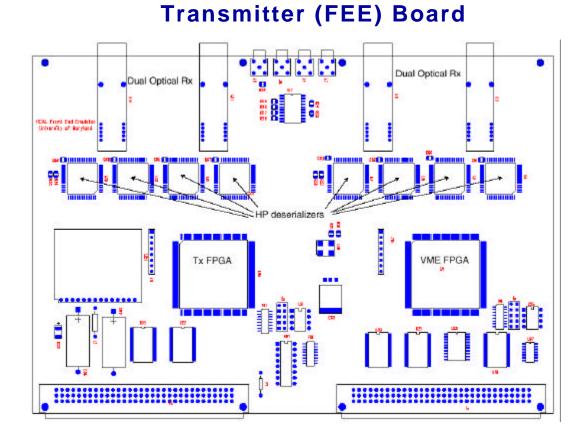
- Consists of:
 - 6U VME board
 - Dual Optical Rx (4 fibers)
 - HP deserializer chips
 - TTCrx daughterboard
 - APEX 20k400
 - Has enough memory
 - LVDS output to DCC
 - SLB footprint for TPG output
- Schedule:
 - Layout complete
 - Verification process
 - Will route and send out by next week (10/16)
 - Expect to have boards by late
 Oct or early Nov

HTR Demonstrator Costs

• Parts: \$2.5k/board

– APEX 20k400 (1)	\$1050
 Expected to be ~\$400 in a few years 	
 Optical receivers (2) 	\$ 300
 Deserializers (4) 	\$ 400
 Configuration EPROMS (4) 	\$ 120
 1k50 for Synch Chip (1) 	\$ 50
– TTCrx (1)	\$ 150
– SLB (1)	\$ 150?
	• • • • •

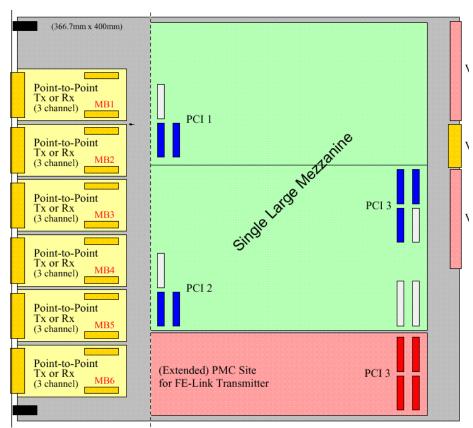
- Miscellaneous (drivers, connectors, etc)
 \$ 200
- Boards: \$500/board (8 layer 6U) + \$1200 setup costs
- Assembly: \$200/board + \$700 setup
- Total:
 - \$2k setup + \$3.2k/board = \$18k for 5 boards
 - Additional boards would be at the \$3.2k level
 - Lehman estimate: \$3k/board (forgot setup charges), 5 boards, \$15k


15

6U VME "Fiber" Boards

- HP tester
 - Being tested and debugged
 - Contains 1 Tx and 1 Rx
 - Optical and deserializer
 - Learn how the optical/ deserialization chips work
- Transmitter board (FEE)
 - 8 Fiber outputs (was 4 for Lehmann)
 - VME interface
 - FPGA programmable
 - This will be our data source for integration tests.
 - Layout complete, ready for fabrication (~3 weeks)
 - Costs
 - \$2.5k/board Lehman, build 5
 - Transmitters (4) \$1.2k
 - Total about \$3.7k/board

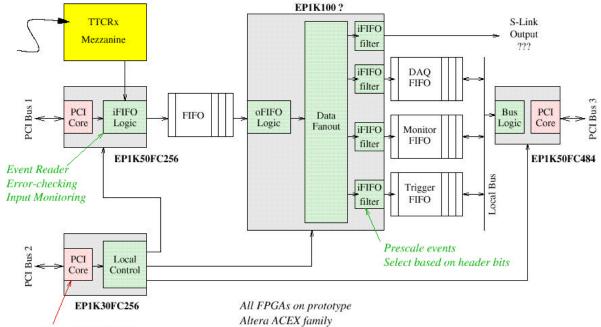
CMS-HCAL-TriDAS. 25-Sept-2000



DCC

• TTCrx

- PC-MIP cards for data input
 - 6 cards, 3 LVDS Channel Links per card
- PMC cards for functionality
 - DDU
 - Buffers for DAQ
 - Processing FPGA
 - Dual Port Memory
 - Protocol FPGA
 - RUI Link Tx
- Build motherboard to accommodate
 - PCI interfaces
 - VME interface



DCC Logic Layout

- TTCrx (chip)
 - Event # and L1A each event
- Data from 18 HTR buffered in iFIFO
 - dual PCI buses, 9 HTR per PCI
 - Event # match and event error checks done here
- Large FPGA reads events from FIFO
 - distributes to 4 streams (all with FIFO-like interfaces).
 - First output is to DAQ via S-Link
 - Other three are all identical large FIFOs which may be read from VME via PCI.
 - Each stream can prescale events and/or select by header bits.
- Local control FPGA provides independent access via VME/PCI for control/monitoring while running.

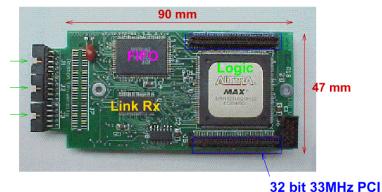
Altera PCI-MT/32 Cores

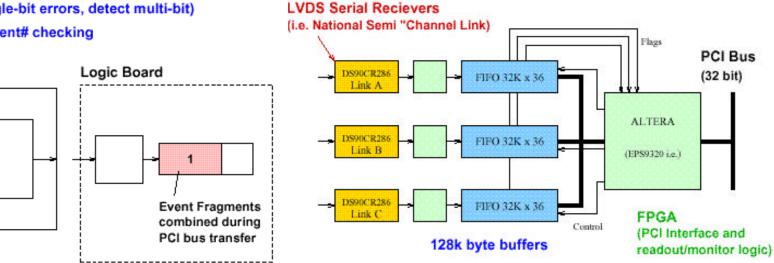
DCC Demonstrator Functions

- Event building from up to 9 HTRs
 - Automatic event building across PCI bus by receiver logic
 - Event # checking
 - Controlled by TTC L1A
 - Data rate 100 Mbyte/sec PCI limited
- Event filtering to output streams
 - Prescaled for monitoring/spying
 - Preselected by header bits
- Error checking and monitoring
 - Event number check against L1A from TTC
 - Demonstration of system-wide synch capability
 - Line error monitoring
 - Built in Hamming ECC
 - Fifo occupancy monitoring

DCC Demonstrator Implementation

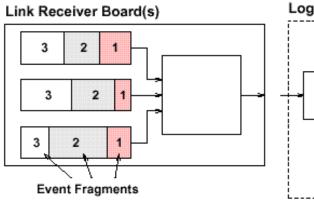
- Simplifications for rapid prototyping
 - Initially 3 HTR (can be expanded to 9)
 - No monitoring or "Trigger/DAQ" dedicated outputs
 - Simple S-link output for DAQ
 - TTCrx daughterboard
 - Use existing motherboard designs
 - FIFOs external to FPGAs
- Planned implementation
 - 3 FPGAs with Altera PCI cores and other logic as needed
 - 1 large FPGA for processing and fanout
 - Input logic
 - Reads events from FIFOs and performs error checking
 - Output logic (data driven)
 - Selects events based on prescaling or header bits
 - Writes to FIFO or FIFO-like interfaces




DCC PC-MIP Link Receiver Board

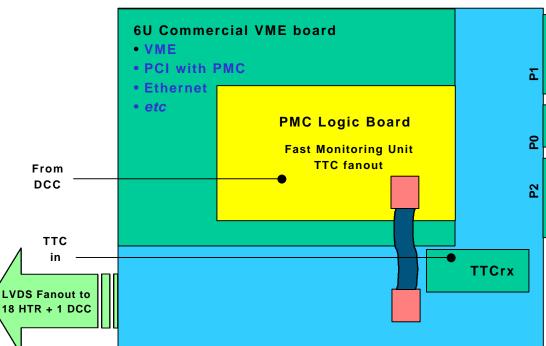
- Each board serves 3 HTR outputs
- LVDS/Channel Link serial receivers
- PCI bridge to logic boards
 - 2 PCI bridges
 - Each PCI bridge handles 9 HTR cards

PC-MIP format 3-channel Link Receiver



Block Diagram

o 33MHz x 32 bit transfer rate on link and PCI interface


- o on-the-fly ECC (correct single-bit errors, detect multi-bit)
- o on-board event-building, event# checking

22

- Functionality:
 - Slower Monitoring and crate communication
 - Input from DCC
 - To be determined
 - Monitoring and VME data path
 - TTC ala ECAL/ROSE
 - LVDS Fanout to 18 HTR + DCC
 - Monitoring: (FMU)
 - FPGA implemented on PMC daughter board
 - Busy signal output (not shown)
 - To go to <u>HCAL</u> <u>DAQ</u> <u>Concentrator</u>
- Implementation
 - Use commercial 6U cpu
 - Build rest on the surrounding frame
 - Eliminates engineering, increases upfront costs, minimizes project risk

TRIDAS

HRC

TTC and Abort Gap considerations

- Present TTC scheme:
 - 1 TTCRx per HCAL readout crate
 - Mounted onto HRC
 - Same scheme as ECAL sends signals to DCC and all HTR cards
- Abort gap:
 - Use for monitoring
 - Laser flashes all HCAL photodetctors
 - LED flashed subset
 - Charge injection
 - Implementation issues to be worked out:
 - How to stuff monitoring data into pipeline
 - How to deal with no L1A for abort gap time buckets
 - etc.

Schedule

- HTR
 - March 2000: G-Links tester board (still a few bugs to fix)
 - 1 Tx, 1 Rx, FIFO, DAC...
 - August 2000: 8-channel G-links transmitter board
 - 8 fiber outputs, FPGA programmable, VME
 - November 2000: Demonstrator ready for testing/integration
 - 6U, 4 fibers, VME, Vitesse (or LVDS?), LVDS, TTC, DCC output, etc.
- DCC
 - May 2000: 8 Link receiver card (PC-MIP) produced
 - Basic DCC logic
 - Oct 2000: Motherboard prototype available
 - Nov 2000: DDU card (PMC) layout complete
 - Dec 2000: DDC prototype ready
- Integration
 - Begin by December 2000
 - HTR, DCC, TTC....integration
 - Goal: completed by Jan 2001

FY2001 Requirements

- Some of these costs are actually FY00 and some are FY02, depends on the schedule
 - Behind schedule, so some FY00 money spent in FY01
 - But then FY01 money would be spent in FY02
 - All in all, probably a wash....
- Totals:
 - Engineering: \$250k
 - M&S: \$150k

		Engineering		M & S	
		Days	Cost	Cost	Comments
	Maryland	340	\$163.2	\$50k	\$15k Demo, \$15k prototype, \$20k tester cards
	BU	105	\$44k	\$40k	Half demonstrator, half prototype
l	UIC	127	\$54k	\$50k	Same as BU

UIC Engineering Issues

- WBS/Lehman request review:
 - Just shy of 2 years total
 - UIC to kick in half
- This is probably a realistic estimate
 - If UIC doesn't kick in half, then CMS will surely have to.
- Problem:
 - 2000-2002, UIC estimates ~.5
 FTE engineering.

Year	Days	
1999	40	Demonstrator
2000	120	Demonstrator+Integration
2001	90	Prototype + Integration
2002	120	Prototype + Production
2003	10	Production
Total	380	

- Difficult for UIC to hire an engineer for half-time work!
- Recommendation: CMS agree to pick up cost of the other half if Mark cannot finagle it out of the UIC Physics Dept head
 - Ultimately, we will have to do this if we cannot get UIC to pony up half.
 - We should support Mark in trying to convince the UIC Dept Head
 - But he needs to hire a GOOD engineer and get going!!!

BU Issues

- There is no physicist working on this project!
- Why do we care?
 - Because Eric is overloaded
 - Other BU faculty might resent this project and cause trouble.
 - Priority of the BU shop jobs?
 - Can we really hold Sulak accountable?
 - And so on.
- I am more and more worried about this
 - BU shop cannot be doing "mercenary work"
- Recommendation:
 - BU should have a physicist.
 - At least, a senior post-doc to work for Sulak.