HCAL Trigger/Readout

CMS/Tridas November 2000 Drew Baden, Tullio Grassi University of Maryland

Outline

- Trigger/DAQ Demonstrator project
- Simulation studies
- Level 1 Latency

Demonstrator Requirements

Test functionality of system

- "LPD" functions
- Synchronization
- Pipeline maintenance
- Will not test hardware implementation
 - Some cards will be 6U versions
 - Will not worry about TTC fanout or PLLs on front-end
- Most important goal:
 - What considerations have not been anticipated for integration into TRIDAS

HTR Demonstrator System Design

Drew Baden, UMD

Front End/LHC Emulator

- 6U VME board
- 8 fiber data outputs simulates HCAL
- System signals:
 - Internal 40MHz crystal + FPGA (Altera 10k50)
 - Generates master clock, L1A, and BC0
 - All are ECL outputs
- LHC pattern generated internally
- Layout almost complete, ready for fab

Drew Baden, UMD

HTR Demonstrator

- 6U VME board
- 2 Dual Optical Rx (4 fibers)
- HP deserializer chips
- TTCrx daughterboard
- APEX 20k400
 - Has enough memory
- LVDS output to DCC
- SLB footprint
 for TPG output
- Layout complete and ready for fab

Testing Goals TPG

Receiving optical data

- G-links clock recovery
- Asynchronous FIFO
- TTC clock

• With error reporting

Crossing determination

- Send data to HTR demo coincident with selected 25ns time bucket
- Recover this particular 25ns time bucket

Drew Baden, UMD

Testing Goals TPG

Synchronization

- All TPG data from same bucket are aligned for transmit to L1 trigger
- Use of Synch Chip on our boards
- From L1A, verify correct data gets into DCC
- TPG output needs a source!
 - Build our own "SLB" with PLD and Cypress output
 - Send Address of TPG (relative to BC0) to D0 card
 - Already built, tested, works fine
 - Has multiple Cypress inputs, 64kByte FIFO, FPGA (10k100) and VME out
 - Can do some comparisons of multiple HTR TPG output to verify synchronization on output

DCC Logic Layout

TTCrx

- Data from 18 HTR buffered in iFIFO
 - dual PCI buses, 9 HTR per PCI
- Large FPGA reads events from FIFO
 - distributes to 4 FIFO-like streams
 - Each stream can prescale events and/or select by header bits.
- Local control FPGA provides independent access via VME/PCI for control/monitoring while running.

Drew Baden, UMD

Testing Goals DCC

Input

- Test LVDS protocol from HTR
- Test (multiple) PCI interface and event building

Buffers

- Multiple FIFOs for various functions
 - Output to L2/DAQ (all data)
 - Monitoring (preselected)
 - Trigger verification (prescaled)
 - Other?
- Error checking and monitoring
 - Event number check against L1A from TTC
 - Demonstration of system-wide synch capability
 - Line error monitoring
 - Built in Hamming ECC
 - FIFO occupancy monitoring
- NO PLANS FOR CHECKING "s-link" output

Schedule

FEE/LHC Emulator

- Layout complete, under review
- Expect board by Dec 1
 - 8 fiber output
 - Clock, L1A, BC0 to TTC
- HTR
 - Layout almost complete, under review
 - Expect board by Dec 1
 - 6U, 4 fibers, VME, Vitesse (or LVDS?), LVDS, TTC, DCC output, etc.

DCC

- Link receiver cards (PC-MIP) produced
- Dec 2000: DDC prototype ready
- Integration
 - Begin by December 2000
 - FEE/LHC-E, HTR, DCC, TTC....integration
 - Goal: completed by early 2001

HCAL Granularity Summary

- All readout towers in HB and HE participate in TPG sums
 - HO is NOT in trigger
 - HF is under negotiation and study
- Some overlap in tower 16 have 5 readout channels in single TPG sum
 - Receiver card will handle it inside FPGA
 - We will probably have 2 FPGA/card
 - Means no more than 16 readout channels/TPG sum

HCAL Granularity HE Details

HE – entire wedge will be in TPG

- 16 towers in η
 - Towers 1-13 have 2 readout depths
 Both depths will contribute to TPG
 - Tower 14 has 2 readout depths
 - Last depth has RBX cutout
 - Both will contribute to TPG
 - Tower 15-16 has 3 readout depts
 - □ Last due to lack of HO
 - □ All 3 will contribute to TPG

Some HE towers will be added

HCAL Granularity

• HE – entire wedge will be in TPG

- 13 towers in η
 - Tower 16 has 2 readout depths
 - To be added to HB tower 16 TPG
 Makes 5 total for that TPG tower
 - Towers 47.00 have 0 readout double
 - Towers 17-22 have 2 readout depths
 - Towers 23-18 have 4 readout depths

For radiation damage purposes

Simulation

Nominal HCAL pulse

QIE output per 25ns "bin"

Pileup Studies (preliminary)

* Start with π 's with E_T=30 GeV in single tower η =0.4, $\phi = \pi/2$

Pileup Studies (preliminary)

- Form Trigger towers (TPG)
 - Try ECAL algorithm with HCAL weights
 - Add energy in buckets [-4,+3] inclusive
 - Weights: [-.21, -.21, -.21, -.14, +.94, +.20, -.17, -.21]
 - Determined using ECAL method
 - Simpler method also being considered gives same answer

Use [-3,+1] weights [-1.5,-1.5,+1.0,+1.0,+1.0] Under longer term study, is being pushed on

- TPG from HCAL+ECAL
 - Increase in resolution from 5.4 to 5.6 GeV
 - Shift in E_{T} by about 2 GeV

Pileup Studies (preliminary)

- Contribution to TPG from HCAL alone
 - 100 MeV threshold kills lots of small ECAL TPGs....

Drew Baden, UMD

Simulation (cont)

TPG vs "REAL"

• Correction is ~15% over decent ET range

L1 Latency Estimates

 HCAL TPG will use 5 trigger towers in the Level 1 Filter

$$\Sigma = E_1 + E_2 + E_3 - \frac{3}{2} \left(E_4 + E_5 \right)$$

- HCAL will follow ECAL as much as possible
 - Same TTC distribution system
 - 6 TTCvi/TTCex, optical splitting, etc.
 - LVDS fanout to receiver cards and DCC
 - Use sync ASIC (or PLD) for TPG synch
- Have not yet begun simulation of FPGA logic
- Overall guess....
 -same requirements as ECAL
 -fewer towers in sum
 -simpler weighting
 -we will be ok if ECAL is ok!