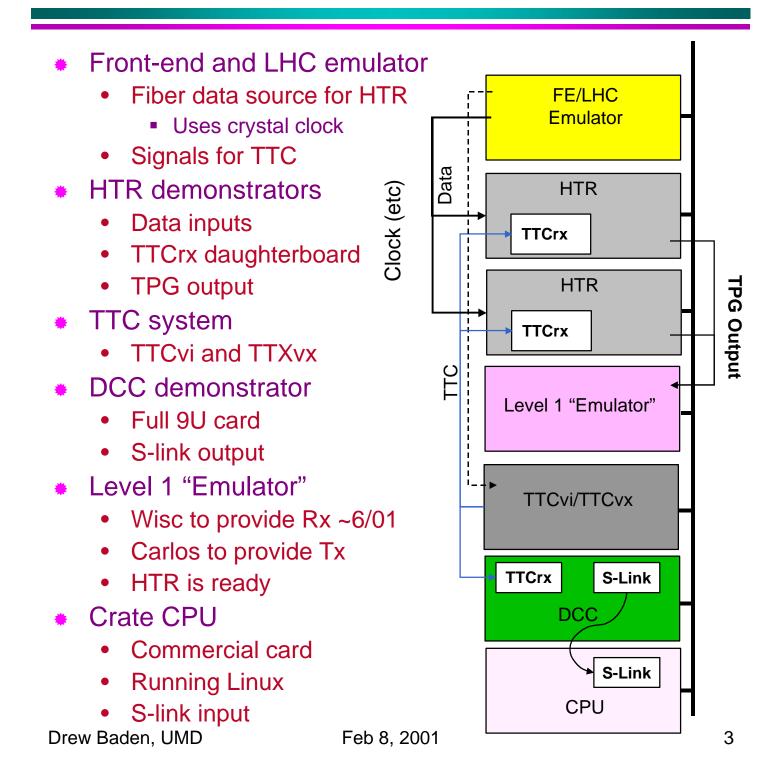
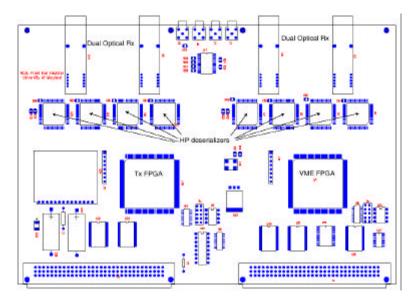
HCAL Trigger/Readout

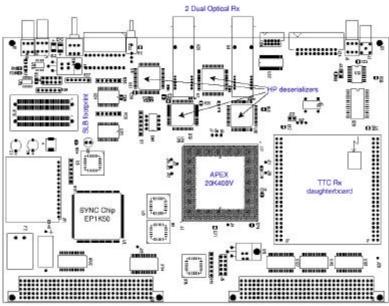

Texas Tech Meeting February 2001 Drew Baden, Tullio Grassi University of Maryland

Outline

Trigger/DAQ Demonstrator project


- HTR demonstrator
- Front-end Emulator
- DCC demonstrator
- DAQ
- Cost/Schedule

Demonstrator System Design

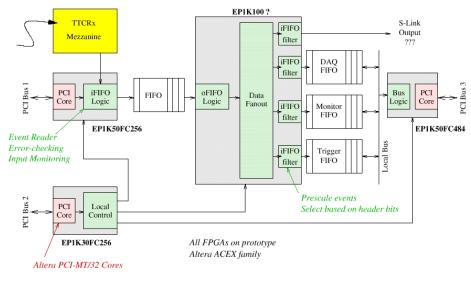

Front End/LHC Emulator

- 6U VME board
- 8 fiber data outputs simulates HCAL
- System signals:
 - Internal 40MHz crystal + FPGA (Altera 10k50)
 - Generates master clock, L1A, and BC0
 - All are ECL outputs
 - Clock, L1A, Orbit, BC0, spares
- LHC pattern generated internally
- Board is being stuffed, back in 1 week

HTR Demonstrator

- 6U VME board
- 2 Dual Optical Rx (4 fibers)
- HP deserializer chips
- TTCrx daughterboard
- APEX 20k400
 - Has enough memory
- LVDS output to DCC
- Link piggy-board footprint for TPG output
- Board is being stuffed, back in
- 1 week

Drew Baden, UMD

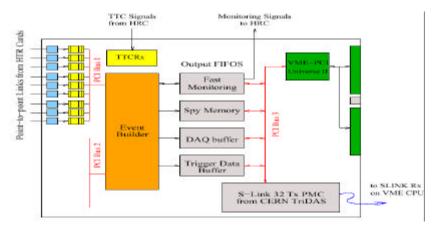

HTR/FEE FPGA Firmware

Emulator

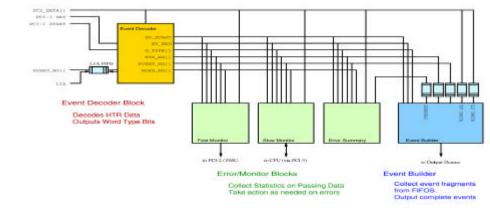
- Hans Breden already working on it
- "pretty simple" in comparison to HTR
- HTR ("LPD" etc)
 - Tullio is working on this
 - Baden to help soon as D0 stuff is finished
 - Software tools (Quartus, Synplify, Aldec, etc.)
 - Algorithm (LPD)
 - Grassi/Baden met with Magnus Hansen Jan 01
 - □ VHDL and knowledge changed hands
 - Simplified version soon to test I/O
 - This is a major work in progress towards a more final version

DCC Logic Layout

- TTCrx daughtercard
- Data from 18 HTR buffered in iFIFO
 - dual PCI buses, 9 HTR per PCI
- Large FPGA reads events from FIFO
 - distributes to 4 FIFO-like streams
 - Each stream can prescale events and/or select by header bits.
- Local control FPGA provides independent access via VME/PCI for control/monitoring while running.


Drew Baden, UMD

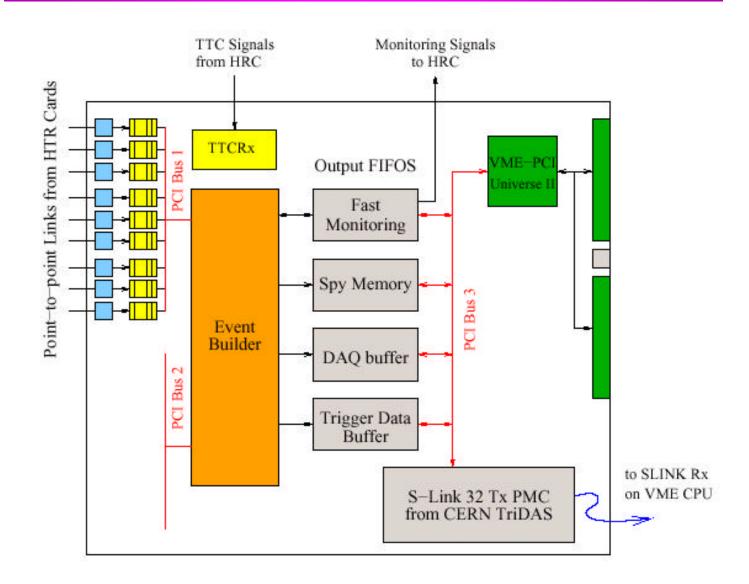
Feb 8, 2001


DCC Demonstrator

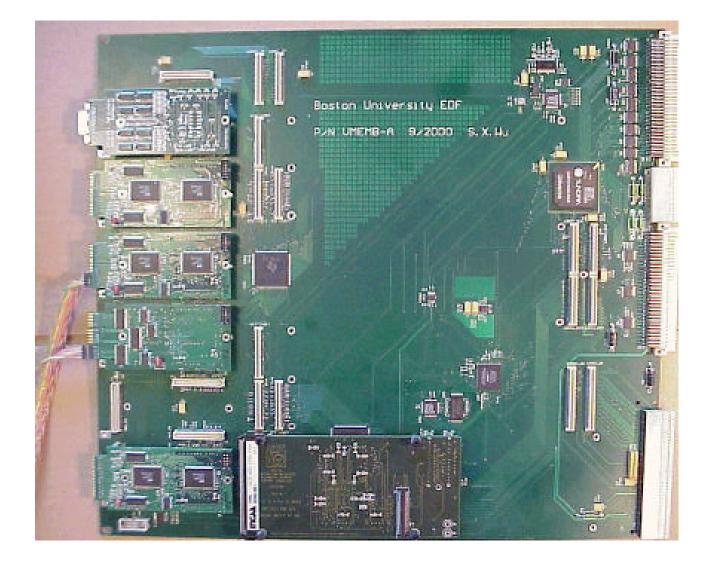
DCC VME motherboard

- 2 prototypes tested and working
- Components for 5 for CMS on order

- Link Receiver Boards (input & event building)
 - 2 prototypes (2nd revision) under test
 - Components for 10 "in stock"

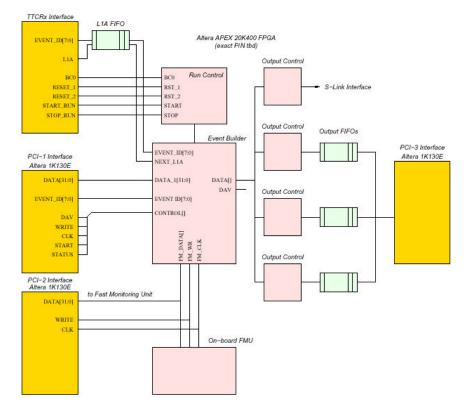

Feb 8, 2001

DCC Motherboard


What's been tested so far:

- PCI tested to 35MHz (33MHz is the PCI spec.
 - This is faster than the anticipated 28MHz
- Burst transfers tested on PCI3
- All PCI bridges work
- All PC-MIP sites work
 - Used commercial digital I/O board
- All PMC sites work
 - Used S-Link interface

DCC Overview



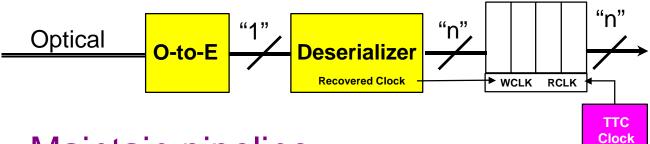
DCC Demonstrator Motherboard

DCC Demonstrator

- DCC Logic module
 - CAD Schematic done
 - PCB layout to start in 2-3 weeks
 - FPGA firmware design underway
 - Using S-link for interfaces works fine

Drew Baden, UMD

DAQ

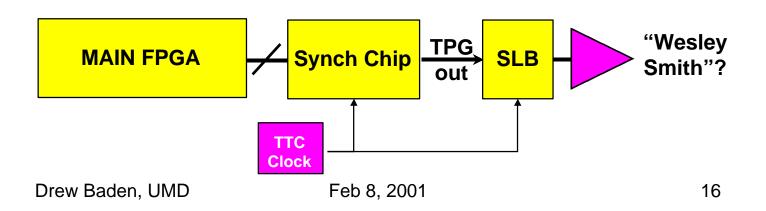

- 6U VME Pentium CPU board
 - running Linux
 - VME interface
 - Connect to TTCvi, HTR, and DCC
- Use S-Link for direct data interface with DCC
 - Will also have VME interface if needed
- UMD, BU, and UIC already purchased
 - Not necessarily have gotten Linux up yet
- Chris Tully has agreed to help
 - Students, maybe himself
- Overall integration still up in the air
 - Need to get organized on this
 - Video meeting next week to start
 - Goal: get UIC, BU, Princeton, UMD workers to be at UMD and work on this together, pound it out!

Testing Goals DAQ

- Run Demonstrator project at UMD
- Be ready to run FNAL source calibration project next summer

Testing Goals HTR

- Receiving optical data
 - G-links clock recovery
 - Asynchronous FIFO
 - TTC clock for FIFO RCLK



- Maintain pipeline
 - With error reporting
- Crossing determination
 - Send data to HTR demo coincident with selected 25ns time bucket
 - Recover this particular 25ns time bucket
 - Investigate various algorithms (with help)

Testing Goals HTR

Synchronization

- All TPG data from same bucket are aligned for transmit to L1 trigger
- Use of Synch Chip on our boards
- From L1A, verify correct data gets into DCC
 - L1A generated in the TTCvi by FE Emulator
- TPG output needs a source and a receiver!
 - Wait for Wisconsin to provide
 - Use Carlos daSilva's Link Piggy board

Testing Goals DCC

Input

- Test LVDS electrical from HTR
- Test data protocol
 - Grassi/Bard/Hazen have worked it out
- Test (multiple) PCI interface and event building

Buffers

- Multiple FIFOs for various functions
 - Output to L2/DAQ (all data)
 - Monitoring (preselected)
 - Trigger verification (prescaled)
 - Other?

Testing Goals DCC

- Error checking and monitoring
 - Event number check against L1A from TTC
 - Demonstration of system-wide synch capability
 - Line error monitoring
 - Built in Hamming ECC
 - FIFO occupancy monitoring
- DCC output
 - Use S-LINK to connect to CPU via PMC connector
 - Incurs an additional \$5k expense
 - Cards already build and delivered from CERN
 - BU already tested
 - This allows us to move forward in DCC/DAQ integration ahead of schedule

Schedule

FEE/LHC Emulator

- Layout, fab complete, physically in board house now
- Expect board by Feb 12
- FPGA firmware being worked on now
 - Expect end of Feb, in time for testing

HTR

- Layout , fab complete, also in board house now
- Expect board by Feb 12
- Firmware will be an ongoing project
 - Preliminary firmware for checkout in time for testing

DCC

- Motherboard tested and working
- Link receiver cards (PC-MIP) tested and working
- PMC Logic board sometime in March or April
 - We can get started using S-Link, direct interface between DCC motherboard and CPU
 - WU is now officially full-time on this

Schedule (cont)

Integration

- Hardware checkout to begin this month
- Software needs a lot of work
 - Serious efforts have to begin now on Linux DAQ etc.
 - Will begin weekly video conference meetings with
 - □ UMD, BU, UIC, Princeton
- Goal:
 - Hardware and software integration to start in March
 - Be ready for FNAL source calibrations this summer
- We are behind by 2-3 months
 - Can make some of this up by eliminating prototype stages
 - Still plan to try to stick to Lehman schedule
 - Note DCC effort is already underway, HTR is 1 week away from testing and begin of integration

Drew Baden, UMD

Demonstrator Project Costs

Working on reevaluation of project costs

- Will present to Level 2 WBS mgmt soon
- Some examples of additional Demonstrator costs:
 - HTR \$3k original, \$3.5k actual
 - FEE \$2.5k original, \$2.8k total
 - S-Link \$5k
 - Additional 9U VME crate with 6U slots \$5k @UMD
 - UMD CPU board \$4k with software
 - Quartus requires >512M memory to run!
 - Our computer uses RDRAM!
 - Will need to clone a system for Tully
 - 2 additional DCC Motherboards ordered
 - Several additional BU startup expenses (software, etc.)
- No difficulties expected (yet)

Overall T/DAQ Costs

- Cost savings for increasing to 3 channels/fiber
 - Can do 12 inputs for 36 channels instead of 16 inputs for 32 channels per card
- Current:
 - 463 cards
 - \$2.5k/board, \$480 for Rx chips
 - \$1.158M total
- New:
 - 413 cards
 - \$2.4k/board, \$360 for RX chips
 - \$0.991M total, saves almost \$160k
- Realistically, this is in the continency noise but it DOES reduce the baseline

Cost Variables

- New vs Old G-Links
 - Old = 2 channels/fiber, 16 fibers/HTR
 - 20 bits x 40MHz = 800MHz
 - New = 3 channels/fiber, 12 fibers/HTR
 - 32 bits (40) x 40MHz = 1.2 (1.6) GHz
 - Advantage of New:
 - Fewer HTR (~10%)
 - Take advantage of fiber mass terminators
 - □ 12/connector fits nicely, use 1 per HTR
 - □ Significant reduction in cost of o-to-e
 - \geq 12 vs. 16, these are expensive
 - □ Is it real?

FPGA

- Smaller is definitely cheaper
- Critical that HCAL stick to no more than 5 channels per sum. Why?
 - Can then use 8 FPGA per HTR, 5 channels per FPGA
 - Puts constraints on fiber cabling but will help cost alot

Overall T/DAQ Costs

- Changes since baseline (\$1.5M for HTR)
 - FPGA cost for Altera 20k400 TODAY (1/2001) is \$1000 for single!!!!
 - Quantity in 2 years? Maybe 1/4-1/3
 - Baseline cost for FPGA: \$1000
 - It might fit
 - Optical o-e
 - Baseline estimate for 2-fiber connectors \$30
 - □ Grossly underestimated more like \$100
 - □ This is an \$800 underestimate, which amounts to a 30% increase (\$1.5M)
 - With increase to 36 channels per card, this amounts to about \$200
 - Can use mass terminated fiber connectors, 12 per connector, cost is \$400
 - Would bring the costs back nearer to baseline
 - Warnings from Magnus on delivery time, etc for these parts now.