

Introduction

- HCAL Front-End Readout and Trigger
- Joint effort between:
 - University of Maryland Drew Baden (Level 3 Manager)
 - Boston University Eric Hazen, Larry Sulak
 - University of Illinois, Chicago Mark Adams, Rob Martin, Nikos Varelas
- Web site:
 - <u>http://macdrew.physics.umd.edu/cms/</u>
 - Has latest project file, spreadsheets, conceptual design report, etc...
- This talk:
 - Design
 - Schedule
 - Issues

CMS Inner Detector

itle: cmsqtr28.eps) reator: dobe Illustrator(TM) 7.0 review: his EPS picture was not saved ith a preview included in it. comment: his EPS picture will print to a ostScript printer, but not to ther types of printers.

USCMS HCALTriDAS HCAL Barrel Trigger Primitives

- $0 < \eta < 1.5$
- $\Delta \eta \ x \ \Delta \phi = .087 \ x \ .087$
- H0 and H1 depths
- Trigger Primitive:
 - H0+H1 added together
 - TT = physical tower
 - Convert to E_T via LUT
 - Muon bit added
 - 1.5 GeV < E < 2.5 GeV
 - 1 MIP ~ 2 GeV
- Level 1 data:
 - 24 bits:
 - Tower A: 9 bits:
 - » 8 bits ET nonlinear
 - » 1 bit Muon
 - Tower B: 9 bits, same as A
 - 1 Abort gap bit
 - 5 bits Hamming code

HCAL Endcap Trigger Primitives

- $-1.5 < \eta < 3$
- Δη x Δφ = .087 x 5° (.087) η< 1.6
- $\Delta \eta x \Delta \phi = .087 x 10^{\circ} (.175) \eta > 1.6$
- Trigger Primitive:
 - η< 1.6
 - same as Barrel
 - η> 1.6
 - -1 TT = 2 physical towers
 - break physical tower into halves and send
- Level 1 data:
 - same as Barrel

HCAL Forward Trigger Primitives

- $3 < \eta < 5$
- $\Delta \eta \ x \ \Delta \phi = .166 \ x \ 10^{\circ} (.175)$
- Trigger Primitive:
 - combine 2 in ϕ and 3 in η to
- Level 1 data:
 - same as Barrel

Title: eta-phi-grid-lvan.eps Creator: MiniCad 60.1 Preview: This EPS picture was not saved with a preview included in it. Comment: This EPS picture will print to a PostSorip printer, but not to other types of printers.

HCAL TriDAS Relevant Parameters

- These parameters drive the design and project cost:
 - HCAL Channels and topology determines
 - Total channel count
 - Total number of trigger towers (includes calibration fibers)
 - Need to understand 53° Overlap region, high rad region, fiber cabling, etc.
 - QIE Readout parameters determine
 - Number of channels/card
 - 2 Channels per fiber, 7 data bits + 2 cap bits per channel
 - HP G-links, 20 bit frames, 16 bits data
 - Total number of cards to build
 - Data rates
 - Assume 100kHz Level 1 accepts
 - Occupancy estimated to be 15% at L=10³⁴
 - Determines buffer sizes
 - Level 1 trigger crossing determination
 - Under study (Eno, Kunori, etal.)
 - Determines FPGA complexity and size (gates and I/O)

Region	Towers	Fibers	Trigger Towers
Barrel	4,968	2,304	2,304
Outer	2,280	1,140	0
Endcap	3,672	1,836	1,728
Forward	2,412	1,206	216
Total	13,332	6,486	4,248

Readout Crate Components

HCAL **T**RIGGER and **R**EADOUT **Card**

• All I/O on front panel

- No filtering or crossing determination necessary
- Transmission to DCC for Level 2/DAQ readout

HTR Card Conceptual Design

- Current R&D design focusing on
 - Understanding HCAL requirements
 - Interface with FNAL group
 - No card-to-card communication
 - Has implications with respect to summing in 53° region, and fiber routing
 - How to implement I/O
 - R&D on all relevant links is in progress
 - Minimizing internal data movement
 - FPGA algorithm implementation
 - Requires firm understanding of requirements
 - Requires professional-level FPGA coding
 - Reducing costs
 - FPGA implementation
 - Altera vs. Xilinx
 - On-chip FPGA memory is a big factor
 - Eliminating P3 backplane saves ~\$1000/card and \$1500/crate
 - Maintain openness to industry advances
 - "Watch" HDTV

HTR Conceptual Schematic

- Input:
 - QIE 7 bit floating plus 2 bits "cap"
- Lookup table (LUT)
 - Convert to 16 bit linear energy
- Pipeline ("Level 1 Path")
 - Transmit to Level 1 trigger, buffer for Level 1 Accept, 3 μ s latency
- Level 2 Buffer ("Level 2 Path")
 - Asynchronous buffer, sized based on physics requirements

USCMS HCALTriDAS Level 1 Path

Title[.]

- 40 MHz pipeline maintained
- Trigger Primitives
 - 8 bit "floating point" E to 16 bit linear E_T
 - Combination of HCAL towers into TRIGGER Towers
 - Muon MIP window applied, feature bit presented to Level 1
- Relevant TTC signals via TTCRx chip
 - Synchronization and bunch crossing ID
- Level 1 Filtering using simple algorithm and BCID and Monte Carlo guides

(level1-path.eps) Creator: Adobe Illustrator(R) 8.0 Preview: This EPS picture was not saved with a preview included in it. Comment: This EPS picture will print to a PostScript printer, but not to other types of printers.

- 40 MHz pipeline into RAM, wait for L1 decision
 - 18 bits wide X 5 μ sec buffer = 3.6k bits/channel
 - 32 channels per card, 400kbits (see next slide)
- Level 1 Accept causes time slices clocked into derandomizing buffers
 - Assume 10 time buckets per crossing is necessary for readout
 - Apply HCAL proposed trigger rule: no more than 22 L1A per orbit
 - Deadtime < 0.1% given 100 kHz L1A
 - see "next" slide for more on this...

HTR Cost and Function Analysis

- HTR constitutes 60% of production M&S
- · Cost estimates are difficult and very fluid due to uncertainty in requirements.
 - Driven by memory requirement:
 - 32 channels, 7 bits of raw data + 2 bits cap = 9 bits per channel
 - LUT produces 16 bits nonlinear, therefore needs 2⁹=512 locations x 16 bits = 8192 bits per channel
 - Pipeline:
 - 5 µs latency (3 µs officially) requires 200 cells at 40 MHz
 - Store raw 9bits in pipeline, reduces memory requirement: 200x9=1800 bits per channel
 - Accept buffer (aka "derandomizer")
 - How deep? Apply L1 Accept rule: < 15 L1A's per orbit
 - 10 time buckets x 16 bits x 15 deep = 2.4k bits
 - Total bits/channel: 8192 + 1800 + 2400 = 12392
 - 32 channels means we need 400k bits
 - And that means we use the LUT in both L1 and L2 paths (ok, only 40 MHz pipeline, easy for FPGA)
 - There are some "tricks" but all have engineering risk and cost, e.g.
 - Do some integer arithmetic inside FPGA, save 2 cap bits, decrease memory by x4
 - Go off FPGA chip for memory access

HCAL L1A Limit Rule

- L1A average rate = $100 \text{ kHz} = 1/10 \mu \text{s}$
 - 25 ns per crossing, means on average 400 crossings between L1A's
- Orbit period = 88 μ s or approximately 3600 crossings
 - Therefore on average, 9.46 ± 0.36 L1A per orbit
 - We will require < 15 L1A per orbit for HTR L2/DAQ buffers

HTR Costs

- FPGA:
 - Need 400k bits onboard memory
 - Need 32 channels x 9 pins input = 282 pins input
 - Need some VME + LVDS + Vitesse => another 100 pins at least
- Overall FPGA requirement: 400 kb memory, 500 I/O pins
- Latest quotes (as of 4/6/00, after baseline was established):

Vendor Part	Gates (x1000)	Block Ram (kbits)	I/O Pins		Cost	
Xilinx 600E	986	295	316 444	BG432 FG676	\$380 - \$460	
Xilinx 405EM	570	560	404	BG560	\$267 - \$450	
Xilinx 1000E	1569	393	404 512	BG560 FG680	\$750 - \$1065	
Altera 20K400E	1052	213	502	FG672	\$335 - \$475	

Data Concentrator Card

Motherboard/daughterboard design: Build motherboard to accommodate PCI interfaces (to PMC and PC-MIP) VME interface 5 PC-MIP mezzanine cards PC-MIP cards for data input 3 LVDS Rx per card • 3 LVDS inputs per card • 6 cards per DCC (= 18 inputs) from Engineering R&D courtesy of DÆ – 2 PMC cards for • Buffering: Transmission to L2/DAQ via Link Tx

2

20

PCI Interfaces

PMC Logic Board

Buffers 1000 Events

PMC Logic Board Interface with DAQ

TRIDAS Cern. 10-May-00

To DAQ

Hcal Readout Control Module

Motherboard/daughterboard design:

- Functionality:
 - Slower Monitoring and crate communication
 - PMC CPU, buy from industry
 - Input from DCC
 - To be determined
 - Monitoring and VME data path
 - TTC ala ECAL/ROSE
 - LVDS Fanout to all 18 HTR cards
 - Monitoring: (FMU)
 - FPGA implemented on PMC daughter board
 - Busy signal output (not shown)
 - To go to <u>HCAL</u> <u>D</u>AQ <u>C</u>oncentrator (HDC)

Overall Project Timeline

(Appendix)

HCAL TriDAS Task	1999	2000	2001	2002	2003	2004
	J FMAMJ J A SON	J FMAMJ J A SOND	JFMAMJJASON	DJFMAMJJASOND	J F M A M J J A SON D	J FMAMJ JA SONE
Maryland Task						
HTR Demonstrator Task						
HTR 1 st Prototype						
HTR Pre-production Prototype						
HTR Production						
System Integration						
Boston University Task						
DCC Demonstrator Task						
DCC 1 st Prototype						
DCC Pre-production Prototype						
DCC Production						
Illinois, Chicago Task						
HRC Demonstrator Task						
HRC 1 st Prototype						
HRC Pre-production Prototype						
HRC Production						
HDC Task						

Project Status

- HTR project progress:
 - R&D on I/O proceeding: LVDS, Copper Gbit/sec (Vitesse), Fiber Gbit/sec (HP)
 - I/O board and HP G-link 6U front end emulator boards almost done
 - Evaluation of FPGA choices (no ASIC ala "Fermi")
 - Better understanding of buffer sizes, synchronization, etc.
- DCC
 - R&D on DCC motherboard underway at BU
 - PC-MIP R&D underway, paid for from DÆ project
- HRC
 - UIC ramping up to provide some functionality of HRC card by fall 2000
- Integration
 - Synchronization issues under study (we are being educated)
 - HCAL will closely follow ECAL unless absolutely necessary
 - Mr. daSilva is helping us a great deal!
 - Plans to use early production cards for Alcove tests in early 2003
- Ready for TRIDAS integration:
 - Ready by beginning of '03
 - Preliminary integration tests possible after 1st prototype, somewhere in '02 maybe

Current Issues

- Parts cost
 - HTR implementation in 4 FPGA in 463 cards = 1852 FPGAs
 - Trying to pin down Xilinx and Altera
- Still learning about functional requirements, e.g.
 - how to design with uncertain crossing determination algorithm in HTR
 - How DDC interfaces with DAQ
 - Synchronization
- FPGA programming
 - Need to do this at the behavioral level
 - This is our biggest engineering concern, and we are doing the following:
 - Gain expertise in-house:
 - Verilog courses for Baden, students, engineers, etc.
 - Request help from Altera and Xilinx with FPGA code design
 - Mining expertise within the Masters level EE students
 - Tullio Grassi just hired (former Alice pixel engineer)
 - Confident that we will be ok on this..