

Synchronization

- Policy: HCAL will follow ECAL as much as possible
 - Same TTC distribution system
 - 6 TTCvi/TTCex, optical splitting, etc.
 - LVDS fanout from HRC (HCAL Readout Control) card to 18 HTR cards
 - might use coax limo connectors tho....
 - Use sync histogram technique to monitor phase stability in situ
- Will try to estimate where we are different from ECAL
 - pulse shape
 - occupancies
 - delays
- Overall guess:
 - we will be ok if ECAL is ok!

QIE Output

- QIE clock control ASIC (CCA)
 - clock skewing by 1ns over 25ns
 - jitter is 150-200 ps
- Crossing determination algorithm:
 - $-P_3 + P_4 + P_5 1.5x(P_1 + P_2)$
 - FPGA will select when data is consistent with expected shape

CCA phasing

- Can adjust CCA to give "smooth" profile
 - .0 .0 .47 .47 .06
 - this profile minimizes charge loss inside QIE
 - slow down slewing when switching from 1 cap to 5 GeV in HCAL tower the other
- or a "peaked" profile
 - .0 .0 .68 .29 .03
 - perhaps easier for

crossing determination...25

4

USCMS HCALTriDAS

Crossing Determination

- For L1 Trigger, use a simple algorithm:
 - TT = $-\frac{3}{2}(P_1+P_2) + P_3 + P_4 + P_5$
 - look for large change tags beam TT E_T consistent with beam crossing Real Time Algorithm Result

Pileup

- Can't distinguish hits separated by 1 or 2 buckets, but 3 or greater ok...
 - due to signal being spread over 3 buckets

"Smooth" phasing

Pileup (cont)

"Peak" phasing

HCAL Occupancies

- HCAL estimates occupancy at 10% for 200 MeV $E_T @ 10^{34}$
- HCAL needs enough large energy hits (photo statistics) for L1 threshold to get high photo statistics for synchronization histogram:
 - 10 photo-electrons per GeV energy
 - plenty, since we're using E_T for the histogram sync (except perhaps at $\eta=0$)
- 10^{34} min bias spectrum falls exponentially with E_T :
 - HB (0< η <1.4) P(E_T) ~ e -4.9E_T
 - from .2 to 3.0 GeV, probability drops by about 10⁻⁶
 - occupancy @ 10^{34} is therefore ~ 10^{-7}
 - takes 10⁷ buckets to get 1 hit, need 10 hits, want 10 hits in all ~3000 buckets
 - therefore takes ~3x10¹¹ buckets, or about 3 hours
 - HE (1.4< η <3.0) P(E_T) ~ e ^{-6.4E}_T
 - photo statistics is in E, not E_T so relax to 2 GeV to get similar numbers as HB

Delays

- HCAL will use same algorithms as ECAL
 - same FPGA techniques too!
 - HCAL adds far fewer towers to make TPG than ECAL
 - Expect delays to be same, or smaller, than ECAL
- Laser Pulsing
 - same techniques as ECAL