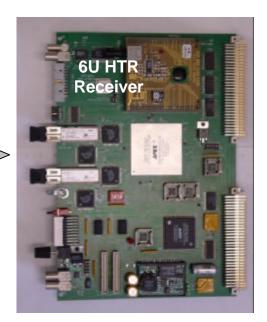


HCAL FE/DAQ Overview

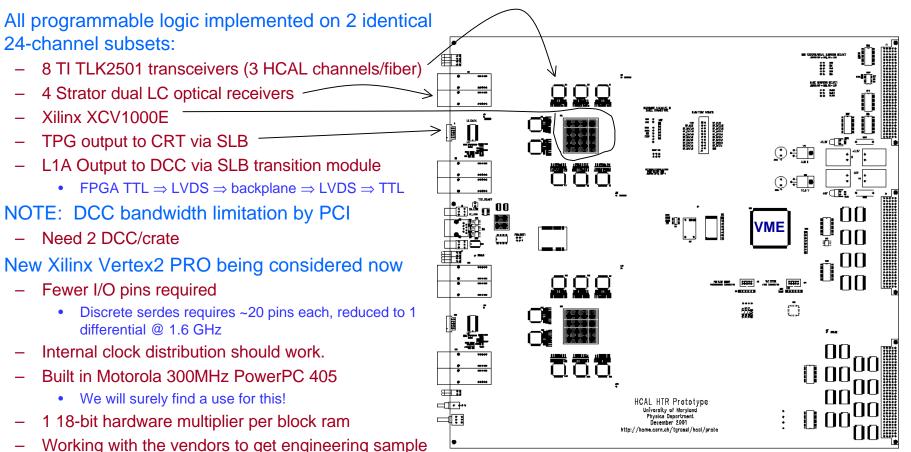
Readout Crate Components

HCAL **T**RIGGER and **R**EADOUT **Card**


- No functional changes since Dec-2001
- I/O on front panel:
 - Inputs: Raw data:
 - 16 digital serial fibers from QIE, 3 HCAL channels per fiber = 48 HCAL channels
 - Inputs: Timing (clock, orbit marker, etc.)
 - PECL
 - Outputs: DAQ data output to DCC
 - Two connector running LVDS
- TPG (Trigger Primitive Generator, HCAL Tower info to L1) via P2/P3
 - Via shielded twisted pair/Vitesse
 - Use aux card to hold Tx daughterboards
- FPGA logic implements:
 - Level 1 Path:
 - Trigger primitive preparation
 - Transmission to Level 1
 - Level 2/DAQ Path:
 - Buffering for Level 1 Decision
 - No filtering or crossing determination necessary
 - Transmission to DCC for Level 2/DAQ readout

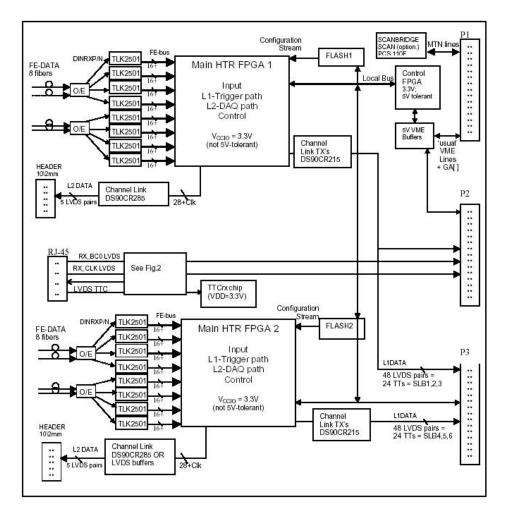
Demonstrator Status

- HTR Demonstrator **DONE**
 - Consists of 2 boards:
 - 6U HTR receiver board
 - Front-end emulator transmitter board
 - Functions implemented:
 - Data, LHC structure, CLOCK
 - 800 Mbps HP G-Links works like a champ
 - Dual LCs
 - FEE sends clock to HTR, bypasses TTC
 - HCAL FNAL source calibration studies in hand



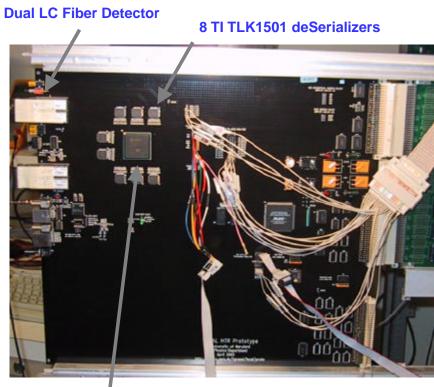
CMS/ESSC. May, 2002

Baseline 48 channel HTR


• Plan to have a board built over the summer for checkout

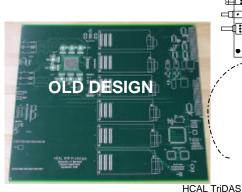
Tremendous effort by Tullio Grassi

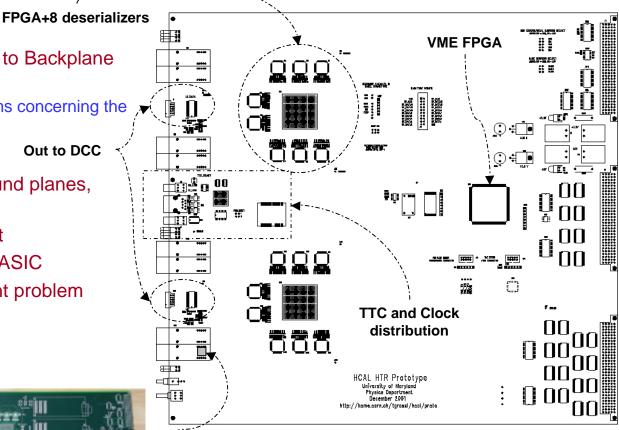
HTR Block Diagram


• In progress...

Current Status HTR

- 1.6 GHz link is the hardest part
 - Already implemented on in-house "LinkOnly" board
- HTR Prototype is on the bench now
 - Half functionality for 02 testbeam
 - 1 FPGA
 - Firmware in progress
 - 8 serdes
 - Tested ok. Some VME power supply issues.
 - DCC output
 - Already tested
 - External clock input
 - VME
 - Firmware developed at BU, good progress
- This board will be cloned for the testbeam effort

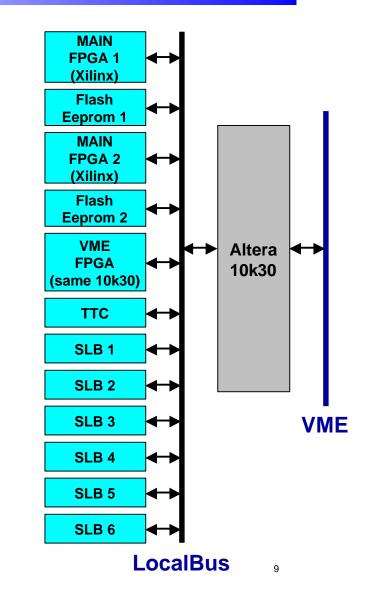

Xilinx XCV1000E FPGA



Changes from HTR Prototype to Final

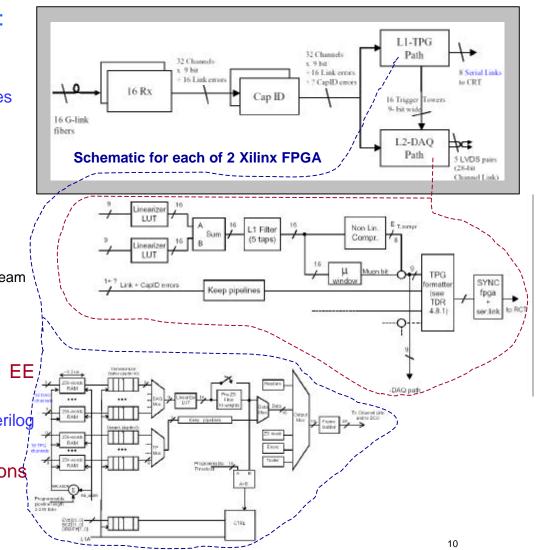
- TPG transmission changed
 - From SLB mezzanine cards to Backplane aux card
 - Solves mechanical problems concerning the large cables to Wesley
- 1.6 GHz link

- Out to DCC
- Wider traces, improved ground planes, power filtering, etc.
- Deserializer RefClock fanout
- TTC daughterboard to TTC ASIC
- Fixed TI deserializer footprint problem
- **Clocking fixes**
- Next iteration estimate
 - Submit in 2 weeks
 - Stuffed and returned
 - by April 1



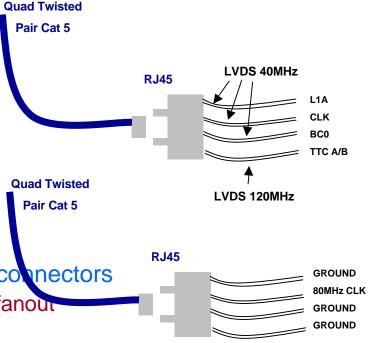
Dual LC Fiber Connector

HTR Firmware - VME

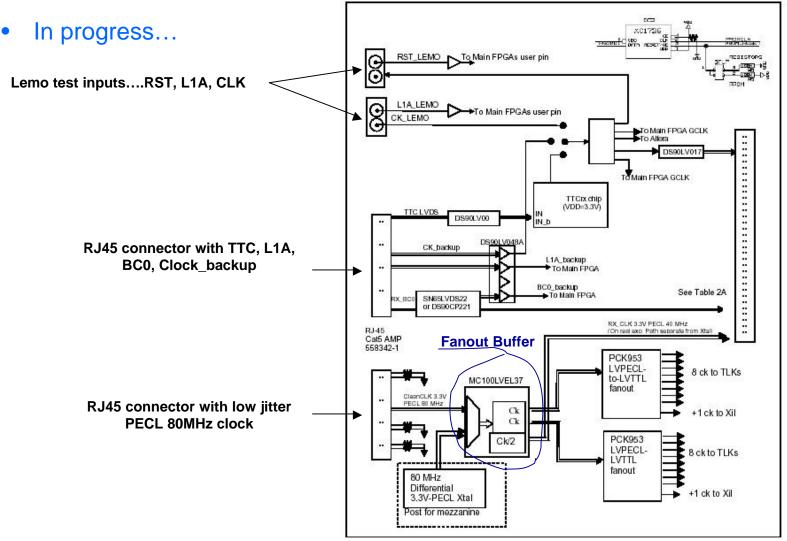

- All firmware implemented using Verilog implementation
 - Non Trivial firmware effort underway
 - 1 engineer, 1 EE graduate student, 1 professor
- VME path to HTR implemented via Altera FPGA
 - BU is developing
 - Status is good confidence that this will be ready for testbeam
 - VME is not too difficult if you don't have to do DMA, interrupts, etc.
 - Based on a "LocalBus" model
 - LocalBus devices are the 2 Xilinx FPGAs, flash eeprom for config over VME, internal VME FPGA device, and the 6 SLB daughterboards

HTR Firmware – HCAL functionality

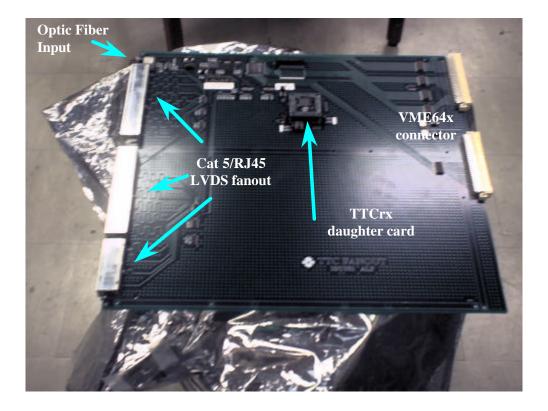
- Firmware for this consists of 2 paths:
 - Level 1 path
 - Raw QIE to 16-bit integer via LUT
 - Prepare and transmit trigger primitives
 - Associate energy with crossing
 - Extract muon "feature" bit
 - Apply compression
 - Level 2 path
 - Maintain pipeline with L1Q latency (3.2µs)
 - Handle L1Q result
 - Form energy "sums" to determine beam crossing
 - Send L1A data to DCC
- Effort is well underway
 - 1 FTE engineer (Tullio Grassi) plus 1 EE graduate student plus 1 professor
 - Much already written, ~1000 lines Verilog
 - Much simulation to do
 - Focusing now on Level 2 path functions necessary for testbeam

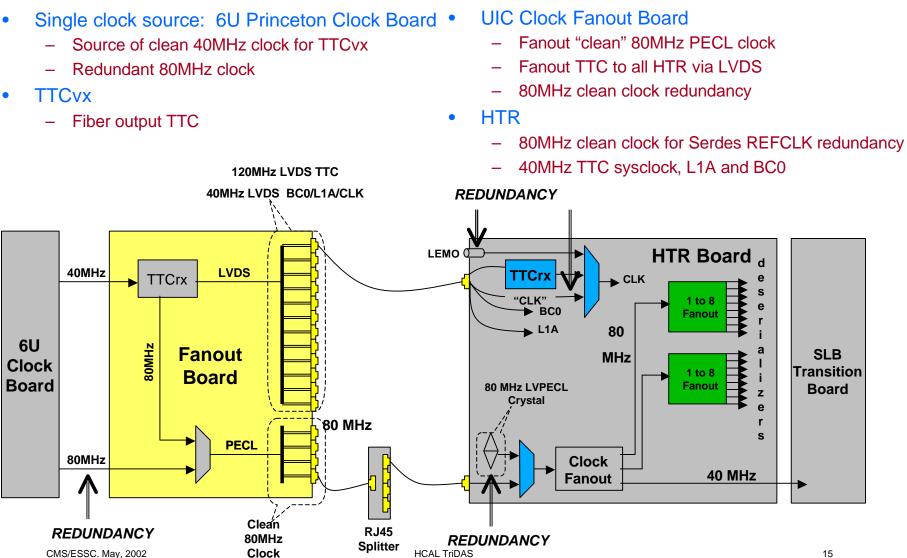

Clocking

- Many clocks in HTR board.
- Best to describe in terms of "Tight" and "Relaxed" jitter requirement:
 - Tight jitter spec: 2 clocks needed
 - 1. REFCLK for Serdes fiber receivers (TI TLK2501) lock to incoming 1.6 Gbps data
 - 80MHz
 - Preliminary REFCLK jitter requirements were surprising...
 - » Measured 30-40ps pkpk jitter needed at input to Serdes on Maryland "eval" board
 - » Measurements on current 9U board underway, maybe it's not so bad.
 - 2. Provide transmitter clock for SLB output
 - 40MHz
 - Jitter spec is 100ps at Vitesse transmitter
 - Loose jitter spec: 1 clock needed
 - TTC-derived system clock for HTR logic
 - Used only by the FPGA
- Implementation described on next slide....

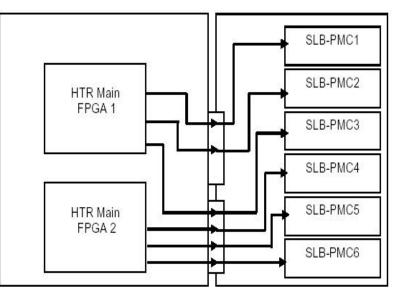

Clock Implementation - HTR

- Tight Jitter clock:
 - Use same clock for both 80MHz Serdes REFCLK and 40MHz SLB Tx clock
 - DFF used to divide 80MHz into 40MHz
 - Clock will be implemented in 2 ways:
 - Incoming from Clock Fanout Board
 - PECL fanout, convert to TTL at input to Serdes
 - Onboard crystal for debugging
- Loose Jitter clock
 - Use TTC clock for 40MHz system clock
 - Clock will be implemented in 3 ways on HTR:
 - TTC clock from fanout board
 - External lemo connector
 - Backup input from fanout board
- 2 RJ45 connectors with Cat 5 quad twisted pair connectors
 - 1st one has incoming low jitter 80MHz clock from fanour
 - 3.3V PECL on 1 pair, other 3 pair grounded
 - -2^{nd} one has:
 - 120MHz LVDS TTC from fanout board on 1 pair
 - 40MHz LVDS L1A, Backup clock, and BC0 on other 3 pair


HTR/Clock Implementation


HCAL Fanout Prototype Board

- Fanout card handles requirement for
 - TTC fanout
 - L1A/BC0 fanout for SLB synch
 - Clock cleanup for low jitter REFCLK
- TTC Fanout
 - Each HCAL VME crate will have 1 TTCrx for all HTR cards
 - TTC signal converted to 120MHz LVDS, fanout to each HTR and over Cat5 w/RJ45
- L1A, BC0, CLK
 - Fanout using 40MHz LVDS
 - CLK is just for test/debugging
- Clock Cleanup
 - Cleanup the incoming 80MHz TTC clock using VCXO PLL
 - Fanout to HTR
- Status
 - Prototype board checked out ok
 - 3 production boards due next week

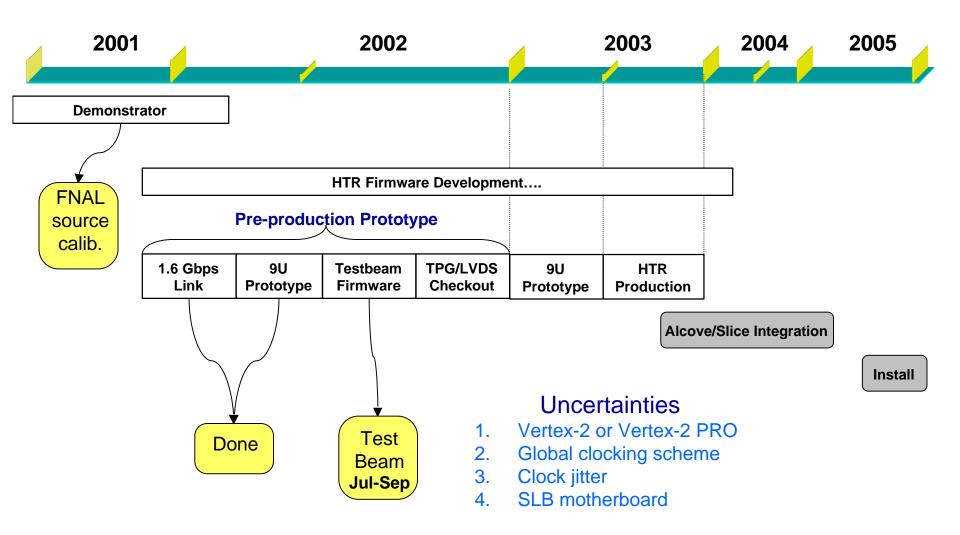

Testbeam Clocking Scheme

TPG Output to Level 1

- HTR cards will send data to Dasilva's SLB boards
 - Quad Vitesse transmitter, 40MHz clean clock input (100ps jitter)
- Mechanical considerations dictated design of 6-SLB transition board (SLB_HEX)
 - Baseline scheme: 6-SLB transition motherboard (SLB_HEX)
 - HTR will send 280 MHz LVDS across backplane
 - SLB_HEX will fanout 40MHz clean clock and have LVDS-to-TTL drivers
- 6 SLB=48 TPG matches HTR "magic number" 3 HCAL channels/fiber input
- Risks: lots of LVDS, but Dasilva is confident!
- Alternate schemes under consideration
 - 1. Move SLB's to HTR
 - Mechanically challenging heavy TPG cables
 - This is our main backup
 - 2. Build 9U "super" SLB motherboard
 - Not sure if this helps....
 - 3. Build 6U crate of super SLB motherboards
 - Same thing....

Adding HO to RPC Trigger

- Considerations:
 - Requirements
 - Trigger would only need 1 bit per HCAL tower
 - RPC trigger accepts 1.6 Gbps GOL output
 - Technical how hard will it be to do this?
 - 48 channel HTR means 48 bits/HTR to RPC trigger
 - Each SLB twisted pair sends 24 bits @ 120MHz
 - Entire output could go via a single SLB
 - Can the SLB output be modified to drive fiber?
 - Can the RPC trigger receiver be modified to accept 1.2 GHz?
 - Under study....will try to come up with a decision this month
 - Mapping
 - HCAL mapping is very constrained (ask Jim Rohlf!)
 - Can we map our towers/fibers to the RPC?
 - Maybe easy for ϕ
 - Maybe hard for η
 - Rohlf to study this....



Project Development

- Demonstrator Stage
 - Demonstrated scaled down system
 - FE (800 MHz) \Rightarrow (6U, Altera) \Rightarrow "DCC" \Rightarrow CPU
 - Nothing in the way of pipeline, TPG, derandomizer, preDCC logic board, etc.
- Testbeam 2002 Stage
 - Demonstrate full 9U system
 - FE (1.6 GHz, real RBX) \Rightarrow HTR (9U, Xilinx, TTC...) \Rightarrow DCC (full logic board) \Rightarrow CPU
 - Main goals are to learn about HCAL data, gain experience with clocking, produce fully integrated system
 - Pipelining/derandomizer but no TPG, and certainly not final CMS/LHC-ready firmware
- Summer 2003
 - Integration with L1Trigger, DAQ, VME rack support requirements
- Vertical Slice 2004
 - Full integration

Current Project Timeline

Integration/Installation/Commissioning

- First HTR/DCC integration completed
 - Jan 2001 FNAL source calibration test
 - − HTR (6U Altera demonstrator) \Rightarrow LVDS \Rightarrow DCC \Rightarrow SLINK \Rightarrow CPU
 - Physical link from HTR to DCC established
- Next integration will take place during the Summer 2002 testbeam
 - 9U HTR, Xilinx, more mature firmware...
 - 35MHz test of physical optical link from HCAL front-end to HTR
 - More of a firmware integration between HTR and DCC
- Integration with Level 1 to commence Q4 2002 after...
 - Checkout of HTR Channel-Link over backplane to SLB_HEX/SLB
 - Receipt of Wisconsin Vitesse VME receiver boards, fall 2002
 - We should be confident of ability of HTR to send synchronized data to L1 before going to pre-production prototype

Integration/Installation/Commissioning

(cont)

- Summer 2003 testbeam
 - Mostly firmware integration
- 2003 Level 1 trigger installation
 - HCAL will join as schedule allows
 - Probably not until after the testbeam
- 2003/2004 HCAL burning
 - Continue with firmware development/integration as needed
- 2004/2005 Vertical Slice and magnet test
 - We will be ready
 - All HCAL TriDas production cards involved
- October 05 beneficial occupancy of USC
 - Installation of all racks, crates, and cards
 - We do not anticipate any hardware integration
 - Should be all firmware / timing / troubleshooting
 - Need to understand whether we will need large-scale front-end emulation
 - Current FEE can feed optical data into only a few HTR cards at a time

Installation Manpower Needs

- Drawing on DØ Level 2 experience for the current Tevatron Run 2a...
 - Each significant card requires on-site expertise:
 - Probably 1-2 postdoc-level (or above) and 1 engineer
 - Maybe the same engineer for both DCC and HTR...
- HCAL will have an electronics setup at CERN
- Total personnel estimate:
 - Front End 1
 - HTR 2
 - DCC 2
 - Miscellaneous (grad students, transients, etc.) maybe 4?
- Very difficult to say with any accuracy