

HCAL TPG and Readout

CMS HCAL Readout Status CERN

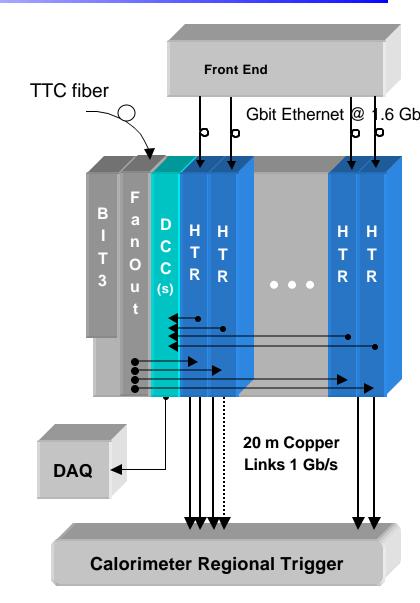
Drew Baden

University of Maryland

March 2002

http://macdrew.physics.umd.edu/cms/

see also: <u>http://tgrassi.home.cern.ch/~tgrassi/hcal/</u>



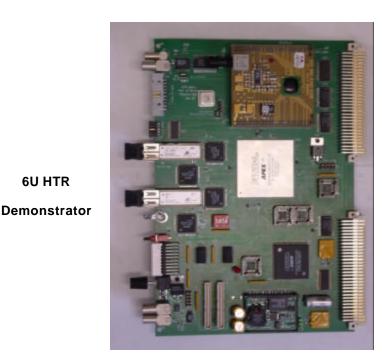
Outside world – slow monitoring, controls....

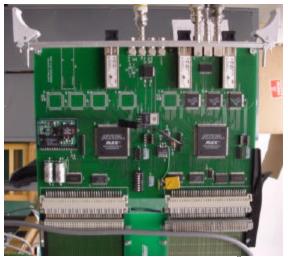
- Bit3 PCI/VME interface
 - Known quantity
- 3U Rack Computer
 - Dual processor DELL, fast PCI bus
- Chris Tully to take responsibility
- I'm keeping track of M&S for operations
 - Not yet added to WBS (I think....)

UIC/HRC replaced by TTC/Clock Fanout

- "HRC" did some of the above
- Clock fanout is critical for VME crate functions
- Fanout to all HTRs
- Fewer HTR/crate
 - Mapping considerations
- Dual-width DCC considerations
 - Not yet settled. I don't like it...but we'll see...

- No functional changes since Dec-2001
- I/O on front panel:
 - Inputs: Raw data:
 - 16 digital serial fibers from QIE, 3 HCAL channels per fiber = 48 HCAL channels
 - Inputs: Timing (clock, orbit marker, etc.)
 - PECL
 - Outputs: DAQ data output to DCC
 - Two connector running LVDS
- TPG (Trigger Primitive Generator, HCAL Tower info to L1) via P2/P3
 - Use aux card to hold Tx daughterboards
 - Via shielded twisted pair/Vitesse
- FPGA logic implements:
 - Level 1 Path:
 - Trigger primitive preparation
 - Transmission to Level 1
 - Level 2/DAQ Path:
 - Buffering for Level 1 Decision
 - No filtering or crossing determination necessary
 - Transmission to DCC for Level 2/DAQ readout

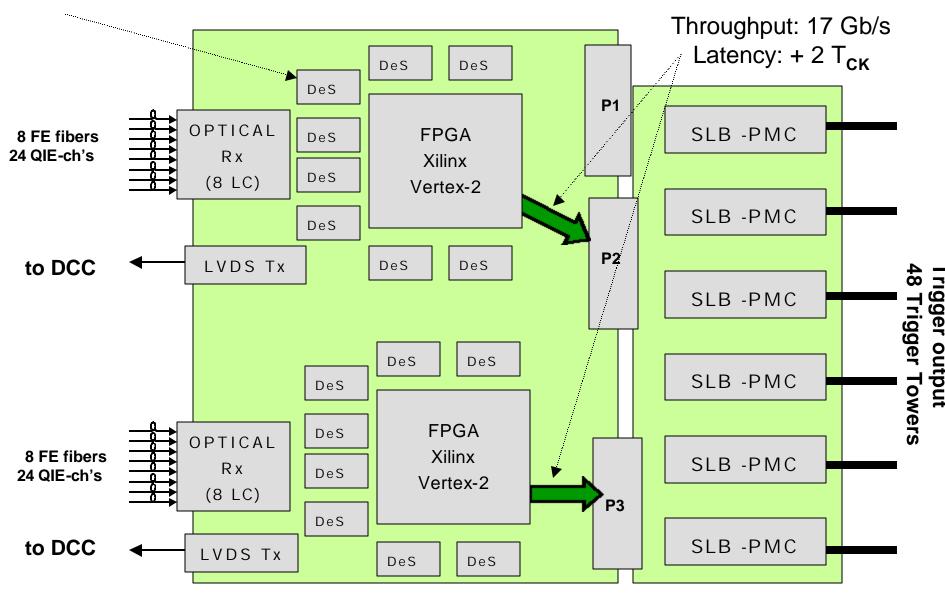



Demonstrator Status

Demonstrator

- 6U HTR, Front-end emulator
 - Data, LHC structure, CLOCK
 - 800 Mbps HP G-Links works like a champ
 - Dual LCs •
 - This system is working. FEE sends clock to HTR, bypasses TTC
 - HCAL FNAL source calibration studies in progress
 - Backup boards for '02 testbeam •
 - Decision taken 3/02 on this (more...)
 - Anticipate we will abandon this card for testbeam
- DCC full 9U implementation
 - FEE \Rightarrow HTR \Rightarrow DCC \Rightarrow S-Link \Rightarrow CPU working
- Will NOT demonstrate HTR firmware functionality as planned
- **6U FEE**

6U HTR



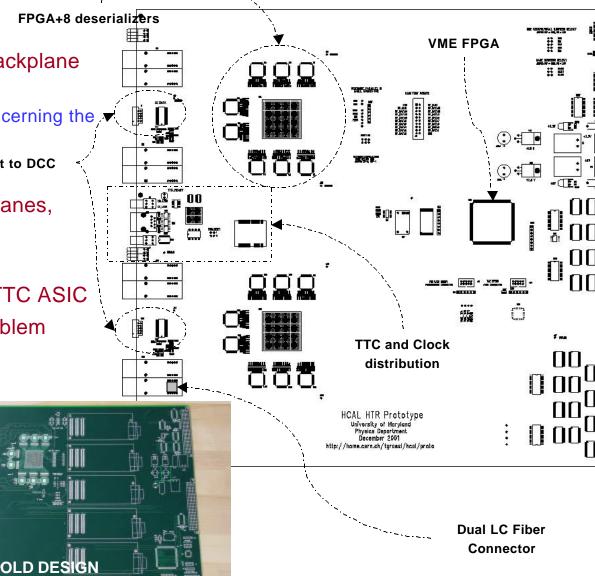
- Move to 1.6 Gbps costs engineering time •
- Firmware under development now •

HTR "Dense" Scheme

90 Board TriDAS

"Dense" HTR

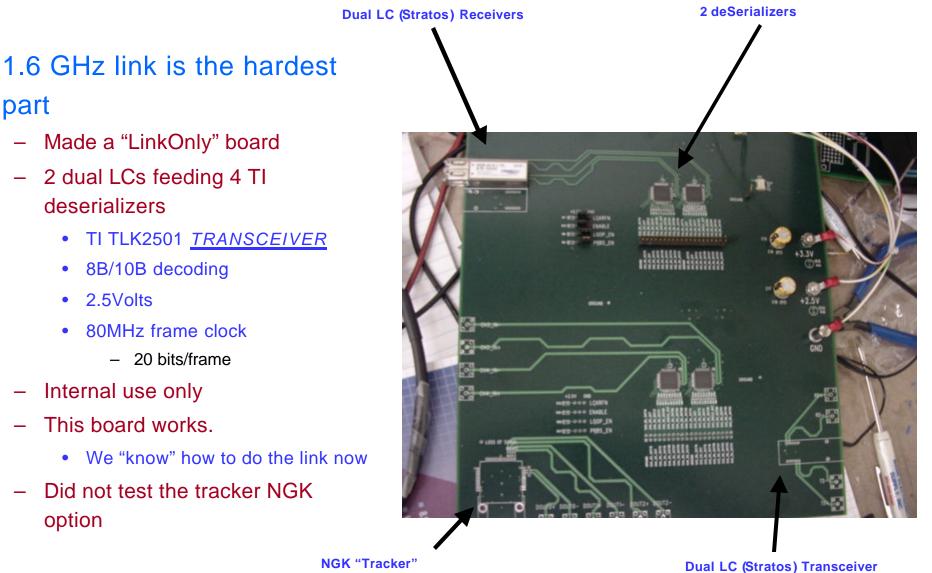
- Dense (48 channel) scheme is now the baseline
 - Money
 - Fewer boards!
 - Programmable logic vs. hardware
 - Avoid hardware MUXs
 - Maintain synchronicity
 - Single FPGA per 8 channels
 - Both L1/TPG and L1A/DCC processing
 - Next generation FPGAs will have deserializers built in
 - Xilinx Vertex-2 PRO and Altera Stratix announced
 - Saves \$500/board \rightarrow \$100k
 - ~20 connections to deserializer reduced to 1 connection at 1.6 GHz
 - Single clock would serve 8 deserializers
 - Probably won't get to have any of these chips until summer 02....schedule may not permit
 - We will keep our eye on this
 - 48 channels x 18 HTR x LVDS Tx to DCC exceeds DCC input bandwidth
 - So, need 2 DCC/crate (but fewer crates)


Prototype Status

- From SLB mezzanine cards to Backplane aux card
 - Solves mechanical problems concerning the large cables to Wesley

Out to DCC

- 1.6 GHz link
 - Wider traces, improved ground planes, power filtering, etc.
 - Deserializer RefClock fanout
 - TTC daughterboard changed to TTC ASIC
 - Fixed TI deserializer footprint problem
 - **Clocking fixes**
- Next iteration estimate
 - Submit in 2 weeks
 - Stuffed and returned
 - by April 1



part

_

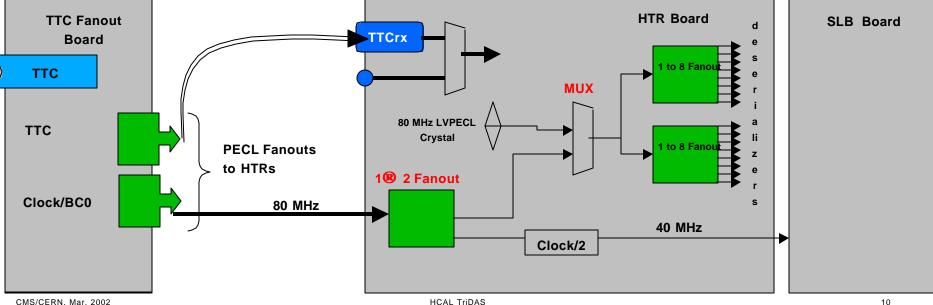
Current Hardware Status HTR

•

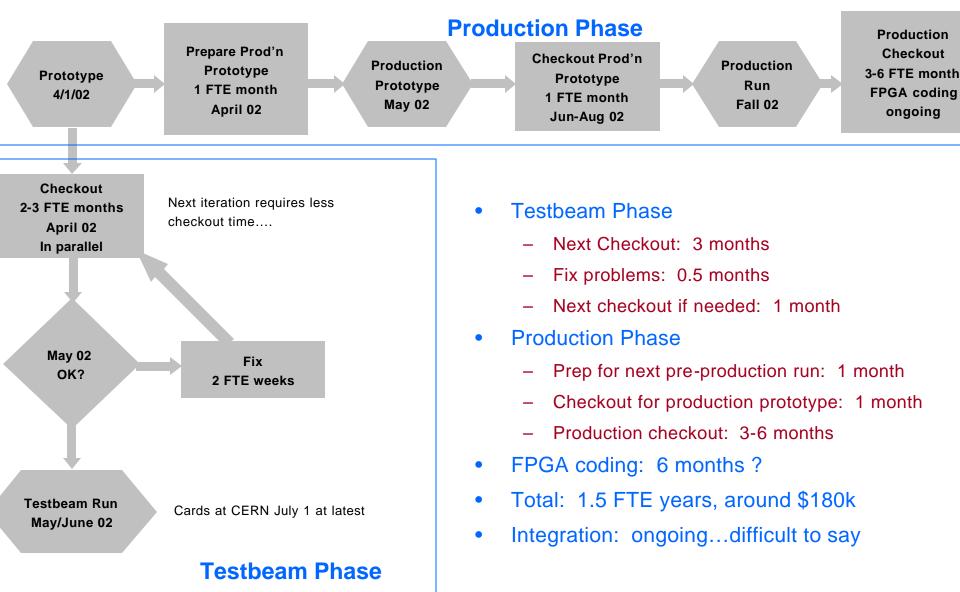
HTR Issues

Optical link

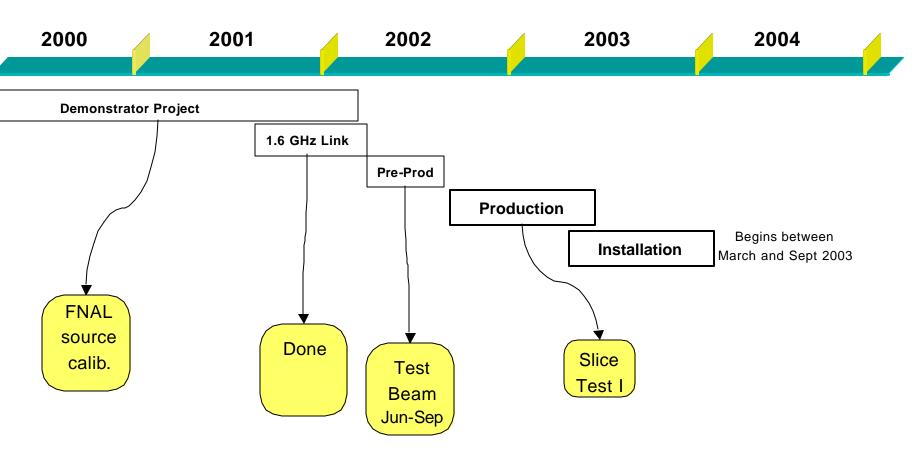
- Stratus LC's work well, available, not very expensive, probably will get cheaper.
- "Tracker solution"? We think no...this option appears to be dead.
 - NGK/Optobahn not responsive
 - Time scales for HTR is this summer
 - Tracker group has kept us at arms length with respect to vendors
 - Anticipate much ado about getting quotes and signing orders schedule risk is too great
 - Savings is approximately \$50/channel (\$150k overall)
 - Expect LC's to get cheaper...will the NGK?


Clocking

- Jitter requirements are surprising refclk needs to be 80MHz ± ~30kHz to lock and stay locked.
 - This is because we are using a Transceiver, not a Receiver
 - TI does not have a Receiver this is Gigabit ethernet, so it's meant for 2-way
 - We can implement in 2 ways
 - Onboard crystal
 - PECL clock fanout
 - Will have both for next iteration, board that will be in the testbeam summer '02


HTR Clocking

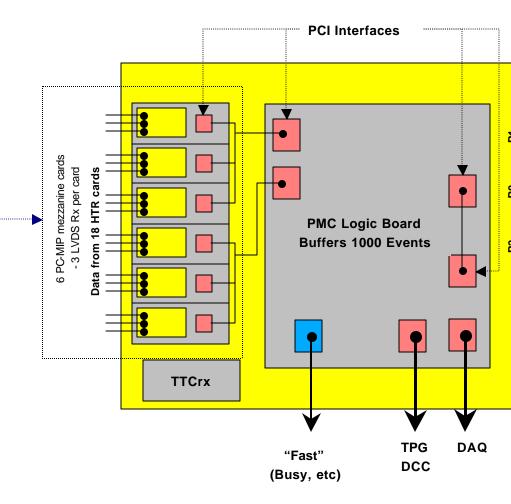
- TTC provides input clock for the VME crate modules.
- Clocks needed:
 - DCC not critical
 - HTR:
 - Deserializers (16) need 80MHz clock with ~40ps pkpk jitter •
 - TPG transmission needs 40MHz clock with ~100ps pkpk jitter •
 - Pipeline needs 40MHz clock synchronous with data transmission
 - Options eliminate: •
 - 80MHz crystal (eliminates 1 Mux)
 - TTC Fanout Board clock to deserializers (eliminates 1[®] 2 Fanout and 1 Mux)
 - We will see what we learn at the Testbeam '02



HTR Schedule

Current Project Timeline

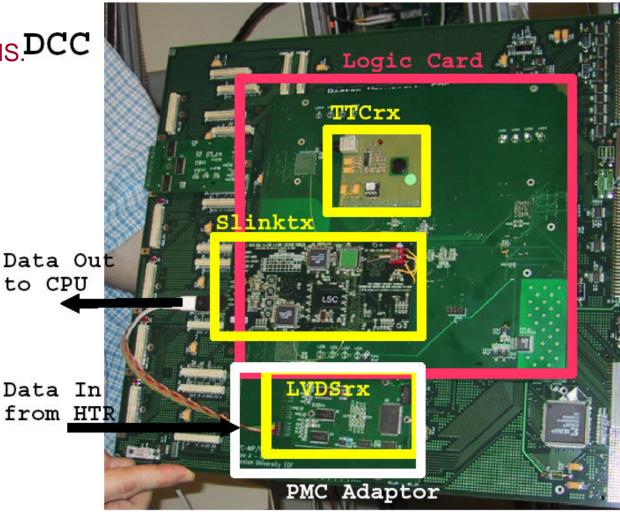
STILL SOME UNCERTAINTIES...


- Vertex-2 PRO or Altera Stratix
- Global clocking scheme
- Clock jitter

DATA **C**ONCENTRATOR **C**ARD

therboard/daughterboard design:

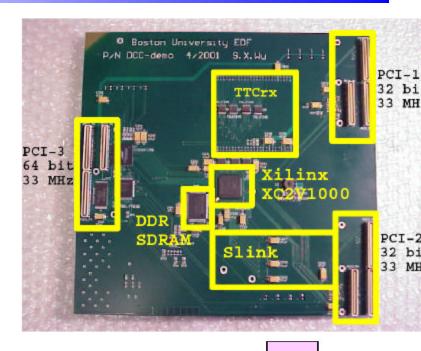
- VME motherboard to accommodate
 - PCI interfaces (to PMC and PC-MIP)
 - VME interface
 - In production (all parts in house)
- PC-MIP cards for data input
 - 3 LVDS inputs per card
 - 6 cards per DCC (= 18 inputs)
 - Engineering R&D courtesy of D
 - In production (purchasing underway)
- Logic mezzanine card for
 - Event Building, Monitoring, Error-checking
 - S-Link64 output to TPG/DCC and DAQ
 - Fast busy, overflow to TTS
 - Giant Xilinx Vertex-2 1000 (XC2V1000)
- Transmission to L2/DAQ via S-Link

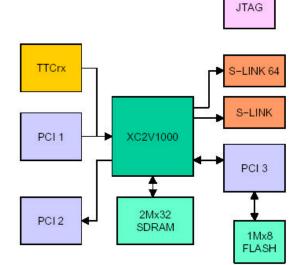


Current Status DCC Motherboard

VME Motherboard

- Production starting
- 5 prototypes in hand for CMS.DCC
- All production parts bought
- PCB / Assembly order
 - ~ May '02

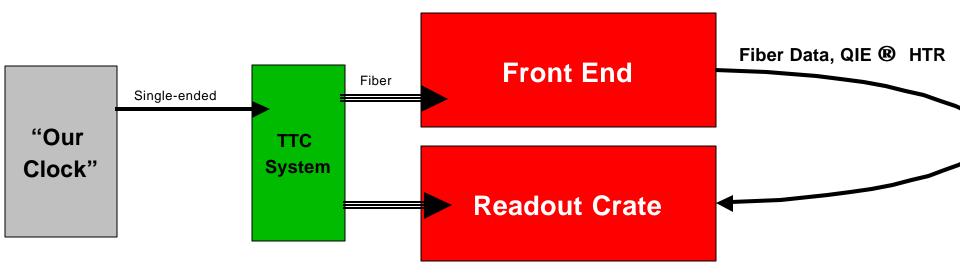




Current Status DCC Logic Board and LRBs

PC-MIP Link Receiver

- Design approved except for change to RJ-45connector for inks
- Final prototype PCBs on order
 Production parts on order
- Production to start ~ June '02
- Logic Board final prototype
 - Decisions about S-Link
 Data Width / Card location
 - Expect final PCB design late CY 2002
 - Production in early 2003; driven by final decisions about functionality


- Fanout of TTC info:
 - Both TTC channels fanout to each HTR and DCC
 - Separate fanout of clock/BC0 for TPG synchronization
 - "daSilva" scheme
- Single width VME module

Testbeam Clocking

The only sane thing is to run the entire setup from a single high purity clock

- TTC input is single-ended LIMO.
- Source of "our clock" had better be clean.
- Chris will make us a 6U VME board
 - 35MHz crystal, care taken on transmitter. Will be in same VME crate as TTC
 - Can also put 30MHz, 37MHz, 40MHz...jump selected for playing around
- We will have the same high quality clock for Tx and Rx
 - HTR will have Crystals as a backup just in case....

- Not much change in DCC, VME Rack, VME Crate unit costs HTR cost increases by ~7%
 - \$320/board due to:
 - \$100/board due to quality requirements on traces (need constant impedance lines)
 - \$100/board for clock circuitry (Xtal, PECL stuff, etc.)
 - \$120/board for LC's (old estimate was based on quads, but we're going with duals)
 - Addition of HTR backplane card to support 48 channel HTR net savings
 - Cost decreases will surely come, but we don't know now.
 - LC's will only go down in price
 - TI deserializers are transceivers, receivers will be cheaper, TI will have to compete...FPGAs w/deserializers....
- HRC replaced by TTC Fanout + Bit3 + Crate CPU
- Mapping really constrains us
 - Some HTR will not be full of SLBs
 - Still requires 1 SLB transition card per HTR
 - Some crates will not be full of HTRs
 - Original cost had up to 18 HTR/crate, now it's around 14
 - Results in a few more crates than 9/01 cost estimate

Cost to Completion – M&S (cont)

Item	9/01		3/02			
	Unit	Total (\$k)	Unit	Total (\$k)	Comment	
	\$4.8k	\$1043	\$5.1k	\$1128	Includes LED cards plus 7% increase per card	
Crates	\$5.5k	\$ 72	No change	\$88	3 more crates from mapping considerations	
Racks	\$3k	\$ 18	No change	\$ 24	2 more racks, 2 crates/rack	
	\$5k	\$ 150	No Change	\$ 180	3 more crates, 2 DCC/crate	
s SLB+TPG es+SLB_HEX	\$100+\$100+\$0	\$ 110	\$100+\$100+\$300	\$ 176	SLB transition boards, already added to 2.1.7.15	
2	\$5k	\$ 85			Old project, changed to	
C Fanout			\$1.5k	\$ 40	Current UIC project, based on best guess for Fanout	
3 (VME+PCI s + fiber)			\$3.8k/crate	\$ 61	Not accounted for in HCAL TriDAS Lehman 2000	
ck Computer			\$2.9k/comp	\$ 23	Not accounted for in HCAL TriDAS Lehman 2000	
AL:		\$1478	\$1720		\$242k difference:HTR additions:\$85kSLB transition card:\$66k addedBit3/Rack Computer:\$84k never costed before?More Racks/Crates:\$52k due to mappingTTC Fanout:\$40k change of taskTotal\$85k HRC change of task	

—

Costs as of April 2001....

12 fibers/card, 3 channels/fiber

Lehman 01 slide

Total	\$2,710	X2 = \$5420 v. \$5120 without reductions
Misc (FIFOs, MUX, VME, etc)	\$400	TTC/clock circuitry since then
Connectors (no P3!)	\$200	
Vitesse/LVDS	\$ 50	
Deserializer receivers	\$430	8 vs. \$580 for 16
Fiber Receiver (PAROLI)	\$480	\$640 for 16 dual LC's
Fab & Assembly	\$200	Tullio doesn't believe it. Up to \$400
PC Board (from D0 project)	\$200	Tullio doesn't believe it. Up to \$500
FPGA (4 per card)	\$750	4x\$750=\$3k

Test stands never accounted for

- \$29k/crate total
- Proposal calls for 3 test stands \$87k total
 - 1 @ FNAL
 - 1 @ UMD/BU/Princeton
 - 1 @ CERN
 - This one used for testbeam and then moved to USCMS electronics area

"EM Trigger"

- Rohlf estimates 1 crate (\$5.5k), 2DCCs (\$10k), 12 HTR (\$62k)
- If we need additional Bit3 and CPU, it's another \$6.7k
- Total would be \$84k

Testbeam

- We will be producing HTRs that may, or may not, be final versions.
- If so, no problem. If not, additional costs
- Estimate around 6 HTR including 2 spares, comes to around \$40k

1 VME crate	\$5,500
1 VME Rack Computer	\$2,900
1 Bit3 w/fiber	\$3,820
2 HTR	\$10,252
1 TTC fanout	\$1,500
1 DCC	\$5,000
Total	\$28,972

Cost to Complete – Effort BU/UIC

Difficult to predict

- UMD: 1.5 FTE years (previous slide)
- BU 1.5 FTE years
 - Testbeam extra work: 3 FTE months
 - Finish DCC prototype (FPGA code): 4 FTE months
 - DCC "final prototype": 6 FTE months
 - SLINK64, 2-slot or Transition board...
 - Test engineering: 2 FTE months
- "UIC"
 - 1 FTE engineer, should be finished with TTC fanout by Fall 02
 - FNAL might want to keep him around to help with system clock issues

Project Status Summary

HTR (Maryland):

- 6U Demonstrator done
- Testbeam Effort
 - OK if no disasters
 - But...integration is going to be a big effort and will interfere with Production effort
- Production Effort
 - FPGA coding ongoing
 - Will work on HTR in parallel w/testbeam effort
- TTC fanout
 - First board assembled and tested
 - Next iteration underway Will be ok for testbeam
- Crate CPU issues
- Chris Tully is playing with Bit3 and DELL 3U rack mounted dual CPU
 DCC
 - 9U Motherboard done., PCI meets 33MHz spec, Production run beginning
 - Link Receiver Cards Built, tested, done.
 - Logic board
 - Underway. Only issues are FPGA Coding, Backplane card vs. double-width