

HCAL TPG and Readout

CMS HCAL Readout Status CERN

Drew Baden

University of Maryland

June 2002

http://macdrew.physics.umd.edu/cms/

see also: <u>http://tgrassi.home.cern.ch/~tgrassi/hcal/</u>

And <u>http://tgrassi.home.cern.ch/~tgrassi/hcal/CMSweek0301.pdf</u> for TPG latency discussion

HCAL FE/DAQ Overview

Readout Crate Components

Baseline 48 channel HTR

Current Status HTR

- HTR "Testbeam Prototype" now under test
 - Will be used in 2002 testbeam effort
 - Half functionality implemented:
 - 1 FPGA Firmware in progress
 - 8 Deserializers Tested ok.
 - TLK2501 fussy (30-40ps pkpk jitter)
 - Experience: the closer Tx and REFCLK are to other, the easier it is to link
 - DCC output Tested ok.
 - External clock input Tested ok.
 - VME Tested ok.
 - 1.6 GHz link working
 - Tested at UMD and at FNAL with real FE
 - Clocking control issues and firmware shakedown get main consideration
 - System tests underway
 - Firmware written, all components under test
 - Full front-end to DCC path tested and working
 - VME path tested and working
 - Debugging, shakedown, etc.
 - ~10 more boards assembled by 21-JUN

Dual LC Fiber Detector

Xilinx XCV1000E FPGA

Data Concentrator Card

- PCI Motherboard design
 - All logic implemented on daughterboards
 - All I/O through daughterboards
 - Standard 33MHz PCI buses as interfaces
- Motherboard design: DONE
 - Motherboards are in production
 - 5 prototypes are in hand for CMS
- Receiver daughterboards: DONE
 - 10 2nd generation prototypes being built for testing
- Logic motherboards: DONE
 - 2 prototypes in hand, waiting on final specs on DA link
 - Firmware for logic boards under test
- No problems with this card
 - Technical, cost and schedule are all very good

DCC Prototyping Plans

- Bandwidth tests and optimization
 - 240 MB/s vs. 264 MB/s max, maybe some gain still possible
- Testing of DAQ event builder
 - DCC + 2 HTR working
 - This tests event building in DCC
 - Integration proceeding now, increasing in sophistication as we proceed.
- Implement monitoring functions
 - Lots of "spy" buffers, access over VME, etc.
- Tests of TTC input
 - Timing requirements not crucial for DCC since it is downstream of Level 1 accepts
- Integration with HTR
 - Ongoing now
 - To be ready for testbeam effort

HCAL Fanout Prototype Board

- Fanout card handles requirement for
 - TTC fanout
 - L1A/BC0 fanout for SLB synch
 - Clock cleanup for low jitter REFCLK
- TTC Fanout
 - Each HCAL VME crate will have 1 TTCrx for all HTR cards
 - TTC signal converted to 120MHz LVDS, fanout to each HTR and over Cat5 w/RJ45
- L1A, BC0, CLK
 - Fanout using 40MHz LVDS
 - CLK is just for test/debugging
- Clock Cleanup
 - Cleanup the incoming 80MHz TTC clock using VCXO PLL
 - Fanout to HTR
- Status
 - Prototype board checked out ok
 - 3 production boards being checked out now.
 RMS jitter < 10ps after VCXO

8

Status HCAL/TriDAS Testbeam

- Electrical:
 - Front-end \Rightarrow HTR
 - Tests fiber link, especially clocking quality
 - Current scheme works, but we will learn more in battle
 - Plenty of redundancy built into the testbeam clocking system (see below)
 - $HTR \Rightarrow DCC$
 - Tests LVDS channel link and data format on HTR
 - Tests LRBs on DCC and DCC PCI busses
 - So far no problems seen
 - $HTR \Rightarrow VME$
 - Tests HTR VME firmware and internal data spy buffers
 - Tests successful, no problems forseen here (this is "easy")
 - Clock fanout
 - Tests fanout board's PLL/VCXO circuit and resulting jitter specs
 - <10ps RMS observed, corresponding BER for front-end data into HTR to be measured

9

Status HCAL/TriDAS Testbeam (cont)

• Functionality

– Firmware

- HTR
 - Input FE data into SPY fifo out VME tested ok, verification underway
 - Input FE data into DCC tested ok, verification underway
 - TTCrx chip not yet tested next few weeks
 - Ability to handle L1A correctly not yet tested next few weeks
- DCC
 - LRBs ok
 - 2 33MHz PCI busses ok
 - Event building (needs 2 HTR) ok so far, verification underway
- Integration
 - $FE \Rightarrow HTR \Rightarrow VME$ tested and working
 - Shakedown underway...
 - $FE \Rightarrow HTR \Rightarrow DCC$ tested and working
 - Next tests will take data from DCC to CPU over S-LINK
 - $FE \Rightarrow HTR \Rightarrow DCC \Rightarrow SLINK \Rightarrow CPU \Rightarrow disk$
 - With L1A, will use LED signal into QIE to test next few weeks
 - Source calibration is via "streaming mode" histograms will be made inside HTR FPGA

Clocking

- Issues:
 - LHC beam collisions every 25 ns, large <n> necessitates pipeline
 - Data is transmitted from front-ends @ 40MHz over serial links
 - These links embed the clock in the data
 - Jitter on "frame" clock (1 frame = 20 bits) gets multiplied by "bit" clock
 - 80MHz frame clock, 1600MHz bit clock
 - Many clocks in HTR board
- Best to describe in terms of "Tight" and "Relaxed" jitter requirement:
 - Tight jitter spec: 2 clocks needed
 - 1. Reference clock for fiber deserializer chips needed to lock to incoming 1.6 Gbps data
 - 80MHz with 30-40ps pkpk max jitter to maintain lock
 - 2. Provide transmitter clock for SLB output
 - 40MHz with 100ps pkpk max jitter at input to Vitesse transmitter
 - Loose jitter spec: 1 clock needed
 - TTC-derived system clock for HTR logic used only by FPGA to maintain pipeline
- LHC clock comes into each VME crate and is fanned out using low jitter techniques to each HTR card

Clock Implementation - HTR

- Tight Jitter clock:
 - Use same clock for both 80MHz Serdes REFCLK and 40MHz SLB Tx clock
 - DFF used to divide 80MHz into 40MHz
 - Clock will be implemented in 2 ways:
 - Incoming from Clock Fanout Board
 - PECL fanout, convert to TTL at input to Serdes
 - Onboard crystal for debugging
- Loose Jitter clock
 - Use TTC clock for 40MHz system clock
 - Clock will be implemented in 3 ways on HTR:
 - TTC clock from fanout board
 - External lemo connector
 - Backup input from fanout board
- 2 RJ45 connectors with Cat 5 quad twisted pair connectors
 - 1st one has incoming low jitter 80MHz clock from fanout
 - 3.3V PECL on 1 pair, other 3 pair grounded
 - 2nd one has:
 - 120MHz LVDS TTC from fanout board on 1 pair
 - 40MHz LVDS L1A, Backup clock, and BC0 on other 3 pair

HTR/Clock Implementation

Testbeam Clocking Scheme

- Single clock source: 6U Princeton Clock Board
 - Source of clean 40MHz clock for TTCvx
 - Redundant 80MHz clock
- TTCvx
 - Fiber output TTC

- UIC Clock Fanout Board
 - Fanout "clean" 80MHz PECL clock
 - Fanout TTC to all HTR via LVDS
 - 80MHz clean clock redundancy
- HTR
 - 80MHz clean clock for Serdes REFCLK redundancy
 - 40MHz TTC sysclock, L1A and BC0

HTR Firmware Block Diagram

• In progress...

HTR Firmware - VME

- All firmware implemented using Verilog
 - Non Trivial firmware effort underway
 - 1 engineer, 1 EE graduate student, 1 professor
- VME path to HTR uses Altera FPGA
 - BU is developing
 - Based on a "LocalBus" model
 - All devices are on LocalBus
 - 2 Xilinx FPGAs + 1 Altera
 - Flash eeprom (1 per Xilinx) for config over VME
 - TTC (trigger timing control)
 - 6 SLB daughterboards
 - VME and LocalBus implemented
 - VME kept simple no DMA, interrupts, etc.

HTR Firmware – HCAL functionality

- Firmware for this consists of 2 paths:
 - Level 1 path
 - Raw QIE to 16-bit integer via LUT
 - Prepare and transmit trigger primitives
 - Associate energy with crossing
 - Extract muon "feature" bit
 - Apply compression
 - Level 2 path
 - Maintain pipeline with L1Q latency (3.2µs)
 - Handle L1Q result
 - Form energy "sums" to determine beam crossing
 - Send L1A data to DCC
- Effort is well underway
 - 1 FTE engineer (Tullio Grassi) plus 1 EE graduate student plus 1 professor
 - Much already written, ~1000 lines Verilog
 - Much simulation to do
 - Focusing now on Level 2 path functions necessary for testbeam

TPG Output to Level 1

- HTR cards will send data to Dasilva's SLB boards
 - Quad Vitesse transmitter, 40MHz clean clock input (100ps jitter)
- Mechanical considerations dictated design of 6-SLB transition board (SLB_HEX)
 - Baseline scheme: 6-SLB transition motherboard (SLB_HEX)
 - HTR will send 280 MHz LVDS across backplane
 - SLB_HEX will fanout 40MHz clean clock and have LVDS-to-TTL drivers
- 6 SLB=48 TPG matches HTR "magic number" 3 HCAL channels/fiber input
- Risks: lots of LVDS, but Dasilva is confident!
- Alternate schemes under consideration
 - 1. Move SLB's to HTR
 - Mechanically challenging heavy TPG cables
 - This is our main backup
 - 2. Build 9U "super" SLB motherboard
 - Not sure if this helps....
 - 3. Build 6U crate of super SLB motherboards
 - Same thing....

Possible Changes to HTR

- Change to newer Xilinx
 - Current chip XCV1000E
 - Vertex 2 will
 - Advantages:
 - Half the cost, twice the memory
 - Almost pin compatible
 - Risks:
 - Issue of Block Ram cells
 - Vertex 2 PRO (0.13µm)
 - Advantages
 - Even lower cost
 - Built-in serializers, mechanical long term M&O advantage
 - » Fewer I/O pins required, data arrives serially differential @ 1.6 GHz
 - Internal clock distribution.
 - Built in Motorola 300MHz PowerPC 405
 - » We will surely find a use for this!
 - 18-bit hardware multiplier per block ram
 - Risks:
 - This is a new part we are working with the vendors to get engineering sample
 - » Estimates for bulk orders to begin Nov 2002
 - Pins might not be enough for us

We will evaluate options this summer – Vertex 2 most likely

	Cost		Block Ram		Pins	
Chip	ltem	Saved	Bits	Cells	I/O	Total
XCV1000E	\$1200 ¹		384k	96	660	900
XC2V2000	\$ 600 ¹	\$300k	1008	56	624	896
XC2VP7	\$ 420 ²	\$500k	792	44	396	896

1. Deserializers \$500/card separate

2. Deserializers built-in

Possible Changes to HTR – TPG/TTC

- TPG:
 - Baseline scheme: LVDS over backplane at 280 MHz
 - Advantages:
 - Level 1 cables are 20m impedance controlled for 1.2Gbps transmission
 - » These are quite thick!
 - Backplane cards allow mechanical stability to be controlled
 - Note: Carlos Dasilva, already confirms baseline scheme works
 - Risks:
 - Noise and BER increase to unacceptable levels
 - Backup solution: move SLBs to back to HTR motherboarstrain relief on front panel
 - Advantages:
 - No backplane transmission, easy to implement electrically
 - Saves 1 or 2 buckets in latency.
 - Risks:
 - Would necessitate complete rerouting of HTR board schedule issue.
 - Evaluate in September

Adding HO to RPC Trigger

- Considerations:
 - Requirements
 - Trigger would only need 1 bit per HCAL tower
 - RPC trigger accepts 1.6 Gbps GOL output
 - Technical how hard will it be to do this?
 - 48 channel HTR means 48 bits/HTR to RPC trigger
 - Each SLB twisted pair sends 24 bits @ 120MHz
 - Entire output could go via a single SLB
 - Can the SLB output be modified to drive fiber?
 - Can the RPC trigger receiver be modified to accept 1.2 GHz?
 - Under study....will try to come up with a decision this month
 - Mapping
 - HCAL mapping is very constrained (ask Jim Rohlf!)
 - Can we map our towers/fibers to the RPC?
 - Maybe easy for ϕ
 - Maybe hard for η
 - Rohlf to study this....

Current HCAL/TriDAS Project Timeline

