Drew Baden, University of Maryland
For the HCAL Group:

• Boston University
• Fermilab
• Princeton University
• University Maryland
Overview

S-Link: 64 bits @ 25 MHz

READ-OUT Crate
- 1 PC Interface
- 12 HTRs
- 1 Clk board
- 2 DCC

20 bits @ 80 MHz = 1.6 Gbps FIBERS

FRONT-END Readout Box (RBX) On detector

Fibers

21-Jun-2005

HCAL TriDAS
HCAL VME Crate

- **VME Bridge module (CAEN)**
 - Configuration and monitoring over VME
- **Fanout module**
 - Receives TTC stream
 - Clones and fans out timing signals
 - Global HCAL synchronization w/RCT
- **HCAL Receiver & Trigger (HTR) module**
 - FE-fiber input, linearizers, filters...
 - Maintains pipeline
 - TP output via SLBs to RCT
 - DAQ output of raw/TP data to DCC
 - Spy over VME for monitoring
- **Data Concentrator Card (DCC)**
 - Inputs from HTRs
 - Output to DAQ
 - Generates busy if needed
 - Spy output via VME
HCAL Receiver & Trigger (HTR) (University of Maryland)
1. Receive HCAL data from front-ends
 • Synchronize optical links
 • Data validation and linearization
 • Form “trigger primitives” and transmit to Level 1 at 40 MHz
 • Pipeline data, wait for Level 1 accept
 – Upon receiving L1A:
 » Zero suppress, format, & transmit raw data to the concentrator (no filtering)
 » Transmit all trigger primitives along with raw data
 » Handle DAQ synchronization issues (if any)

2. Calibration processing and buffering of:
 • Radioactive source calibration data
 • Laser/LED calibration data

3. Support a VME data spy monitoring
HTR Schematic

- All I/O on front panel
 - Fiber digital data
 - Copper output to L1 and DCC
- FPGA logic
 - Fully programmable
HTR Rev 4

- Dual-LC O-to-E
- VME
- Deserializers
- Xilinx XC2V3000-4
- Stiffeners
- TTC mezzanine
- 6 SLBs
- 21-Jun-2005 HCAL TriDAS 7
HTR Status

• Goal: produce 270 Rev 4 HTRs by end of Summer 05

• Current status:
 – PCB manufacture complete
 – Boards are now being assembled, about 20/week
 – Checkout at Maryland, shipping to CERN
 • Currently about 70 boards at CERN
 – Will have plenty of HTRs to meet near term work needs
 – Will be ready for “Ready for Crates” this fall/winter
HTR Production

- Complete set of tests developed and being used at Maryland
- HTRs will be labeled, tested, cataloged, sent to CERN
- Will test at Maryland:
 - Basic operation (FPGA, Localbus, VME)
 - SLB connectivity
 - Will not test quality of clocking…
 - 10^{-12} BER optical test on all channels
 - Will use RBX if it arrives…otherwise will use emulator
Trigger Primitive Generation

- TPG firmware has been well simulated for ~2 years

150 GeV pion beam in HE

- TPG test performed during synchronous running in Sept 2004
 - Trivial identity LUTs for linearization
 - Form TPGs using simple peak algorithm
 - Readout raw data with corresponding TPG
 - Compare in time
HTR Firmware

- Firmware additions for latency issues
 - Asynchronous fifo changes from incoming clock phase to common
 - Will monitor fifo latency and report over VME and to DCC
 - Reset of fifo over VME
 - Will also reset fifo after loss-of-link recover (via FSM)
- Implemented data injection via VME into RAM
 - Will be useful for Level 1/HTR integration tests
- Work on zero suppression in progress
- Not yet working on the variety of summing for TPGs
 - HB vs HB/HE overlap vs HF
- Histogram firmware for HCAL sourcing done
- Battle tests – will be among many things tested in “slice” 06
Sources of variable latency:

- Each TTCrx has variable latency ~20ns
 - Varies chip-to-chip, voltage and temp dependent
- TLK2501 has variable latency
 - $76 < \Delta T < 107$ bit times, $3 < \Delta T < 6$ frames (20bit frames @ 80MHz)

Plan to track this:

- HCAL Front-end tools
 - Fast laser calibration pulses
 - TTC BC0 sent to FE, encoded into data stream
- HTR tools
 - SLB histograms

Beam in only 1 bucket at some time would be good

- Verification…
Activities in 904

- Test each HTR
 - Populate each card with 6 SLBs
 - Test with RCT receiver board
 - Validate clock, synchronization, quality…

- Populate VME crates with HTRs and store until November
 - Will have to wait for the SLBs
 - Current status has SLBs arriving en masse ~May?

- System testing, integration, commissioning…
 - We should push hard on SLB/RCT testing so that SLB firmware settles
HTR SLB Testing

- Maryland “sandwich” board
 - HTR and RCT Receiver are the “bread”
- Used to host RCT receiver to be able to test each link
- Status:
 - Prototype validated with RCT Receivers, no problems seen
 - Ready to use in bat 904
Fanout Card
(Princeton University)
Fanout Card

• All TPs from ECAL and HCAL associated with each LHC BX have to arrive at the RCT simultaneously
 – SLB mezzanine cards used by both ECAL and HCAL do this
 – But…SLB needs a global synchronous signal
 – Thus the need for a synchronous fanout module

• Built by Jeremy Mans and Chris Tully @ Princeton

• To be used for both ECAL and HCAL to implement synchronization
 – RX_CLK and RX_BC0 for SLBs
 – Also TTC stream and QPLL cleaned 80MHz clock for deserializer reference
Timing signals - Overview

Low-skew distribution tree for global BC0 and CLK (RX_BC0/RX_CLK)

Rack-to-Rack CAT 7

One fanout board per crate

HCAL VME Crates

TTC Minicrate

ECAL
RX_CLK and RX_BC0 Path

- Path is 3.3V differential PECL on Cat6 quad twisted pair
- RX_BC0 is generated from the FPGA decode of TTC broadcast on the global card

Diagram:
- TTC fiber
- RX_CLK, RX_BC0
- Cat6
- Fanout board in Global-mode
- Fanout board in Crate-mode
- TTCrx
- CLK40_Des1
- 3.3V CMOS
- QPLL
- FPGA
- RX_CLK
- RX_BC0
- TTCrx
- QPLL
- FPGA
- Max skew on HTR traces is 0.7 ns.

Spec is:
Skew < ±6 ns across HCAL and ECAL
Princeton Fanout Module
Fanout Status

- All PCBs remade with QPLL power fix
- Boards were assembled and are all being tested now
 - Initial tests were great – QPLL locked right away, stable…
- Should be able to ship full contingent to CERN in July
- Reminder: This will be used for both ECAL and HCAL
Data Concentrator Card (DCC) (Boston University)
DCC Status

- This card has been stable for several years
 - Tested under battle (see next slide)
 - Total number needed:
 - 32 for VME crates (2 per crate)
 - 6 spares
 - 12 for test stands

- Production status
 - 20 boards produced and ready for use
 - 4 already in the field and used extensively
 - Remaining 30 boards to be finished by the end of Sept 05
 - Waiting on parts…
HTR-DCC Testing

- **High rate tests completed in January 2005**
 - Ran at L1 trigger rules spacing (1 in 3, 22 in 2 orbits, etc…)
 - Equivalent to 30% occupancy, 7 samples per channel
 - Also ran at 200kHz with estimated 2xzero suppress size
 - Same event size – 4k fragments
 - Note: 20 time samples at full occupancy we saw the link backup as expected
 - Empty events seen, and after buffers flushed saw full events again
 - HTR/DCC link properly recovered!
 - Readout test with 128 consecutive events worked well
 - Bottom line
 - No problems with DCC as is, looks good to meet 100kHz 15% occupancy 7 time samples per channel

- **Ongoing firmware development**
 - DCC:
 - Improve error handling – nothing done there recently
 - New DCC libraries using HAL working fine thanks to Fernando
HCAL in general
HF Luminosity

• **Who:**
 – Maryland (Baden+Grassi)
 – Princeton (Marlow+Tully+asst prof)
 – Minnesota (Mans)
 – Virginia (Hirosky)

• **What:**
 – Produce instantaneous luminosity outside of DAQ path
 • No requirement on triggers, partitions, etc
 – Targets:
 • LHC machine
 • CMS “Luminosity database”
 • Control room monitoring
Luminosity Requirements

- 3654 bunches per orbit, 80% with beam

- Baseline proposal:
 - For each bucket calculate…
 - Sum E_T over the 48 channels per HTR
 - Number of towers above E_T thresholds (2 thresholds, 3 levels + active)
 - Energy in HF contained in 1 bucket….so TPG-like integration over buckets not needed
 - Send this info to daughter card on HTR every bucket
 - Daughterboard will keep histogram
 - R&D needed:
 - Requirements defined
 - Monte Carlo implementation
 - Live time considerations (hardware, software…)
 - Other
Hardware Implementation

• Prototype general purpose SLB replacement board built
 – Uses a single SLB-site
 – Embedded processor can store histogram over “n” orbits
 – Periodically send data to some computer using 100BaseT ethernet

• Will also be used for
 – Standalone triggering with Jeremy’s trigger board for SLICE
 – Testing SLB → Wisconsin Vitesse receiver link for production and installation
 – Can also be used for HO trigger with modest changes to above

• Status
 – Prototype produced, ethernet works, all ok
 – Lots of firmware development underway
 – Would like to try a significant test by end of 2005
Commissioning Tests

- Can we self trigger at P5 possibly this summer?
 - Yes using previously described mezzanine
 - Has RJ45 output specifically for H2 trigger board
 - Can cascade into simple 6U majority logic board Jeremy Mans built
 - New firmware for both HTR and mezzanine card tested
 - Scheme:
 - Use TPG path firmware, load LUTs correctly
 - Send 1 “muon” bit per TPG to sandwich board
 - Majority logic, send 1 bit to trigger board
 - Trigger board forms majority logic for trigger
Latency

- Definition: from BX to input to RCT
- Budget: 46 clock ticks
- Current best guess:
 - We are on the edge with almost no contingency
 - NOTE: HTR firmware not yet scrubbed…

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>4+3+2</th>
<th>18</th>
<th>12</th>
<th>4</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>HB</td>
<td>1</td>
<td></td>
<td></td>
<td>18</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>HE</td>
<td>1</td>
<td>4+3+2</td>
<td>18</td>
<td>12</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>HF</td>
<td>3</td>
<td>4+3+2</td>
<td>18</td>
<td>12</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

CCA can absorb some of the extra phase

46 clocks = 1,147.7 ns
Support Slides
Optical Attenuation and BER

“Typical setup”
- VECSEL transmitter, coupled to fiber via LC connector
 - Not locked, but fixed in place
- Fiber to LC to 8-way MTP male on HTR front panel
- Single fiber to LC connector for connection to STRATOS receiver

Output power:
- VECSEL advertised to put out 500µW (-3dBm)
 - Terry Shaw measured 570µW for a particular VECSEL
- UMD uses STRATOS LC transmitter
 - Advertised output 100-400µW (-4 to -10dBM)
 - Measured to be 90µW for a particular STRATOS
 - About 6dB below what we will use in CMS
 - Working on FE emulator now using GOL+VECSEL...

Attenuations measured:
- At each LC connector, 10 – 50% (0.5 to 1.5 dB)
- At MTP connector, same thing (.75dB advertised)
- Fibers are about ¼ dB per 100m
What do we need at the receiver to maintain link?
- Did a series of measurements with known attenuator
- Varied attenuation, looked at:
 - BER
 - TTL “signal detect” (SD) signal provided by Stratos part
- Found:
 - SD signal goes away when power is below about 2\(\mu\)W
 - Measured 1.5\(\mu\)W but accuracy of meter is probably \(\pm 0.2\mu\)W
 - BER climbs very fast right at this shoulder
- NB: achieved BER\(<10^{-15}\) with multiple fibers in parallel with crystals
Optical Attenuation (cont)

- Input power required to maintain link:
 - Measured failure for power < ~2\(\mu\)W (-33dBm)

- Power output by VECSEL:
 - 500\(\mu\)W output
 - Divide by 2 for digital averaging
 - Gives 250\(\mu\)W (-6dBm) output at source

- Expected Attenuations
 - Maximum of 8 couplings until the signal gets to the Stratos receiver on the HTR
 - 8x(0.5 - 1.5)dB = (4 – 12)dB
 - Add another ~1dB due to fibers

- Total power at inputs to HTRs:
 - -6dBm – (4-13)dB = -10 to -19 dBm
 - FNAL measured/calculated 7.3dB
 - Operating would be -13dBm

- We should have about 10dB margin
 - Probably more like 15dB
Longitudinal Separation Attenuation

- MTP connector ends are spring loaded into adapter
- Measured attenuation as a function of the separation
 - Separation should be ~0 if keys and adapters are working well
 - This should not be an issue for us (famous last words....)