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Abstract

These notes are based on five lectures given at the University of Utrecht in early 1996. My intention was to
introduce the subject of black hole thermodynamics starting at the beginning, at a level suitable for anyone
with a passing acquaintance with general relativity and quantum field theory. Although the approach
is elementary, several aspects of current research are discussed. The coverage of topics is very uneven.
Properties of classical black holes and both classical and quantum black hole thermodynamics are treated.
The selection and focus is determined by my idiosyncracies, time limitations, and an effort to illuminate
some topics that have not traditionally been emphasized. Vast amounts of interesting and important work
on the subject are not mentioned.

I am very grateful to the Institute for Theoretical Physics for the hospitality and support they have
provided during a very stimulating sabbatical year I spent there.
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Chapter 1

Black hole basics

1.1 What is a black hole?

1.1.1 Newtonian viewpoint

In Newtonian physics, the escape velocity from a spherical mass M of radius R satisfies 1
2v2

esc = GM/R, or
vesc =

√
2GM/R (independent of the mass of the escaping object, by equivalence of inertial and gravitational

masses). vesc exceeds the speed of light if R < Rs := 2GM/c2. The radius Rs is called the “Schwarzschild
radius” for the mass M . The general relativistic description will be given below.

1.1.2 Black hole types

• collapsed star: Rs(M¯) ∼ 3 km.

• collapsed star cluster: e.g. Rs(109M¯) ∼ 20 A.U.

• primordial black hole (hypothetical): e.g. Rs(1015 gm)∼ 10−13 cm. (Hawking temperature ∼ 10 MeV;
would finish evaporating today if born in early universe.)

Since M grows like r3 at fixed density, one can have a black hole at any density. For a solar mass the
critical density is a little above nuclear density. In fact, a neutron star of mass 1.4M¯ has a radius of about
10 km and a Schwarzschild radius of about 4 km, so it is rather close to the Schwarzschild limit. A black
hole formed from a billion stars in a galactic center can initially have an average density lower than that
of ordinary matter. Of course the stars will collapse together, and eventually reach much higher (in fact
infinite) density.

Is an elementary particle a black hole? No! Its Compton wavelength is much greater than its Schwarz-
schild radius. (For a proton, λ/Rs ∼ 1039.) At what mass are these two length scales equal? GM/c2 = h̄/Mc
when M is the Planck mass MP and Rs is the Planck length LP :

MP = (h̄c/G)1/2 ∼ 10−5gm
EP = (h̄c5/G)1/2 ∼ 1019GeV
LP = (h̄G/c3)1/2 ∼ 10−33cm

From now on I will use units in which c = 1, unless otherwise noted. Also h̄ and G are sometimes set equal
to unity.

1.1.3 Black hole metric

The line element for a spherically symmetric vacuum metric is most familiar in Schwarzschild coordinates,

ds2 = (1− rs

r
)dt2 − (1− rs

r
)−1dr2 − r2(dθ2 + sin2 θdφ2). (1.1)
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r=0 M 2M 3M 4M 5M

v= const.

Figure 1.1: Diagram of the positive mass EF spacetime, suppressing the angular coordinates, with constant r surfaces
vertical and constant v surfaces at 45◦.

collapsing
shell

Figure 1.2: Picture of a black hole that forms from a collapsing shell of matter.

Since the Schwarzschild “time” coordinate t goes to infinity at the event horizon, these coordinates are
singular there. It is often useful therefore to to adopt other coordinates which are regular across the horizon.
A nice choice is Eddington-Finkelstein (EF) coordinates, in which the line element is given by

ds2 = (1− rs

r
)dv2 − 2dvdr − r2(dθ2 + sin2 θdφ2), (1.2)

where rs = 2GM/c2 and M is the mass. If rs = 0 this is just flat spacetime. The meaning of r is seen
from the last term: 4πr2 is the area of the spheres of symmetry. Lines at constant v, θ, φ are ingoing radial
lightrays, and the outgoing radial lightrays satisfy dr/dv = 1

2 (1 − rs/r). For r = rs this vanishes, so the
“outgoing” light rays remain at constant r, i.e. the outgoing spherical wavefront has a constant area of 4πr2

s .
This is the event horizon. It is a regular part of the spacetime. For r < rs the “outgoing” light rays are
dragged inward to decreasing r and eventually reach r = 0. At r = 0 the curvature diverges so there is a
true singularity there. The singularity is causally disconnected from the exterior if rs > 0, i.e. if the mass
M is positive. In this case the spacetime is called a black hole. If M < 0 then there is no event horizon and
the singularity is naked. The conjecture that naked singularities do not occur in nature is called the cosmic
censorship conjecture. It may well be false.

A.S. Eddington, “A Comparison of Whitehead’s and Einstein’s Formulas”, Nature 113, 192 (1924).
D. Finkelstein, “Past-Future Asymmetry of the Gravitational Field of a Point Particle”, Phys. Rev. 110,
965 (1958).
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1.1.4 General references

A few references for general relativity, black holes, and classical and quantum black hole thermodynamics:

S.W. Hawking and G.F.R. Ellis, “The Large Scale Structure of Spacetime”, (Cambridge University Press,
1973).
C.W. Misner, K.S. Thorne, and J.A. Wheeler, “Gravitation”, (Freeman, 1973).
R.M. Wald, “General Relativity”, (University of Chicago Press, 1984).
B.F. Schutz, “A First Course in General Relativity”, (Camb. U. P., 1985).
I.D. Novikov and V.P. Frolov, “Physics of Black Holes”, (Kluwer, 1989).
S.W. Hawking and W.Israel, “General Relativity: An Einstein Centenary Survey”, (Cambridge U. Press,
1979).
S.W. Hawking and W.Israel, “Three Hundred Years of Gravitation”, (Cambridge U. Press, 1987).
K.S. Thorne, “Black Holes and Time Warps”, (Norton, 1994).
D.W. Sciama, “Black Holes and Their Thermodynamics”, Vistas in Astronomy 19, 385 (1976).
P.C.W. Davies, “Thermodynamics of Black Holes”, Rep. Prog. Phys. 41, 1313 (1978)
R.M. Wald, “Quantum, Field Theory in Curved Spacetime and Black Hole Thermodynamics”, (Univ.
Chicago Press, 1994). R. Brout, S. Massar, R. Parentani, and Ph. Spindel, 1995, “A Primer for black hole
quantum physics”, Phys. Rep. 260, 329.

1.2 Black hole uniqueness

There is only a very limited family of stationary, asymptotically flat, black hole solutions to the Einstein
equations. Such a spacetime is one that has an event horizon and a Killing vector that is timelike at infinity.
A static spacetime is a stationary one that also has a time reflection symmetry. Thus a rotating black hole
is stationary but not static, whereas a nonrotating one is static.

A number of black hole uniqueness theorems have been proved under various reasonably well motivated
assumptions. The EF metric (1.2) gives the unique static vacuum solution with an event horizon. The
only stationary vacuum solution with a horizon is the Kerr solution, parametrized by the total mass M and
angular momentum J . Including an electromagnetic field, the only static solution with a horizon with one
connected component is the Reissner-Nordstrom solution parametrized by mass and electric and magnetic
charges Qe, Qm. Since the electromagnetic stress-energy tensor is duality rotation invariant, the metric
depends only on the combination Q2

e + Q2
m. Finally, allowing for angular momentum, the unique stationary

black hole solution with electromagnetic field is the Kerr-Newman metric.

1.3 Positive energy theorem

Energy of an isolated (asymptotically flat) system in GR can be defined as the gravitating mass as measured
at infinity, times c2. This energy, which is the numerical value of the Hamiltonian that generates the time
translation symmetry at infinity, is a conserved quantity in general relativity. The energy can be negative
e.g. if we simply put rs < 0 in the Eddington-Finkelstein line element, but this yields a naked singularity. If
one assumes (i) spacetime can be spanned by a nonsingular Cauchy surface whose only boundary is the one
at infinity, and (ii) matter has positive energy (more precisely, the stress-energy tensor satisfies the dominant
energy condition, which for diagonalizable Tab means that the energy density is greater than the magnitude
of any principal pressure), then it can be proved that the total energy of the spacetime is necessarily positive.
This was first proved in a geometrical way by Schoen and Yau, and shortly thereafter proved in a more direct
way way by Witten. The idea for this proof came from quantum supergravity, where the Hamiltonian has
the manifestly positive form H = Q2 in terms of the supersymmetry generator Q.

Witten’s proof goes roughly as follows. The energy is written as a flux integral involving first derivative
of the metric at infinity which picks off the coefficient of the 1/r term in the metric. This is sometimes
called the ADM energy. This is then reexpressed, using the Einstein equations, as a volume integral over
a spacelike Cauchy surface with an integrand containing a term quadratic in the derivative of an arbitrary
spinor field and a term in the energy density of matter. If the spinor field is chosen to satisfy a certain
elliptic differential equation, then the quadratic spinor term becomes manifestly positive. The only zero
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energy solution is empty flat spacetime. If a black hole is present then the Cauchy surface can be chosen to
dip below the formation of the event horizon, thus avoiding the presence of an inner boundary or singularity
on the surface. Alternatively, the contribution from an inner boundary located at an apparent horizon can
be shown to be positive.

Positivity of the total energy at infinity does not necessarily mean that the system cannot radiate an
infinite energy while collapsing, since both the energy of the radiation and the energy of the leftover system are
included in the total energy. A different definition of energy, called the Bondi energy, allows one to evaluate
just the “leftover” energy. The Bondi energy is the gravitating mass as seen by light rays propagating out
to infinity in the lightlike direction, rather than the spacelike direction. Essentially the same argument as
before shows that the Bondi energy is also necessarily nonnegative. Thus only a finite energy can be radiated
away.

A positive energy theorem has also been proved in the presence of a negative cosmological constant, in
which case the asymptotic structure of the spacetime is anti-de-Sitter rather than flat.

References

R. Schoen and S.-T. Yau, “Proof of the Positive Mass Theorem” II., Commun. Math. Phys. 79, 231 (1981).
R. Schoen and S.-T. Yau, “Proof that the Bondi Mass is Positive”, Phys. Rev. Lett. 48, 369 (1982).
E. Witten, “A New Proof of the Positive Energy Theorem”, Commun. Math. Phys. 80, 381 (1981).
W. Israel and J.M. Nester, “Positivity of the Bondi Gravitational Mass”, Phys. Lett. 85A, 259 (1981).
G.T. Horowitz and M.J. Perry, “Gravitational Energy Cannot Become Negative”, Phys. Rev. Lett. 48, 371
(1982).
G.W. Gibbons, S.W. Hawking, G.T. Horowitz, and M.J. Perry, “Positive Mass Theorems for Black Holes”,
Commun. Math. Phys. 88, 295 (1983).
L.F. Abbott and S. Deser, “Stability of Gravity with a Cosmological Constant”, Nucl. Phys. B195, 76
(1982).

1.4 Singularity theorem

One might have thought that the singularity at r = 0 is just an artifact of perfect spherical symmetry,
that in an asymmetric collapse most of the mass would “miss” rather than collide and no infinite density or
curvature would develop. A strong suggestion that this is not the case comes from the fact that the angular
momentum barrier for orbits of test particles in a black hole spacetime gives way to a negative 1/r3-term of
purely relativistic origin which produces an infinite well as r goes to zero. That it is in fact not true was
proved by Penrose.

The idea of Penrose’s proof rests on the concept of a trapped surface. This is a closed, spacelike, 2-surface
whose ingoing and outgoing null normal congruences are both converging (see Fig. 1.3). For example, a
sphere at constant r and v in Eddington-Finkelstein coordinates is a trapped surface if it lies inside the
horizon. But even in a somewhat asymmetrical collapse it is expected that a trapped surface will form.

Penrose argues that the existence of a trapped surface T implies the existence of a singularity on the
boundary ∂F of its future F . (The “future” of a set is the collection of all spacetime points that can be
reached by future-going timelike or null curves from that set.) Very roughly his reasoning is this: the null
normals to T start out converging everywhere so, since gravity is attractive, they must continue converging
and will necessarily reach crossing points (technically, conjugate points) in a finite affine parameter. ∂F must
“end” before or when the crossing points are reached (because the boundary ∂F must be locally tangent to
the light cones) so ∂F must be compact. This is a very weird structure for the boundary of the future of
T , and in fact is incompatible with other reasonable requirements on the spacetime (see below). The only
way out is if at least one of the null normals cannot be extended far enough to reach its crossing point. This
nonextendibility is what is meant in the theorem by the existence of a singularity.

Einstein’s equation comes into the proof only in ensuring that the initially converging null normals to T
must reach a crossing point in a finite affine parameter. It is worth explaining this in more detail, since it
involves technology that figures in many developments in general relativity and black hole thermodynamics,
namely, the focusing equation (which is often called the Raychaudhuri equation, or Sach’s equation, or
Newman-Penrose equation). This equation relates the focusing of a bundle of light rays (called a null
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trapped surface
Figure 1.3: Boundary of the future of an ordinary untrapped surface (left) and a trapped surface (right).

geodesic congruence) to the Ricci tensor. Consider a null geodesic congruence that emanates from one side
of a spacelike 2-surface. Define the convergence ρ of the congruence as the fractional rate of change of an
infinitesimal cross-sectional area δA: ρ := d

dλ ln δA, where λ is an affine parameter for the null geodesics.
Then one has the equation

d

dλ
ρ =

1
2
ρ2 + σ2 + Rabk

akb, (1.3)

where σ2 is the (positive) square of the shear tensor of the congruence, and ka is the tangent vector to the
geodesics.

This focusing equation shows that an initially converging congruence must reach a “crossing point”, i.e.
a point where ρ diverges, in a finite affine parameter provided Rabk

akb ≥ 0. More precisely, d
dλρ ≥ 1

2ρ2

implies that if ρ(0) = ρ0 > 0, then ρ →∞ for some λ ≤ 2/ρ0. In flat space this would of course be true, and
if positive the Ricci tensor term will only make it converge faster. The condition Rabk

akb ≥ 0 is equivalent
via Einstein’s equation to the condition Tabk

akb ≥ 0, which for a diagonalizable stress-energy tensor is
equivalent to the condition that the energy density plus any of the three principal pressures is positive. Thus
unless there is “anti-gravitational repulsion” due to negative energy and/or pressure, a crossing point must
be reached.

A somewhat more precise statement of Penrose’s theorem is that a singularity is unavoidable if there is a
trapped surface and (i) Rabk

akb ≥ 0 for all null ka and (ii) spacetime has the form M = Σ×R, where Σ is
a non-compact, connected, Cauchy surface. Later Hawking and Penrose gave another proof that weakened
the second assumption, replacing it by the conditions that (ii′) there are no closed timelike curves and (ii′′)
the curvature is “generic” in a certain extremely mild sense.

References

R. Penrose, “Gravitational Collapse and Space-Time Singularities”, Phys. Rev. Lett. 14, 57 (1965)
S.W. Hawking and R. Penrose, “The Singularities of Gravitational Collapse and Cosmology”, Proc. Roy.
Soc. Lond. A314, 529 (1970).

1.5 Energy extraction

A black hole can be used as a “catalyst” to extract the rest energy of a particle as useful work. Alternatively,
energy can be extracted from a black hole itself, if the hole is spinning or charged, by classical processes. If
quantum effects are included, then it turns out that one can even extract energy from a nonrotating, neutral
black hole, either by letting it evaporate via Hawking radiation or by “mining” it. In this section we consider
some of these classical energy extraction processes.
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1.5.1 Converting mass to energy

The entire rest mass m of a particle can be extracted as useful work by lowering the mass quasistatically
down to the horizon of a black hole and finally dropping it in. For the black hole (1.2) this can be understood
as follows. The vector field ξµ := δµ

v is a Killing vector (symmetry vector) for the EF metric (1.2), and the
associated conserved quantity for a particle of mass m is E = mẋµξµ, which is conserved along a geodesic.
Let us call E the Killing energy. For a particle at fixed r, θ, and φ, ẋµ = ξ̂µ := ξµ/|ξ|, so we have E = |ξ|m.
As r → rs, the norm of the Killing field |ξ| = (1−rs/r)1/2 vanishes (since ξµ becomes null at the horizon), so
the particle has zero Killing energy. To lift it back out to infinity would take an energy input m. Conversely,
in lowering the particle to the horizon all its mass energy can be extracted as useful work at infinity! If the
particle is then dropped across the horizon, the black hole mass is unchanged, since the particle has zero
energy.

As an aside, we point out the relation between the Killing energy E and the energy Estat measured by
a static observer with four-velocity ξ̂µ at the location of the particle. The latter energy is Estat := mẋµξ̂µ,
so E = |ξ|Estat. For r À rs this yields E ' (1 − M/r)Estat, showing that E is the static energy plus
the “potential energy” −EstatM/r. If furthermore the velocity relative to the static observer is small, then
Estat ' m + 1

2mv2, so E is approximately equal to the rest mass plus the Newtonian kinetic and potential
energies.

1.5.2 Ergoregions

On the horizon of the EF metric the “time-translation” Killing vector (∂/∂v)µ becomes null, and inside the
horizon it is spacelike (see Fig. 1.1). The associated conserved quantity is therefore a spatial momentum
component, so can be negative. This is important in the Hawking effect.

This peculiar situation can also occur outside an event horizon, for example in the spacetime around a
rapidly rotating stationary neutron star or black hole. Such a configuration is classically unstable for a star,
so we focus on the black hole. A region where a Killing vector that is a time translation at infinity becomes
spacelike is called an ergoregion. For a rotating black hole it is sketched in Fig. 1.4.
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1

0

ergo-
region

Figure 1.4: Penrose process to extract rotational energy by exploiting the ergoregion of a rotating black hole.

1.5.3 Penrose process

Penrose suggested a classical process by which one could exploit the existence of the ergoregion to extract
the rotational energy of a rotating black hole. Particle 0 is sent into the ergoregion, where it breaks up into
particles 1 and 2, arranged so that particle 2 has negative energy and falls across the horizon while particle
1 escapes to infinity with energy greater than the initial energy of particle 0, so total energy is conserved.

The extracted energy must come at the expense of the rotational energy of the hole, so particle 2 must
presumably have an angular momentum opposite to that of the hole. The most efficient energy extraction
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Figure 1.5: Portion of an event horizon of a rotating black hole. The time translation and rotation Killing fields
ξ and ψ are both spacelike on the horizon, and the linear combination χ = ξ + Ωψ is tangent to the null horizon
generators. Ω is the angular velocity of the horizon.

process would be one for which the ratio of energy to angular momentum extracted is maximized. This
efficiency is ultimately limited by the fact the four-velocity vector p2/m2 of particle 2 (like that of all
particles) must be a future-pointing time-like or null vector.

To determine the limiting efficiency, let ξ be the time-translation (at infinity) Killing field, and let ψ be
the axial rotation Killing field. The corresponding conserved quantities for a particle of four-momentum p
are the energy E = p · ξ and the angular momentum L = −p · ψ (the sign difference is due to the fact that
ψ is spacelike at infinity whereas ξ is timelike). On the horizon itself both ξ and ψ are spacelike, but the
horizon is generated by null geodesics, and there must be a linear combination χ := ξ + Ωψ that is a future
pointing null Killing vector generating translations along the horizon generators (see Fig. 1.5). The constant
Ω is called the angular velocity of the horizon. As particle 2 crosses the horizon, the two future pointing
vectors p2 and χ must have a non-negative inner product: 0 ≤ p2 · χ = E2 − ΩL2. Thus L2 ≤ E2/Ω < 0, so
indeed particle 2 must carry angular momentum opposite to that of the hole. For the most efficient process
one has ∆M = Ω∆J , where ∆M = E2 and ∆J = L2 are the change in the mass and angular momentum of
the hole.

The maximum efficiency occurs when p2 is a null vector tangent to the horizon generator. This has
the interesting implication that, when the particle enters the black hole, it does not affect the area of the
event horizon to first order beyond the test particle approximation. One can see this from the focusing
equation (1.3) because Rabk

akb ∝ Tabk
akb ∝ kakbk

akb = 0. Thus, since the shear term σ2 is second order,
the convergence of the horizon generators remains zero, so the cross sectional area of the horizon remains
unchanged. The limiting efficiency is therefore reached when the horizon area is unchanged by the process.

References

R. Penrose, “Gravitational Collapse: The Role of General Relativity”, Rev. del Nuovo Cim. 1, 252 (1969).
D. Christodoulou, “Reversible and Irreversible Processes in Black Hole Physics”, Phys. Rev. Lett. 25, 1596
(1970).
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1.5.4 Charged black holes

If a black hole is electrically charged one can extract energy from it by neutralizing it. Consider a charged
particle of mass m and charge q. The equations of motion for this particle follow from the lagrangian
L = 1

2gµν ẋµẋν + qAµẋµ. The conjugate momentum is thus pµ = mẋµ + qAµ. If the metric and vector
potential are both invariant under the translation generated by a Killing vector ξµ, then the Killing energy
E = pµξµ is conserved. Now imagine lowering the charge down to the horizon of the black hole. At infinity,
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Figure 1.6: Portion of an event horizon with some converging generators that reach a crossing point. The generators
of the boundary of the future of the deformation also reach a crossing point. The impossibility of this crossing point
is used in proving the area theorem.

the static charge has E(∞) = m (assuming Aµ = 0 at infinity), while at the horizon it has E(horizon) = qΦ,
where Φ is the potential difference between the horizon and infinity. If the particle and the black hole are
oppositely charged, then E(horizon) < 0, so there is something like an ergoregion. Although the Killing field
is not spacelike, and the four-velocity of the particle is not spacelike, the four-momentum of the particle is
spacelike.

The difference E(∞)− E(horizon) = m− qΦ can be extracted as useful work at infinity in the lowering
process. Dropping the charge into the black hole will now change the mass and charge of the black hole by
the amounts ∆M = qΦ and ∆Q = q, so the extra energy −qΦ at infinity has come at the expense of some
of the black hole’s mass and charge. To maximize the efficiency of energy extraction one should obviously
drop the charge in just outside the horizon. As in the case of the Penrose process, this will not change
the area of the horizon since the energy-momentum tensor of the particle is still proportional to ẋaẋb, so
Rabk

akb ∝ ẋaẋbk
akb = 0. In this case one has ∆M = Φ∆Q.
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1.6 Area theorem

In the examples above the most efficient energy extraction occurs when the black hole area is unchanged,
and in less efficient processes the area always increases. It was shown by Hawking that in fact the area of an
event horizon can never decrease under quite general assumptions. Hawking’s theorem applies to arbitrary
dynamical black holes, for which a general definition of the horizon is needed. The future event horizon of
an asymptotically flat black hole spacetime is defined as the boundary of the past of future null infinity,
that is, the boundary of the set of points that can communicate with the remote regions of the spacetime
to the future. Hawking proved that if Rabk

akb ≥ 0, and if there are no naked singularities (i.e. if “cosmic
censorship” holds), the cross sectional area of a future event horizon cannot be decreasing anywhere. The
reason is that the focusing equation implies that if the horizon generators are converging somewhere then
they will reach a crossing point in a finite affine parameter. But such a point cannot lie on a future event
horizon (because the horizon must be locally tangent to the light cones), nor can the generators leave the
horizon. The only remaining possibility is that the generators cannot be extended far enough to reach the
crossing point—that is, they must reach a singularity.

That was an easy argument, but it isn’t as strong as one would like, since the singularity may not be
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naked, i.e. visible from infinity, and we have no good reason to assume clothed (or barely clothed) singularities
do not occur.1 With a more subtle argument, Hawking showed that convergence of the horizon generators
does imply existence of a naked singularity. The basic idea is to deform the horizon cross-section outward a
bit from the point where the generators are assumed to be converging, and to consider the boundary of the
future of the part of the deformed cross-section that lies outside the horizon. If the deformation is sufficiently
small, all of the generators of this boundary are initially converging and therefore reach crossing points and
leave the boundary at finite affine parameter. But at least one of these generators must reach infinity while
remaining on the boundary, since the deformed cross-section is outside the event horizon. The only way out
of the contradiction is if there is a singularity outside the horizon, on the boundary, which is visible from
infinity and therefore naked.

Essentially the same argument as the one just given also establishes that an outer trapped surface must
not be visible from infinity, i.e. must lie inside an event horizon. This fact is used sometimes as an indirect
way to probe numerical solutions of the Einstein equation for the presence of an event horizon. Whereas
the event horizon is a nonlocal construction in time, and so can not be directly identified given only a finite
time interval, a trapped surface is defined locally and may be unambiguously identified at a single time.
Assuming cosmic censorship, the presence of a trapped surface implies the existence of a horizon.

1.6.1 Applications of the area theorem

The area of the event horizon of a rotating stationary black hole of mass M and angular momentum J is

A = 8πM(M +
√

M2 − J2/M2).

Suppose such a black hole looses energy and all of its angular momentum by some process. The area theorem
Af ≥ Ai, with Jf = 0, implies 16πM2

f ≥ 8πMi(Mi +
√

M2
i − J2

i /M2
i ). If the initial angular momentum has

its maximum possible value Ji = M2
i , we find that Mf ≥ Mi/

√
2, so ∆M = Mi −Mf ≤ Mi(1 − 1/

√
2) '

0.29Mi. Thus at most 29% of the initial mass can be radiated away.
Suppose two nonrotating black holes of mass M1 and M2 start far apart and then come together, radiate

gravitational wave energy, and settle down to a nonrotating black hole with mass Mf . An upper limit on
the energy radiated is obtained from A ≥ A1 + A2, or M2

f ≥ M2
1 + M2

2 . If M1 = M2 this yields a limit
∆M = 2M1 −Mf ≤ (1− 1/

√
2)(2M1), so at most 29% of the initial mass can be radiated. If M2 ¿ M1 the

limit is ∆M ≤ M2(1−O(M2/M1)), so almost all of the smaller mass M2 can be extracted.
Finally, if two maximally spinning holes with mass M and angular momentum J collide and form a single

nonspinning hole of mass Mf , we have from Af ≥ Ai the limit M2
f ≥ M2, or ∆M = 2M −Mf ≤ M . That

is, at most half the initial mass energy could be radiated.

Testing Cosmic Censorship

Suppose there is an outer trapped surface on an asymptotically flat initial data surface. Then if Cosmic
Censorship holds there must be an event horizon enclosing the trapped surface, and the area of this horizon
can only increase to the future. If the total energy of the spacetime is E, then the maximum area this
enveloping horizon can have is 16πE2. Thus, on the initial data surface, Cosmic Censorship requires that
there exist a surface with area 16πE2 enclosing the trapped surface. This bound is called the isoperimetric
inequality. If initial data violating this bound exists, then Cosmic Censorship must be violated! Limited
proofs that this bound holds have been established, but not yet with complete generality.
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1Actually, we do not really have any solid reason to believe that naked singularities do not occur either, and yet all of black
hole thermodynamics seems to rest on this assumption. Perhaps it is enough for near-equilibrium black hole thermodynamics
if naked singularities are not created in quasi-stationary processes.
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Chapter 2

Classical Black Hole Thermodynamics

From the forgoing it is apparent that energy can flow not just into black holes but also out of them, and
they can act as an intermediary in energy exchange processes. Energy extraction is maximally efficient when
the horizon area does not change, and processes that increase the area are irreversible, since the area cannot
decrease. The analogy with thermodynamic behavior is striking, with the horizon area playing the role of
entropy. This analogy was vigorously pursued as soon as it was recognized at the beginning of the 1970’s,
although it had what appeared at first to be several glaring flaws:

F1. the temperature of a black hole vanishes;

F2. entropy is dimensionless, whereas horizon area is a length squared;

F3. the area of every black hole is separately non-decreasing, whereas only the total entropy is non-
decreasing in thermodynamics.

By 1975 it was understood that the resolution to all of these flaws lies in the incorporation of quantum
theory, as has so often been the case in resolving thermodynamic conundrums. A black hole has a Hawking
temperature proportional to Planck’s constant h̄, the entropy is one fourth the horizon area divided by the
Planck length squared (h̄G/c3), and the area can decrease via Hawking radiation.

Rather than jumping now immediately into the subject of quantum black hole thermodynamics, it is
worth discussing first the classical aspects of the theory. These are important in their own right, and they
form the foundation for quantum black hole thermodynamics. But also it is intriguing to see what can
be inferred without invoking quantum theory, and it may teach us something about the deeper origins of
gravitation. In proceeding this way we are following more or less the path that was taken historically.
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2.1 The four laws of black hole mechanics

By its very definition, a classical black hole cannot emit anything, so it seems at first futile to attempt to
associate a nonzero temperature with it. On the other hand, there must be some relationship between dM ,
the change in the mass of a black hole, and dA, the change in its horizon area. We have already seen in the
Penrose process and its charged analog that when dA = 0 one has dM = ΩdJ + ΦdQ, where J and Q are
the angular momentum and charge of the hole and Ω and Φ are the angular velocity and electric potential
of the horizon. This expresses changes of the energy of the hole in reversible processes like work done on a
thermodynamic system or a change in the number of particles. It is like the First Law of thermodynamics
but with the heat flow term dQ = TdS missing.
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2.1.1 Black hole temperature as surface gravity

It turns out that this missing term is given by κdA/8πG, where κ is the surface gravity of the horizon. The
surface gravity of a stationary black hole can be defined assuming the event horizon is a Killing horizon, i.e.
that the null horizon generators are orbits of a Killing field. (See next section for more on this assumption.)
Then κ is defined as the magnitude of the gradient of the norm of the horizon generating Killing field
χa = ξa + Ωψa, evaluated at the horizon. That is,

κ2 := −(∇a|χ|)(∇a|χ|) (2.1)

at the horizon. An equivalent definition of κ is the the magnitude of the acceleration, with respect to Killing
time, of a stationary zero angular momentum particle just outside the horizon. This is the same as the force
per unit mass that must be applied at infinity in order to hold the particle on its path. For a nonrotating
neutral black hole the surface gravity is given by 1/4M , so a larger black hole has a smaller surface gravity.
This happens to be identical to the Newtonian surface gravity of a spherical mass M with radius equal to
the Schwarzschild radius 2M .

2.1.2 Zeroth Law

Although κ is defined locally on the horizon, it turns out that it is always constant over the horizon of a
stationary black hole. This constancy is reminiscent of the Zeroth Law of thermodynamics which states that
the temperature is uniform everywhere in a system in thermal equilibrium. The constancy of κ can be traced
to the special properties of the horizon of a stationary black hole. It can be proved without field equations
or energy conditions [Carter, Rácz & Wald] assuming the horizon is a Killing horizon (i.e. there is a Killing
field tangent to the null generators of the horizon) and that the black hole is either (i) static (i.e. stationary
and time reflection symmetric), or (ii) axisymmetric and “t-φ” reflection symmetric. Alternatively, it can
be proved [Hawking] assuming only stationarity together with the Einstein field equation with the dominant
energy condition for matter. (Assuming also hyperbolic field equations for matter, and analyticity of the
spacetime, Hawking also shows that the event horizon must be a Killing horizon, and that the spacetime
must be either static or axisymmetric.)
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2.1.3 First law

For a rotating charged black hole, the First Law takes the form

dM = κdA/8πG + ΩdJ + ΦdQ. (2.2)

This First Law relates nearby stationary black hole solutions of the Einstein equation, and has been derived
in many ways. If stationary matter (other than the electromagnetic field) is present outside the black hole,
then there are additional matter terms on the right hand side of (2.2). The surface gravity κ evidently plays
the role of temperature. Although the quantities κ, Ω, and Φ are all defined locally on the horizon, they
are always constant over the horizon of a stationary black hole (modulo some assumptions; see above for the
case of κ and, implicitly, Ω.)
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First Law and “heat” flow

It is possible to understand the entropy term κdA/8πG in the first law by considering a quasistatic process
in which a bit of mass is added to a black hole. Again for simplicity let us assume the hole is nonrotating
and neutral, so the mass change is just the flux of the conserved energy current Tabξ

a through the horizon:
∆M =

∫
Tabξ

akbdλdA. Here dA is the cross-sectional area element, λ is an affine parameter along the
horizon generators, and ka is the tangent vector to the horizon generators with respect to λ. The Killing
vector ξa is given on the horizon by ξa = κλka (with a certain choice for the origin of λ). Using the Einstein
equation we thus have

∆M = (κ/8πG)
∫

Rabk
akbλ dλdA (2.3)

= (κ/8πG)
∫

dρ

dλ
λ dλdA (2.4)

= (κ/8πG)
∫

(−ρ) dλdA (2.5)

= (κ/8πG)∆A. (2.6)

The second equality uses the focusing equation neglecting the quadratic terms ρ2 and σ2, the third uses
integration by parts with the boundary term dropped since the black hole is initially and finally stationary,
and the last equality follows directly from the definition of ρ.

2.1.4 Second and Third Laws

Continuing with the analogy, the Second Law is of course Hawking’s area theorem, stating that the horizon
area can never decrease assuming Cosmic Censorship and a positive energy condition. The Third Law also
has an analog in black hole physics, namely, the surface gravity of the horizon cannot be reduced to zero in
a finite number of steps. Validity of this law has been suggested by investigations of the orbits of charged
test particles around a charged rotating black hole. A precise formulation of this Third Law has been given
and proved under some assumptions by Israel.

Significance of the Third Law

An idea of the significance of the Third Law can be gleaned by thinking about how one might try to violate
it. First, for a nonrotating neutral black hole, κ is decreased when mass is added to the hole. (So the hole
has negative specific heat.) But it would take an infinite amount of mass to reduce κ to zero. A general
rotating, charged black hole with angular momentum J and charge Q has a surface gravity and horizon area
given by

κ = 4πµ/A, A = 4π[2M(M + µ)−Q2] (2.7)

with
µ = (M2 −Q2 − J2/M2)1/2. (2.8)

An extremal black hole is one for which µ = 0. For an extremal black hole, κ vanishes and A = 4π(2M2−Q2).
Thus, an extremal black hole has zero “temperature”, but nonzero “entropy”. (Thus the Planck form of the
Third law does not hold for black holes. Also it should be remarked that if the extremal state is “eternal”
rather than being reached from a non-extremal one, the entropy that enters a proper variational form of
the first law is not the area and, in fact, vanishes.) If M2 < Q2 + J2/M2 then the spacetime has a naked
singularity and is not a black hole at all. Thus if the surface gravity could actually be reduced to zero, one
would be only infinitesimally far from creating a naked singularity, violating Cosmic Censorship.

To reduce the surface gravity to zero you might thus try to inject a sufficient amount of charge or angular
momentum into the hole. Suppose you try to drop a charge q with mass m into a nonrotating charged
black hole of mass M and charge Q < M , trying to make Q + q = M + m. In order for the gravitational
attraction to be stronger than the electrostatic repulsion you must choose mM > qQ, so q/m < M/Q. But
this inequality insures that Q+ q < M +m. Similarly if you try to inject enough orbital angular momentum
to a spinning black hole you find that the particle simply misses the hole. If you try to drop a spinning
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particle along the axis of a black hole spinning the same way, you find there is a gravitational spin-spin
force that is repulsive and just strong enough to prevent you from reducing κ to zero. If you try to drop
an electrically charged particle into a spinning black hole along the axis (say), there is presumably some
kind of “self-force” on the charge that repels it from the hole, though I do not know a reference for this.
Finally, magnetic charge contributes to κ in the same way as an electric charge, so you might try dropping a
magnetic monopole into an electrically charged black hole. This sitation has been analyzed and, again, one
finds that the necessary repulsive force arises.
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2.2 Generalized second law

Bekenstein proposed that some multiple ηA/h̄G of the black hole area, measured in units of the squared
Planck length L2

p = h̄G/c3, is actually entropy, and he conjectured a generalized second law (GSL) which
states that the sum of the entropy outside the black hole and the entropy of the black hole itself will never
decrease:

δ(Soutside + ηA/h̄G) ≥ 0 (2.9)

Classically, it seems possible to violate the GSL, using processes like those already considered: A box
containing entropy in the form of, say, radiation, can be lowered to the horizon of a black hole and dropped
in. For an ideal, infinitesimal box all of the energy can be extracted at infinity, so when the box is dropped
in it adds no mass to the hole. Thus the horizon area does not change, but the entropy of the exterior has
decreased, violating the GSL. This may be considered yet another flaw in the thermodynamic analogy:

F4. the GSL can be violated by adding entropy to a black hole without changing its area.

At the purely classical level, it thus appears that the GSL is simply not true. Note however that as h̄ → 0,
the entropy ηA/h̄G diverges, and an infinitesimal area change can make a finite change in the Bekenstein
entropy. The other flaws (F1-F3) in the thermodynamic analogy are also in a sense resolved in the h̄ → 0
limit. F2 is resolved by Bekenstein’s postulate, while F3 is resolved because a finite decrease in area would
imply an infinite decrease in entropy. Furthermore, the first law implies that the black hole has a Bekenstein
temperature TB = h̄κ/8πη, which vanishes in the classical limit, thus resolving flaw F1. The Bekenstein
proposal therefore “explains” the apparent flaws in the thermodynamic analogy, and it suggests very strongly
that the analogy is much more than an analogy. It turns out that, with quantum effects included, the GSL
is indeed true after all, with the coefficient η equal to 1/4.
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2.3 Post-Einsteinian corrections

It is generally believed that the Einstein-Hilbert action which yields the Einstein field equation is merely
the lowest order term in an effective action containing an infinite number of higher curvature terms, as
well as nonlocal terms and other exotica. The presumption is that underlying general relativity is a more
fundamental theory, for example string theory, or something yet unknown. In any case, the low energy
effective action would contain such terms. How do these considerations affect black hole thermodynamics?
Should the entire discussion be carried out in the context of more general field equations, or are all corrections
to the Einstein equation too small to be relevant at the classical level? There seems to be no reason in
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principle why the corrections must necessarily be so small, so it is at least interesting to consider how black
hole thermodynamics changes in the presence of, say higher curvature terms in the action.

Already in the Zeroth Law (constancy of the surface gravity) a potential problem arises. The proof
that uses the dominant energy condition is not applicable, since in effect the higher curvature terms act
as a stress-energy tensor that violates this condition. However, the Zeroth Law can also be proved with
other fairly reasonable assumptions (cf. section 2.1.2). Assuming the Zeroth Law, a modified form of the
First Law can be proved for a wide class of generally covariant actions [Wald, 1993]. The only change is
that what plays the role of the entropy is not just the area. For example, for a Lagrangian of the form
L = L(ψ,∇aψ, gab, Rabcd), (where ψ stands for matter fields and no derivatives other than those explicitly
indicated appear in L), the modified “entropy” is given by [Visser 1993, Jacobson, Kang and Myers 1994,
Iyer and Wald 1994]

S = −2π

∮
∂L

∂Rabcd
εabεcdε̄. (2.10)

The integral is over a slice of the horizon, εab is the unit normal bivector to the horizon, and ε̄ is the area
element on the horizon slice. (The normalization is chosen so that in the Einstein case one has S = A/4G.
In special cases, this modified “entropy” has been shown [Jacobson, Kang and Myers 1995] to satisfy the
Second Law (a non-decrease theorem), but in general there seems to be no reason why such a result should
hold.

It seems that a proper treatment of the higher order contributions to the effective action must be em-
bedded in a full description of the quantum statistical mechanics of gravitating systems. It further seems
that the physics ensuring stability of the system must be understood before the (presumed) validity of the
thermodynamic laws can be established. There may be important insight about gravity to be gained by
considering these issues.

References

Visser, M. 1993, “Dirty black holes: entropy as a surface term”, Phys. Rev. D 48, 5697.
R.M. Wald, “Black Hole Entropy is the Noether Charge”, Phys. Rev. D48, R3427 (1993).
V. Iyer and R.M. Wald, “Some Properties of Noether Charge and a Proposal for Dynamical Black Hole
Entropy”, Phys. Rev. D50, 846 (1994).
T. Jacobson and R.C. Myers, “Black Hole Entropy and Higher Curvature Interactions”, Phys. Rev. Lett.
70, 3684 (1993).
T. Jacobson, G.W. Kang, and R.C. Myers, “On Black Hole Entropy”, Phys. Rev. D49, 6587 (1995).
T. Jacobson, G.W. Kang, and R.C. Myers, “Increase of Black Hole Entropy in Higher Curvature Gravity”,
Phys. Rev. D52, 3518 (1995).

2.4 Thermodynamic temperature

The analogy between surface gravity and temperature was based in the above discussion on the way the
temperature enters the First Law (2.2), the fact that it is constant over the horizon (Zeroth Law), and the
fact that it is (probably) impossible to reduce it to zero in a physical process (Third Law). In this section
we discuss a sense in which a black hole has a thermodynamic temperature, defined in terms of the efficiency
of heat engines, that is proportional to its surface gravity. The discussion is a variation on that of [Sciama,
1976, see section 1.1.4].

A thermodynamic definition of temperature can be given by virtue of the second law in the (Clausius)
form which states that it is impossible to pump heat from a colder body to a hotter one in a cycle with no
other changes. Given this Second Law, the ratio Qin/Qout of the heat in to the heat out in any reversible
heat engine cycle operating between two heat baths must be a universal constant characteristic of that pair
of equilibrium states. The ratio of the thermodynamic temperatures of the two equilibrium states is then
defined by Tin/Tout := Qin/Qout. This defines the temperature of all equilibrium states up to an overall
arbitrary constant. In a heat engine, the heat out is wasted, so the most efficient engine is one which dumps
its heat into the coldest reservoir.

16



Applying this definition to a black hole, it follows that the temperature of the hole must be zero, since as
we have seen one can, with perfect efficiency, extract the entire rest mass of a particle (or of heat) as useful
work by dumping the heat into a black hole after lowering it down all the way to the horizon. Note however
that to arrive at this conclusion we must take the unphysical limit of really lowering the heat precisely all
the way to the horizon.

A meaningful expression for the ratio of the temperatures of two black holes can be obtained by passing to
this unphysical limit in a fairly natural manner. Consider operating a heat engine of the type just discussed
between two black holes separated very far from one another, and suppose there is a minimum proper
distance dmin to which the horizon of either black hole is approached. We shall assume that this distance is
the same for both black holes, and take the limit as dmin → 0. We also assume for simplicity that the black
holes are nonrotating; it is presumably possible to generalize the analysis to the rotating case.

If the “heat” has a rest mass m, it has Killing energy E1 = ξ1m at its lowest point outside the horizon
of the first black hole, where ξ is the norm of the Killing field. The heat is then lifted slowly and lowered
back down to just outside the horizon of the second black hole, where it has Killing energy E2 = ξ2m, and is
then dumped into the second hole. The difference E1 − E2 is the useful work extracted in the process, and
the ratio T1/T2 := E1/E2 = ξ1/ξ2 defines the ratio of the thermodynamic temperatures of the two holes.
Now near the horizon we can approximate ξ ' κdmin, where κ is exactly the surface gravity that entered
above in the First Law. At the lowest points we thus have ξ1/ξ2 ' κ1/κ2, which becomes exact in the limit
dmin → 0, so that T1/T2 = κ1/κ2. That is, the thermodynamic temperature of a black hole is proportional
to its surface gravity.

This derivation hinges on the limiting procedure, in which a common minimum distance of approach to
the horizon taken to zero, which is not very well motivated. It is therefore worth pointing out that this is
equivalent to taking a common maximum proper acceleration to infinity. The proper acceleration of a static
worldline is given by a = κ/ξ in the limit that the horizon is approached, so a is just the inverse of the
proper distance from the horizon. Alternatively, rather than taking a limit as the horizon is approached,
one might imagine that there is some common minimum distance of approach or maximum acceleration to
which the heat will be subjected in any given transfer process.
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Chapter 3

Quantum black hole thermodynamics

Classical black hole physics cries out for the incorporation of h̄ effects, so the thermodynamic “analogy”
can become true thermodynamics. Since general relativity is relativistic, it is not quantum mechanics but
relativistic quantum field theory that is called for. Thus, in principle, one should consider “quantum gravity”,
whatever that may be. Although no one knows for sure what quantum gravity actually is, formal treatment
of its semiclassical limit by Gibbons and Hawking in a path integral framework revealed one way in which
the analogy can become an identity. This will be discussed later. An alternate semiclassical approach—and
historically the first— is to consider quantum fields in a fixed black hole background. A quantum field
has vacuum fluctuations that permeate all of spacetime, so there is always something going on, even in the
“empty space” around a black hole. Thus turning on the vacuum fluctuations of quantum fields can have
a profound effect on the thermodynamics of black holes. The principal effect is the existence of Hawking
radiation.

The historical route to Hawking’s discovery is worth mentioning. (See Thorne’s book, Black Holes and
Time Warps, for an interesting account.) After the Penrose process was invented, it was only a short step
to consider a similar process using waves rather than particles [Zel’dovich, Misner], a phenomenon dubbed
“super-radiance”. Quantum mechanically, supperradiance corresponds to stimulated emission, so it was then
natural to ask whether a rotating black hole would spontaneously radiate [Zel’dovich, Starobinsky, Unruh].
In trying to improve on the calculations in favor of spontaneous emission, Hawking stumbled onto the fact
that even a non-rotating black hole would emit particles, and it would do so with a thermal spectrum at a
temperature

TH = h̄κ/2π. (3.1)

Spontaneous emission from a rotating black hole can be visualized as pair production (Fig. 3.1). The
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Figure 3.1: Pair production in the ergoregion of a rotating black hole (left); and Hakwing effect: pair production
straddling the horizon (right).
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Killing energy and angular momentum must be conserved, so the two particles must have opposite values for
these. In the ergoregion there are negative energy states for real particles, so such a pair can be created there,
with the negative energy partner later falling across the event horizon into the black hole. In the nonrotating
case the ergoregion exists only beyond the horizon, however the pair creation process can straddle the horizon
(Fig. 3.1). This turns out to have a thermal amplitude, and gives rise to the Hawking effect.

Let us now briefly consider the implications of the Hawking effect for black hole thermodynamics. First
of all the surface gravity κ, which was already implicated as a temperature in the classical theory, turns
out to give rise to the true Hawking temperature h̄κ/2π. From the First Law (2.2) it then follows that the
entropy of a black hole is given by

SBH = A/4h̄G,

one fourth the area in squared Planck lengths (the subscript ‘BH’ conveniently stands for both ‘Bekenstein-
Hawking’ and ‘black hole’). The zero-temperature and dimensional flaws (F1) and (F2) (cf. Chapter 2)
are thus removed. Furthermore, the Hawking radiation leads to a decrease in the horizon area. This is
obvious in the nonrotating case, since the black hole loses mass, but it also happens in the rotating case.
The reason is that the negative energy partner in the Hawking pair creation process is never a real particle
outside the horizon, so it need not carry a locally future-pointing four-momentum flux across the horizon.
The Bekenstein-Hawking entropy can therefore decrease, so flaw (F3) is removed. The remaining flaw in
the thermodynamic analogy was the failure of the generalized second law (F4) (cf. section 2.2). This too
is repaired by the incorporation of quantum field effects, at least in quasistationary processes. Since the
resolution is rather more involved I will defer it to a later discussion (cf. section 3.3).

3.1 The Unruh effect

Underlying the Hawking effect is the Unruh effect, which is the fact that the vacuum in Minkowski space
appears to be a thermal state at temperature

TU = h̄a/2π (3.2)

when viewed by an observer with acceleration a. Thus there is already something ‘thermal’ about the vacuum
fluctuations even in flat spacetime. Since it lies at the core of the entire subject, let us first delve in some
detail into the theory of the Unruh effect, before coming back to the Hawking effect.

The Unruh effect was discovered after the Hawking effect, as a result of efforts to understand the Hawking
effect. The original observation was that a detector coupled to a quantum field and accelerating through the
Minkowski vacuum will be thermally excited. A related observation by Davies was that a mirror accelerating
through the vacuum will radiate thermally. But the essential point is that the vacuum itself has a thermal
character, quite independently of anything that might be coupled to it.

Owing to the symmetry of the Minkowski vacuum under translations and Lorentz tranformations, the
vacuum will appear stationary in a uniformly accelerated frame, but this appearance will not be independent
of the acceleration. Moreover, since it is the ground state, it is stable to dynamical perturbations. Sciama
pointed out that stationarity and stability of the state alone are sufficient to indicate that the state is a
thermal one, as shown by Haag et al in axiomatic quantum field theory. Note that the time scale associated
with the Unruh temperature, h̄/TH = 2πc/a, is the time it takes for the velocity to change by something of
order c when the acceleration is a.

Two derivations of the Unruh effect will now be given, both of which are valid for arbitrary interacting
scalar fields in spacetime of any dimension. (The generalization to fields of nonzero spin is straightforward.)

3.1.1 Symmetries of Minkowski spacetime

The Minkowski line element in two dimensions can be written in both “Cartesian” (Minkowski) and “polar”
(Rindler) coordinates:

ds2 = dt2 − dz2 = ξ2dη2 − dξ2 (3.3)

where the coordinates are related by

t = ξ sinh η, z = ξ cosh η. (3.4)
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The line element in the remaining spatial dimensions plays no role in the following discussion and is omitted
for simplicity. The coordinates (η, ξ) are nonsingular in the ranges ξ ∈ (0,∞) and η ∈ (−∞,∞), and cover
the “Rindler wedge” z > |t| in Minkowski space (see Fig. 3.2). In the first form of the line element the
translation symmetries generated by the Killing vectors ∂/∂t and ∂/∂z are manifest, and in the second form
the boost symmetry generated by the Killing vector ∂/∂η is manifest. The latter is clearly analogous to
rotational symmetry in Euclidean space. The full collection of translation and boost symmetries of Minkowski
spacetime is called the Poincaré group.

η

t

=

x 

=

=

0

=  0

ξ const.

const.

Figure 3.2: Two-dimensional flat spacetime in Minkowski and Rindler coordinates. A hyperbola of constant ξ is a
uniformly accelerated timelike worldline with proper acceleration ξ−1. A boost shifts η and preserves ξ.

3.1.2 Two-point function and KMS condition

A thermal density matrix ρ = Z−1 exp(−βH) has two identifying properties: First, it is obviously stationary,
since it commutes with the Hamiltonian H. Second, because exp(−βH) coincides with the evolution operator
exp(−itH) for t = −iβ, expectation values in the state ρ possess a certain symmetry under translation by
−iβ called the KMS condition[Sewellbook,Haagbook]: Let 〈A〉β denote the expectation value tr(ρA), and
let At denote the time translation by t of the operator A. Using cyclicity of the trace we have

〈A−iβB〉β = Z−1tr
(
e−βH(eβHAe−βH)B

)
(3.5)

= Z−1tr
(
e−βHBA

)
(3.6)

= 〈BA〉β . (3.7)

Note that for nice enough operators A and B, 〈A−iτB〉β will be analytic in the strip 0 < τ < β. Now let
us compare this behavior with that of the two-point function along a uniformly accelerated worldline in the
Minkowski vacuum.

If, as is usual, the vacuum state shares the symmetry of Minkowski spacetime, then, in particular, the
2-point function G(x, x′) = 〈φ(x)φ(x′)〉 must be a Poincaré invariant function of x and x′. Thus it must
depend on them only through the invariant interval, so one has G(x, x′) = f((x− x′)2) for some function f .
Now consider an “observer” traveling along the hyperbolic trajectory ξ = a−1. This worldline has constant
proper acceleration a, and aη is the proper time along the world line. Let us examine the 2-point function
along this hyperbola:

G(η, η′) ≡ G(x(η), x(η′)) (3.8)

= f

(
[x(η)− x(η′)]2

)
(3.9)

= f

(
4a−2 sinh2[(η − η′)/2]

)
, (3.10)
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where the third equality follows from (3.4). Now, since sinh2(η/2) is periodic under translations of η by
2πi, it appears that G(η, η′) is periodic under such translations in each argument. In terms of the 2-point
function the KMS condition implies G(η− iβ, η′) = G(η′, η), which is not the same as translation invariance
by −iβ in each argument. Does this mean that in fact the 2-point function in the Minkowski vacuum along
the accelerated worldline is not thermal? The answer is “no”, because the above “proof” that G(η, η′) is
periodic was bogus. First of all, a Poincaré invariant function of x and x′ need not depend only on the
invariant interval. It can also depend on the invariant step-function θ(x0 − x′0)θ((x− x′)2). More generally,
the analytic properties of the function f have not been specified, so one cannot conclude from the periodicity
of sinh2(η/2) that f itself is periodic. For example, f might involve the square root, sinh(η/2), which is
anti-periodic. In fact, this is just what happens.

To reveal the analytic behavior of G(x, x′), it is necessary to incorporate the conditions that the spacetime
momenta of states in the Hilbert space lie inside or on the future light cone and that the vacuum has no
four-momentum. One can show (by inserting a complete set of states between the operators) that these
imply there exists an integral representation for the 2-point function of the form

G(x, x′) =
∫

dnk θ(k0)J(k2)e−ik(x−x′), (3.11)

where J(k2) is a function of the invariant k2 that vanishes when k is spacelike. Now let us evaluate G(η, η′)
along the hyperbolic trajectory. Lorentz invariance allows us to transform to the frame in which x− x′ has
only a time component which is given by 2a−1 sinh[(η − η′)/2]). Thus we have

G(η, η′) =
∫

dnk θ(k0)J(k2)e−i2a−1k0 sinh[(η−η′)/2]. (3.12)

Now consider analytic continuation η → η − iθ. Since only k0 > 0 contributes, the integral is convergent as
long as the imaginary part of the sinh is negative. One has sinh(x + iy) = sinh x cos y + i cosh x sin y, so
the integral converges as long as 0 < θ < 2π. Since sinh(x − iπ) = sinh(−x), we can finally conclude that
G(η − i2π, η′) = G(η′, η), which is the KMS condition (3.7).

3.1.3 The vacuum state as a thermal density matrix

The essence of the Unruh effect is the fact that the density matrix describing the Minkowski vacuum, traced
over the states in the region z < 0, is precisely a Gibbs state for the boost Hamiltonian HB at a “temperature”
T = 1/2π:

trz<0 |0〉〈0| = Z−1 exp(−2πHB), (3.13)

HB =
∫

Tab(∂/∂η)adΣb (3.14)

This rather amazing fact has been proved in varying degrees of rigor by many different authors. A sloppy
path integral argument making it very plausible will be sketched below.

Since the boost Hamiltonian has dimensions of action rather than energy, so does the “temperature”. To
determine the local temperature seen by an observer following a given orbit of the Killing field, note from
(3.3) that the norm of the Killing field ∂/∂η on the orbit ξ = a−1 is a−1, whereas the observer has unit
4-velocity. If the Killing field is scaled by a so as to agree with the unit 4-velocity at ξ = a−1, then the boost
Hamiltonian (3.14) and temperature are scaled in the same way. Thus the temperature appropriate to the
observer at ξ = a−1 is T = a/2π. Since a is the proper acceleration of this observer, we recover the Unruh
temperature defined above. Alternatively, the two-point function defined by (3.13) along the hyperbola
obviously satisfies the KMS condition relative to boost time η at temperature 1/2π. When expressed in
terms of proper time aη, this corresponds to the temperature a/2π.

One can view the relative coolness of the state at larger values of ξ as being due to a redshift effect—in this
case a Doppler shift— as follows. Suppose a uniformly accelerated observer at ξ0 sends some of the thermal
radiation he sees to another uniformly accelerated observer at ξ1 > ξ0. This radiation will suffer a redshift
given by the ratio of the norms of the Killing field: say p is the spacetime momentum of the radiation. Then
p · (∂/∂η) is conserved[Waldbook], but the energy locally measured by the uniformly accelerated observer
is p · (∂/∂η)/|∂/∂η|, so that E1/E0 = |∂/∂η|0/|∂/∂η|1. This is precisely the same as the ratio T1/T0 of the
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locally measured temperatures. At infinity |∂/∂η| = ξ diverges, so the temperature drops to zero, which is
consistent with the vanishing acceleration of the boost orbits at infinity.

The path integral argument to establish (3.13) goes like this: Let H be the Hamiltonian generating
ordinary time translation in Minkowski space. The vacuum |0〉 is the lowest energy state, and we suppose it
has vanishing energy: H|0〉 = 0. If |ψ〉 is any state with nonzero overlap with the vacuum, then exp(−τH)|ψ〉
becomes proportional to |0〉 as τ goes to infinity. That is, the vacuum wavefunctional Ψ0[φ] for a field φ is
proportional to 〈φ| exp(−τH)|ψ〉 as τ → ∞. Now this is just a matrix element of the evolution operator
between imaginary times τ = −∞ and τ = 0, and such matrix elements can be expressed as a path integral
in the “lower half” of Euclidean space:

Ψ0[φ] =
∫ φ(0)

φ(−∞)

Dφ exp(−I) (3.15)

where I is the Euclidean action.
The key idea in recovering (3.13) is to look at (3.15) in terms of the angular “time”-slicing of Euclidean

space instead of the constant τ slicing. (See Fig. 3.3.) The relevant Euclidean metric (restricted to two

φ φL R

Figure 3.3: Time slicings of Euclideanized Minkowski space. The horizontal lines are constant τ surfaces and the
radial lines are constant θ surfaces.

dimensions for notational convenience) is given by

ds2 = dτ2 + dσ2 = ρ2dθ2 + dρ2. (3.16)

Adopting the angular slicing, the path integral (3.15) is seen to yield an expression for the vacuum wavefunc-
tional as a matrix element of the boost Hamiltonian (3.14) which coincides with the generator of rotations
in Euclidean space:

〈φLφR|0〉 = N〈φR| exp(−πHB)|φL〉, (3.17)

where φL and φR are the restrictions of the boundary value φ(0) to the left and right half spaces respectively,
and a normalization factor N is included. The Hilbert space HR on which the boost Hamiltonian acts
consists of the field configurations on the right half space z > 0, and is being identified via reflection (really,
by reflection composed with CPT[BisoWich,Sewell]) with the Hilbert space HL of field configurations on the
left half space z < 0. The entire Hilbert space is H = HL ⊗HR, modulo the degrees of freedom at z = 0.
(The boundary conditions at z = 0 are being completely glossed over here.)

Using the expression (3.17) for the vacuum wavefunctional we can now compute the reduced density
matrix for the Hilbert space HR: Now consider the vacuum expectation value of an operator OR that is
localized on the right half space:

〈φ′| (trL|0〉〈0) |φ〉 =
∑

φL

〈φLφ′|0〉〈0|φLφ〉 (3.18)

= N 2〈φ′| exp(−πHB)|φL〉〈φL| exp(−πHB)|φ〉 (3.19)
= N 2〈φ′| exp(−2πHB)|φ〉 (3.20)
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where (3.17) was used in the second equality. This shows that, as far as observables located on the right half
space are concerned, the vacuum state is given by the thermal density matrix (3.13). More generally, this
holds for observables localized anywhere in the Rindler wedge, as follows from boost invariance of (3.13).

This path integral argument directly generalizes to all static spacetimes with a bifurcate Killing horizon,
such as the Schwarzschild and deSitter spacetimes[LaFlamme,Jacobsonhh]. In the general setting, the state
defined by the path integral cannot be called “the” vacuum, but it is a natural state that is invariant under
the static Killing symmetry of the background and is nonsingular on the time slice where the boundary
values of the field are specified, including the bifurcation surface.
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3.1.4 Correlations in the vacuum

Let us now look more closely at the Minkowski vacuum state from the perspective of the Unruh effect. I
want to display explicitly the correlations between positive energy Rindler quanta on the right and negative
energy quanta on the left side of the Rindler horizon. Also, I shall derive the Unruh effect one more time, in
a way that will generalize to a derivation of the Hakwing effect. For simplicity I restrict attention to a free
scalar field.

The correlated structure of the vacuum in flat spacetime is already evident in the result of the section 3.1.3.
Recall that we showed the vacuum wavefunctional can be expressed as 〈φLφR|0〉 = N〈φR| exp(−πHB)|φL〉.
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Implicit in this representation is an identification I : H∗L → HR, which we made in the field configuration
representation. Using I, the vacuum state can be written (up to normalization) as |0〉 = exp(−πHB)I.
The map I is a state in HL ⊗ HR, which can be written as I =

∑
n |n〉L|n〉R, where |n〉L and |n〉R are

corresponding boost energy eigenstates in the left and right wedges, and HB |n〉 = En|n〉. So we have

|0〉 =
∑

n

exp(−πEn)|n〉L|n〉R. (3.21)

This shows that the Minkowski vacuum contains correlations between corresponding modes on either side of
the Rindler horizon.

Let us now rederive this result by looking at local field theory near the Rindler horizon in Minkowski
space. Let u = t− z and v = t + z, and we suppress the transverse coordinates. The general solution to the
wave equation has the form f(u) + g(v). We shall restrict attention to the rightmoving modes, i.e. those
that are functions of u only. The Klein-Gordon inner product for such modes is

(f1, f2) = i

∫
du[f∗1 ∂uf2 − (∂uf∗1 )f2]. (3.22)

Now consider the mode
p = exp[iλ ln(−u)] (3.23)

for u < 0, and p = 0 for u > 0. This is the form that an outgoing mode would have near a black hole
horizon as well, before climbing out to infinity. (For convenience I work here with a single frequency mode.
Imagine in the following that we really form a normalized wavepacket with frequencies in a small interval
about λ.) In terms of the Rindler coordinates η and ξ introduced in section 3.1.1 we have u = −ξe−η, so
p = exp[−iλ(η − ln ξ)]. Thus p is a positive boost frequency mode if λ is positive. This can also be seen
directly from the u coordinate form (3.23) by writing the Killing vector χ = ∂/∂η in the u-v coordinates,

χ = v∂v − u∂u. (3.24)

Using (3.24) one sees immediately that χa∇ap = −iλp.
The wavepacket p has positive norm in the inner product (3.22), and it corresponds to a one particle

state in the right hand Rindler Fock space. However—and here comes the most important point of the entire
discussion—p does not have purely positive frequency with respect to u. This much is clear since p vanishes
for u > 0, and a purely positive frequency function cannot vanish on the half line (or on any open interval,
since it is the boundary value of an analytic function on the lower half complex plane). Thus the Rindler
mode p does not correspond to a one particle state in the Minkowski Fock space; rather it is an excited mode
in the Minkowski vacuum.

Our goal is to express the Minkowski vacuum in terms of the Rindler Fock states. To this end we exploit
a trick due to Unruh: consider a new mode that agrees with p for u < 0, but rather than vanishing for
u > 0 is defined by analytic continuation in the lower half u-plane. This new mode will have purely positive
u-frequency. The function ln u+iπ is analytic in the lower half plane, and agrees with ln(−u) on the negative
real axis, if the branch cut is taken in the upper half plane. Thus Unruh’s positive u-frequency mode is

υ = p + e−πλp̃, (3.25)

where p̃(u) = p(−u) = exp[iλ ln u] is just the mode p “flipped” over the horizon (see Fig. 3.4). This
positive u-frequency mode does correspond to a one particle state in the Minkowski Fock space, and in
the Minkowski vacuum it is unexcited. That is, a(υ)|0〉 = 0, where a(υ) is the corresponding annihilation
operator, a(υ) = (υ, φ̂)KG, and φ̂ is the quantum field operator.

To describe the Minkowski vacuum in Rindler Fock space we now just need to express a(υ) in terms of
Rindler annihilation and creation operators. Linearity gives a(υ) = a(p) + e−πλa(p̃). However, while p is a
positive norm Rindler mode, the norm of p̃ is negative. Thus the “annihilation” operator should be regarded
instead as (minus) the creation operator for the complex conjugate mode, a(p̃) = −a†(p̃∗). The key equation
we are after is thus

a(υ) = a(p)− e−πλa†(p̃∗). (3.26)
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Figure 3.4: The mode p and its “flipped” partner p̃ have both positive and negative u-frequency components, but
the combination p + e−πλp̃ has only positive frequencies.

Now since a(υ) annihilates |0〉, we get the equation

a(p)|0〉 = e−πλa†(p̃∗)|0〉. (3.27)

This equation does not uniquely determine the state, since if |0〉 is a solution then so is F [a†(p̃∗)]|0〉 for any
function F . To fix this freedom, note that we can apply Unruh’s trick starting instead with the mode p̃∗

inside the horizon, and analytically continuing out in the lower half u-plane to construct another positive
u-frequency mode υ′ = p̃∗ + e−πλp∗. The vacuum condition a(υ′)|0〉 = 0 then gives us a second equation,
a(p̃∗)|0〉 = e−πλa†(p)|0〉, which is the same as (3.27) with the roles of p and p̃∗ reversed. These two equations
can be solved to express the part of |0〉 involving the υ and υ′ modes as a state in the product of left and
right Rindler Fock spaces. The solution is

|0〉υυ′ = exp
[
e−πλa†(p̃∗)a†(p)

] |0〉L|0〉R. (3.28)

Expanding the exponential then yields

|0〉υυ′ =
∑

n

e−πnλ|n〉L|n〉R, (3.29)

with |n〉L = 1√
n!

[a†(p̃∗)]n|0〉L, and similarly for |n〉R. The structure of this correlated state (3.29) is precisely
the same as what we derived from the Euclidean path integral argument, eqn. (3.21). When restricted to
HR, this state is a thermal density matrix at the dimensionless “temperature” 1/2π.

The mode p̃ has the same, positive, Killing frequency as the mode p, as is easily seen with the help of the
expression (3.24) for the Killing vector. Therefore p̃∗ has negative Killing frequency, so the state |n〉L has
negative Killing energy. Thus each set of positive boost energy p-particles on the right is correlated to set
of negative boost energy p̃∗-particles on the left. This observation is critical to understanding the balance
of energy in the Hawking effect.

3.2 The Hawking effect

At the heart of the Hawking effect is the Unruh effect. The key physics in both is the correlated structure
of the vacuum at short distances. These correlations manifest themselves as the Hawking effect when the
quantum field is propagating in the background of a stationary black hole. Rather than staying next to
the horizon forever, the outgoing quanta outside the event horizon gradually climb away from the horizon,
leaving their correlated partners on the other side to fall into the singularity.

In this section, I first describe the Hawking effect emphasizing the relation to accleration radiation, and
highlighting the role of the gravitational redshift. After briefly indicating the consequences for black hole
evaporation, I then explain how to use the results of section 3.1.4 to derive the Hawking effect. Finally, the
disturbing role played by arbitrarily high frequency field modes in the Hakwing effect is discussed.
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3.2.1 Gravitational acceleration radiation

Consider an accelerated nonrotating observer sitting at fixed radius r outside a Schwarzschild black hole.
For r very near the horizon Rs, the acceleration a is very large, and the associated timescale a−1 is very
small compared to Rs. The curvature of the spacetime is negligible on this timescale, so one expects the
vacuum fluctuations on this scale to have the usual flat space form, provided the quantum field is in a state
which is regular near the horizon.

Under these assumptions, the accelerated observer will experience the Unruh effect: the vacuum fluctua-
tions will appear to this observer as a thermal bath at a temperature T = (h̄/2π)a (although a freely falling
observer will describe the state at these scales as the vacuum). The outgoing modes of this thermal bath
will be redshifted as they climb away from the black hole. The ratio of the temperatures measured by static
observers at two different radii is T2/T1 = χ1/χ2, where χ is the norm of the time-translation Killing field.
At infinity χ∞ = 1, so we have an outgoing thermal flux in the rest frame of the black hole at the (Hawking)
temperature

T∞ = χ1h̄a/2π = h̄κ/2π

where κ is the surface gravity.
For a Schwarzschild black hole, κ = 1/2Rs = 1/4GM , so the Hawking temperature is TH = h̄/8πGM ,

and the corresponding wavelength is λH = 2π/ω = 8π2Rs. A larger black hole is therefore cooler. Recall
that in the case of the flat space Unruh effect, the redshifting to infinity completely depletes the acceleration
radiation, since the norm of the boost Killing field diverges at infinity.

Two remarks should be made here regarding the state dependence of the above argument. First, the
argument is clearly invalid if the the state of the quantum field is not regular near the horizon. For example,
there is a state called the “Boulware vacuum”, or “static vacuum”, which corresponds the absence of exci-
tations in a Fock space constructed with positive Killing frequency modes as the one-particle states. In the
Boulware vacuum, our accelerated observer sees no particles at all. However, the short distance divergence
of the two-point function does not have the flat space form as the horizon is approached, and the expectation
value of the stress energy tensor becomes singular.

The second remark is that it was important that we started with an observer very close to the horizon.
Only for such an observer is the acceleration high enough, and therefore the timescale a−1 short enough,
that the vacuum fluctuations can be taken to have the universal flat space form independent of the details of
the state of the field and the curvature of the spacetime. Thus, for example, it would be incorrect to argue
that an unaccelerated observer at infinity must (because he is unaccelerated) see no particles, since there
is no a priori justification for assuming the state there looks like the Minkowski vacuum. The lesson of the
Hawking effect is that the state at infinity in fact does not look like the Minkowski vacuum.

3.2.2 Evaporation

Since a black hole radiates energy by Hakwing radiation, energy conservation implies that it will lose mass.
The rate of mass loss is about one Hawking quantum M−1 per Rs = M (in Planck units h̄ = c = G = 1).
That is, dM/dt ∼ −M−2. Another way to see this is to use Stefan’s law. The effective black hole area is
R2

s ∼ M2, while T 4
H ∼ M−4, and the product of these gives M−2 again as the rate.

Integrating the mass loss equation gives a lifetime of order M3. Putting back the units this gives
(M/MP )3TP ' (M/1 gm)3 × 10−28 s. Thus a 1015 gm black hole starts off with a size of order 10−13 cm, a
temperature of order 10 MeV, and has a lifetime of about 1017 s, the present age of the universe. A solar
mass (1033 gm) black hole has a size of order 1 km, a temperature of order 10−11 eV, and lives 1054 times
the age of the universe!

3.2.3 Pair creation at the black hole horizon

The construction applied at the Rindler horizon in section 3.1.4 can also be applied at a stationary black
hole horizon. For example, consider a black hole line element χ2(s)dt2 − dl2, where χa = (∂/∂t)a is the
horizon generating Killing field with surface gravity κ. Near the horizon, χ ' κl, so the line element takes
the (flat) Rindler form ξ2dη2− dξ2, with η = κt. Thus χa corresponds to κ∂/∂η, and the η-frequency called
λ in 3.23 corresponds to ω/κ, where ω is the frequency with respect to χa, χa∇ap = −iωp.

26



For every ω a wavepacket can be constructed which is concentrated arbitrarily close to the horizon and
has arbitrarily high frequency with respect to the time of some fixed free-fall observer crossing the horizon
or, equivalently, with respect to the affine parameter u along an ingoing null geodesic that plays the role
of u = t − z in the Rindler horizon case. Thus, provided the state near the horizon looks, to a free-fall
observer at very short distances, like the Minkowski vacuum, we can conclude that it can also be described
as a correlated state of Boulware quanta with the same structure as (3.29). In particular, the state restricted
to the exterior of the horizon is a thermal one, with Boltzmann factor exp(−λ/2π) = exp(−h̄ω/TH), where
TH = h̄κ/2π is the Hawking temperature.

What is different in the black hole case is how these pairs of thermal quanta propagate. In flat space
they continue to swim in parallel on either side of the horizon. In a black hole spacetime the gravitational
tidal force peels them apart. Mathematically, since the wavefronts propagate at fixed u, and u = −ξe−η,
ξ scales exponentially with η along a wavefront, increasing toward the future and decreasing toward the
past. Once ξ starts to be of order the curvature radius, the Rindler approximation for the metric breaks
down. Thus, toward the future, the ingoing quanta eventually plunge into the singularity, while the outgoing
quanta eventually climb away from the horizon, partially backscatter off the angular momentum barrier and
the curvature, and partially emerge to infinity as exponentially redshifted thermal quanta at the Hawking
temperature. To every Hawking particle there is a negative Killing energy “partner” that falls into the black
hole. It is the negative energy carried by this partner that is presumably responsible for the mass loss of the
hole.

The number of p-particles reaching infinity thus takes the Planck form,

Np = Γp(eh̄ω/TH − 1)−1, (3.30)

where the coefficient Γp is the fraction of p-particles that make it out to infinity rather than being backscat-
tered into the black hole. This is sometimes called the greybody factor since it indicates the emissivity of the
black hole which is not that of a perfect blackbody. Another name for Γp is the absorption coefficient for
the mode p, since it is equal to the fraction of p-particles that would be absorbed by the black hole if sent
in from infinity.

The above reasoning shows that the Hawking radiation is a consequence of the assumption that the state
near the horizon is the vacuum as viewed by free-fall observers at very short distances. Let us call a state
with this property a free-fall vacuum. The derivation of the Hawking effect is not complete until on has
shown that the free-fall vacuum at the horizon indeed results from a generic state prior to collapse of the
matter that formed the black hole. This is a reasonable sounding proposition, since the initial state is the
vacuum for the ultra high frequency modes, and the time and length scales associated with the collapse
are much longer than those associated with such modes. Hawking carried out this step of the argument by
following the mode υ all the way backwards in time along the horizon, through the collapsing matter, and
out to past null infinity I−, using the geometrical optics approximation. At I− the mode still has purely
positive free-fall frequency, so since it is in the vacuum at I− it is in the free-fall vacuum at the horizon.

3.2.4 The transplanckian puzzle

There is something disturbing about Hawking’s reasoning however. As the wavepacket is propagated back-
wards in time along the horizon, it is blueshifting exponentially with respect to Killing time. For the very
first Hawking quanta that emerge after a black hole forms this is perhaps not so serious, since they have not
experienced much blueshifting. But for quanta that emerge a time t after the black hole formed, there is a
blueshift of order exp(κt). For a Schwarzschild black hole, κ = 1/2Rs, so after, say, t = 1000Rs, the blueshift
factor is exp(500). That is, the ingoing mode has frequency exp(500) times the frequency of the outgoing
Hawking quantum at infinity. For a solar mass black hole, the factor is exp(105) after only 2 seconds have
passed.

Needless to say, we cannot be confident that we know what physics looks like at such arbitrarily high,
“transplanckian” frequencies. Of course if exact local lorentz invariance is assumed, then any frequency
can be Doppler shifted down to a low frequency, just by a change of reference frame. But the unlimited
extrapolation of local lorentz invariance to arbitrary boost factors (and the associated infinite density of
states) must be regarded with skepticism.
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This puzzle can in one sense be sidestepped since, as indicated above, the only role of the transplanckian
ancestor was, for Hawking, to guarantee that one has a free-fall vacuum at short distances near the horizon.
This condition on the state could also plausibly arise in a theory which looks very different from ordinary
relativistic field theory at short distances, and in which there are no transplanckian ancestors.

However, this raises the question of how to account for the outgoing black hole modes if they do not have
transplanckian ancestry. Where else could they come from? It seems that they could come from ingoing
modes that are converted into outgoing modes in the neighborhood of the horizon (see figure 3.5). This
ridiculous sounding possibility actually occurs in simple linear field theories in which the wave equation is
modified by the addition of higher derivative terms in the spatial directions perpendicular to some preferred
local time axis [Unruh 1995, Brout et. al, 1995, Corley and Jacobson 1996, Jacobson 1996]. Similar mode
conversion processes occur in many situations where linear waves with a nonlinear dispersion relation prop-
agate in an inhomogeneous medium. There are examples from plasma waves, galactic spiral density waves,
Andreev reflection in superfluid textures, sound waves, and surface waves.

trans-
planckian
ancestors

planckian
ancestors

Figure 3.5: A Hawking pair and its ancestors. In ordinary field theory the ancestors come in from infinity with
transplanckian frequencies ωin ∼ exp(κt)ωout. In a theory with high frequency dispersion the ancestors can come in
with just planckian frequencies.

If mode conversion accounts for the origin of the outgoing black hole modes, then the ancestors are
probably planckian, but not trans-planckian, modes. Their detailed form would depend on the physics at
the planck scale (or at a lower energy scale for new physics). However, from the analysis of the linear
models referred to above, it is clear that, for black holes that are large compared to the new length scale, the
Hawking spectrum of black hole radiation is remarkably insensitive to these details. For such large black holes
the most significant consequence for the Hawking effect is for stimulated emission. In principle, one could
produce stimulated emission of Hawking radiation by sending in particles in the (presumably planckian)
ancestor modes of the Hawking quanta at any time after the black hole formed, rather than having to send
in transplanckian particles before the collapse.
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3.3 Generalized second law revisited

When Bekenstein first proposed the GSL (2.9) he was not thinking that A would ever decrease. The only
question was whether it would necessarily increase enough to compensate for entropy that falls across the
horizon. However, since a black hole emits Hawking radiation, and therefore loses mass, the area of its
horizon must shrink. This is not in contradiction with Hawking’s area theorem, since the quantum field
carries negative energy into the black hole, whereas Hawking assumed a positive energy condition on matter.
It does, however, pose a potential threat to the GSL.

Hawking’s calculation of the black hole temperature determined the coefficient of proportionality between
the black hole entropy and A/h̄G to be 1/4. The GSL thus takes the form

δ(Soutside + A/4h̄G) ≥ 0. (3.31)

Here we first dispose of the potential threat to the GSL posed by black hole evaporation, and then go on
to discuss why the box lowering experiment designed to violate the GSL fails. We then explain how energy
can be extracted from even a nonrotating, neutral black hole. Finally, some approaches to establishing the
general validity of the GSL are mentioned.

3.3.1 Evaporation

The energy and entropy densities of massless thermal radiation in flat space are given by e = 1
4aT 4, s = 1

3aT 3,
for some constant a. Treating the Hawking radiation as if it were simply radiation from a large surface at
temperature TH , the radiated entropy and energy are related as dS = 4

3dE/TH . On the other hand, since
the black hole mass changes by dM = −dE, the first law tells us that the black hole entropy changes by
dSBH = −dE/TH . The generalized entropy therefore increases: d(Soutside + SBH) = 1

3dE/TH . Thus the
GSL is satisfied, and the evaporation process into vacuum is an irreversible one.

In fact the radiation is not exactly like that from a hot surface in flat space. Each mode has a different
absorption cross section for the hole, and a proper treatment should take this into account. This was done
in some approximation by Zurek, with the result that the factor 4/3 is somewhat changed but still greater
than unity. It seems there should be an exact argument yielding this result, for any mode cross sections.
The general arguments for the GSL referred to below are probably adequate, although they are not phrased
in terms of the individual modes radiated and apply to much more general situations.

3.3.2 Box-lowering

Classically, the problem was that one could lower a box with entropy to the horizon of a black hole, dropping
it in after almost all of its energy had been extracted at infinity. In such a process the generalized entropy
would decrease (cf. section 2.2).

Bekenstein’s proposal to evade this violation of the GSL was to suggest that there is a universal upper
bound on the entropy that can be contained in a box of a given “size” R and energy E: S ≤ 2πER. Thus,
since a box of size R could not get any closer than R to the horizon, it might necessarily still deliver enough
energy to the black hole to maintain the GSL. He argued that this is so in various thought experiments, but
there were objections. One obvious objection is that the bound seems to restrict the number of independent
species of particles that might exist in nature, since more species lead to a greater possible entropy. It
would be strange if the validity of the GSL imposed a restriction on the number of species. Originally,
Bekenstein argued that this was the way it was. Later he argued that when the Casimir energies are taken
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into account the bound holds independent of the number of species. In the meantime, Unruh and Wald
argued convincingly that no such bound is needed to uphold the GSL.

The essential point made by Unruh and Wald is that the interaction of the box with the quantum fields
outside the horizon cannot be neglected. Far from the hole a static box sees the Hawking radiation, while
close to the hole it sees the Unruh radiation as a result of its acceleration. Analyzing the process in the
accelerating frame, the box experiences a buoyancy force owing to the fact that the temperature of the Unruh
radiation is higher on the lower side of the box than on the upper side. At the point where the energy of
the displaced Unruh radiation is equal to the energy E of the box, the buoyancy force is just great enough
to float the box. If the box is then pushed further in it acquires more energy, so the energy delivered to
the hole is minimized by dropping the box at the floating point. When the box is dropped into the hole the
entropy change of the hole is (from the first law) ∆SBH = E/TH . But the entropy Sbox of the box must
be less than or equal to the entropy of thermal radiation with the same volume and energy, since thermal
radiation maximizes entropy. That is, Sbox must be less than or equal to the entropy of the displaced Unruh
radiation, which has energy E and entropy E/TH . Thus the SBH + Soutside necessarily increases, so the
GSL holds.

It is somewhat peculiar to base the argument on the Unruh radiation which is not even seen by an
inertial observer. Unruh and Wald point out that the stress tensors “seen” by the two observers differ by
the conserved stress-tensor of the Boulware vacuum. Because it is separately conserved, this difference will
not affect the result for any observable like the tension in the rope or the total energy transferred.

In the inertial viewpoint, the reason the box floats is that as it is lowered it maintains the vacuum in the
accelerated frame, i.e. the Boulware vacuum, which has negative energy density relative to the surrounding
Unruh or Hartle-Hawking vacua. Evidently, as it is lowered, the box must radiate positive energy and fill
with negative energy until at the floating point its total energy equals zero.

3.3.3 Mining a black hole

The Unruh-Wald analysis also shows that energy can be extracted from a black hole faster than it would
naturally evaporate by Hawking radiation, even if it is nonrotating and neutral. One can lower an open
box to near the horizon, and then close it. It will be full of Unruh radiation. Now slowly lifting it back
out to infinity it will arrive at infinity full of radiation with some Killing energy Erad. The work done in
the cycle is the energy required to lift this radiation, i.e. the difference (1 − χbot)Erad, between its Killing
energy at infinity and at the bottom. This work is less than the energy extracted, so energy conservation
implies that one has somehow extracted the energy χbotErad from the black hole! Since Erad is proportional
to T 4

bot ∝ χ−4
botT

4
H , the extracted energy is arbitrarily large.1

How can one understand the mass loss by the black hole? When the box is closed, the interior is in
the local vacuum state, whose essentially zero energy density is comprised of a negative Boulware vacuum
energy density plus a positive thermal Unruh energy density. As the box is lifted out, the contribution of
the negative Boulware energy density drops (eventually to zero) as the acceleration drops, but the thermal
Unruh contribution survives. The negative Boulware energy flows out of the box and into the black hole,
decreasing its mass.

How is this all explained from the inertial viewpoint? As the box is lifted back up, it radiates negative
energy into the black hole and fills up with positive energy. One way to see this is as an effect of radiation
by (nonuniformly) accelerating mirrors, together with the fact that the lower face of the box experiences a
greater acceleration than the upper face.

3.3.4 General arguments

Many attempts have been made to give a general argument establishing the GSL, at least for quasistationary
processes. An input for these arguments is the assumption that ordinary second law holds, which of course
is not itself something that we know how to prove in general. Some of the arguments I have seen are listed
in the references. Almost all of them have the feature that the acceleration radiation (Unruh radiation) is
treated as bona fide thermal radiation, the Boulware vacuum energy being ignored. This viewpoint seems

1Taking into account the gravitational back-reaction Unruh and Wald estimated that the maximum rate of energy extraction
is roughly a Planck energy per Planck time, or c5/G (h̄ drops out).
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very clearly to be limited in validity to quasistationary processes, and even then I am not sure the arguments
are solid.

One argument that is rather different from the rest is Sorkin’s, which refers not to the generalized entropy
as defined by SBH + Soutside, but simply to the complete reduced density matrix for all fields obtained by
tracing over the degrees of freedom beyond the horizon. To appreciate the relation between this entropy and
the generalized entropy requires a discussion which is postponed until later. It should be mentioned that
Sorkin claims his argument, if certain gaps could be closed, would imply the second law for his entropy in
nonstationary processes as well as quasistationary ones.
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3.4 Meaning of black hole entropy

At this stage it is clear that black holes are really thermodynamic systems with an actual temperature and
entropy. What remains to be understood however is the meaning of this entropy in terms of statistical
mechanics. Somehow the entropy should be the logarithm of the number of independent states of the black
hole. Understanding how to count these states would constitute a significant step forward in the quest to
understand quantum gravity.

It should be said at the outset that the subject of this section lies at the wild frontier of black hole ther-
modynamics. While many interesting and presumably important facts are known, and significant progress
continues to be made, there is not yet agreement on a single correct viewpoint. I shall therefore discuss a
wide range of ideas, pointing out their interconnections, but not insisting on one unified approach.

The fact that the black hole entropy is even finite is already puzzling. A box of radiation at fixed energy
and volume has a finite entropy because the box imposes a long wavelength cutoff and the total energy
imposes a short wavelength cutoff. The Hilbert space describing the radiation field inside the box at fixed
energy is thus finite dimensional, and the microcanonical entropy is just the logarithm of its dimension. A
black hole in a box at fixed energy would also have a short wavelength cutoff (at the box) but, as emphasized
by ’t Hooft, according to standard quantum field theory it has no long wavelength cutoff (at the box). The
reason is that the horizon is an infinite redshift surface. The wavevector of any outgoing mode diverges at
the horizon, and is redshifted down to a finite value at the box. The entropy of each radiation field around a
black hole is therefore infinite due to a divergence in the mode density at the horizon, so it seems the black
hole entropy must also diverge.

We shall see below that this divergence is equivalent to a divergence in the renormalization of Newton’s
constant, or rather in 1/G. Thus one point of view is that it should be absorbed by “counter terms”, and
only the total, renormalized entropy is relevant. To many physicists this does not seem satisfactory however,
since one expects that entropy should count dimensions in Hilbert space, which should not be subject to
infinite subtractions. A possible resolution is that some mechanism cuts off the short wavlength modes at
the horizon, so that the entropy (and the renormalization of G−1) is finite.

This subject will be pursued further below, where we discuss the various different interpretations and
calculations of black hole entropy that have been proposed. Before beginning this journey however, let us
stop to consider what kind of a cutoff mechanism is called for.
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3.4.1 Holographic hypothesis

Given that the GSL seems to be true, one is led to the conclusion that A/4 (setting h̄G = 1) must be the
most entropy that can be contained in a region surrounded by a surface of area A. To maximize the volume
one would take a sphere, and if there were more entropy than A/4, but no black hole, one could simply add
more mass until a black hole formed, at which point the entropy would go down to A/4, violating the GSL.
Thus the entropy must have been less than A/4 to begin with.

’t Hooft argued that the inescapable implication of this is that the true space of quantum states in a finite
region must be finite dimensional and associated with the two-dimensional boundary of the region rather
than the volume. Thus it is not enough even if the system is like a fermion field on a lattice of finite spacing.
Rather, the states in the region must be somehow determined by a finite-state system on a boundary lattice!
’t Hooft made the analogy to a hologram, and the idea was dubbed by Susskind the holographic hypothesis.

From a classical viewpoint, the holographic hypothesis may correspond to a statement about the phase
space of a gravitating system surrounded by a surface of area A that is not inside a black hole. It is not
inconceivable that this phase space is compact with a volume that scales as the area. If something like this is
true, then the holographic hypothesis could just be a straightforward consequence of quantizing a gravitating
system.

On the other hand, it has been suggested by ‘t Hooft and Susskind that the holographic hypothesis can
only be incorporated into physics with a radical change in the foundations of the subject. If so, it provides
a tantalizing hint as to the nature of that change. There are some suggestions that string theory might
be headed in the required direction, or perhaps something very different like a cellular automaton model is
correct. For the remainder of this section I will ignore the holographic hint however, and continue to discuss
the problem from the point of view of local field theory.
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3.4.2 Formation degeneracy

Bekenstein’s original idea was that the entropy of a black hole is the logarithm of the number of ways it
could have formed. This is closely related to the Boltzman definition of entropy as the number of microstates
compatible with the macrostate.

Hawking noted that a potential problem arises if one contemplates increasing the number of species of
fundamental fields. There would seem to be more ways of forming the black hole, however the entropy is
fixed at A/4. Hawking’s resolution of this was that the black hole will also radiate faster because of the
extra species, so that there would be less phase space per species available for forming the hole. Presuming
these two effects balance each other, the puzzle would be resolved. This argument was further developed by
Zurek and Thorne, whose analysis makes it uneccessary to presume that the two effects cancel. Building up
the black hole bit by bit, adding energy to the thermal “atmosphere” just outside the horizon, they argue
that the entropy is equal to the logarithm of the number of ways of making the black hole, independent of
the number of species.

Note that to conclude that the actual value of the black hole entropy A/4h̄G is independent of the
number of species, one must assume that the value of Newton’s constant is also independent of the number
of species. This is by no means clear however, since the low energy effective G is renormalized by the vacuum
fluctuations of all quantum fields. If a fundamental theory could determine G, there is no reason to think it
would come out to be independent of the number of species.

The Zurek-Thorne interpretation sounds a lot like it is identifying the black hole entropy with the entropy
of the thermal bath seen by accelerated observers outside the horizon. Actually, this is not the case. In fact
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Zurek and Thorne say they are subtracting precisely (?) this entropy, which is infinite. I must confess I
simply don’t fully understand this argument.
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3.4.3 Thermal entropy of Unruh radiation

Another proposed interpretation is that black hole entropy actually should be identified with the entropy
of the thermal bath of quantum fields outside the horizon. Let us assume the black hole is nonrotating
for simplicity. Recall that the quantum field outside the horizon is in a thermal state with respect to the
static (Boulware) vacuum. More precisely, in the Unruh state which results from collapse this is true only
for the outgoing modes, while it is strictly true for the Hartle-Hawking state which has incoming thermal
radiation as well. Since the outgoing radiation dominates the calculation, we use the Hartle-Hawking state
for convenience.

The density matrix ρ for the field outside in the Hartle-Hawking state |HH〉 can be obtained by a
calculation similar to the one which yields the Minkowski vacuum as a thermal state, with the result

ρext := Trint|HH〉〈HH| = exp(−βH). (3.32)

Here β = 1/TH , and H is the static Hamiltonian H =
∫

Tabχ
adΣb, where χa is the static Killing field, and

the integral is over a spatial slice extending from the horizon to infinity.
The entropy associated with this thermal state can be evaluated as for any thermal state. However,

since it is infinite, some regulator is be required. Let us give a simple argument displaying the nature of
the divergence.2 The total entropy of the bath is the integral of the local entropy density s over the volume
outside the black hole,

S =
∫

s 4πr2dl, (3.33)

where dl is the proper length increment in the radial direction and we have assumed spherical symmetry.
The local temperature T is given by T = TH/χ ' (κ/2π)/(κl) = 1/2πl, which diverges as the horizon
is approached. Therefore it suffices to consider massless radiation, for which s ∝ T 3, and the dominant
contribution (in a finite box) will come from the region near the horizon. Cutting off the integral at a proper
height h, we thus have

S ∼ A

∫

h

l−3dl ∼ A/h2. (3.34)

Because of the local divergence at the horizon, the result comes out proportional to the area. It is remarkable
that this simple estimate gives an area law for the entropy. If the cutoff height is identified with the Planck
length, then the entropy even has the correct order of magnitude.
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3.4.4 Entanglement entropy

Another proposal is that the black hole entropy is a measure of the information hidden in correlations between
degrees of freedom on either side of the horizon. For instance, although the full state of a quantum field may

2A similar calculation in which the entropy is evaluated using a mode sum was performed by ’t Hooft, who called the cutoff
at height h above the horizon a “brick wall”.
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be pure, the reduced density matrix ρext (defined above for the Hartle-Hawking state) will be mixed. The
associated information-theoretic entropy,

Sentanglement = −Trρext ln ρext, (3.35)

should perhaps thus be part of the black hole entropy. This entropy is sometimes called entanglement
entropy. (It has also been called geometric entropy.)

If the formal calculation establishing (3.32) can be trusted, we know that Sentanglement is identical to the
thermal entropy of the quantum field outside the horizon as defined above. In particular, it will diverge in
the same way. Instead of thinking of this as an infinite temperature divergence, we can think of it as due
to the correlations between the infinite number of short wavelength degrees of freedom on either side of the
horizon. These correlations are evident from the form of the state near the horizon when expressed in terms
of excitations above the inside and outside static vacua (cf. section 3.1.4).
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3.4.5 Species problem

Besides the divergence, which might be cut off in some way, there is another problem with the idea that
the thermal or entanglement entropies of quantum fields be identified with black hole entropy. Namely, this
entropy depends on the number of different fields in nature, whereas the black hole entropy is universal,
always equal to A/4h̄G.

Various resolutions to the species problem have been suggested. The most natural one to my mind is
that the renormalized Newton constant, which appears in the Bekenstein-Hawking entropy A/4h̄G, depends
on the number of species in just the right way to absorb all species dependence of the black hole entropy.
To understand this point, we must include the gravitational degrees of freedom in our description, which we
do in the next subsection.

It should be remarked that the formal nature of the argument used to establish the equality ρext =
exp(−βH) left us on somewhat shaky ground. It may be that entanglement and thermal entropies are not
exactly the same. This issue is somewhat superseded by the considerations of the next subsection, in which
the coupling of the matter and gravitational degrees of freedom is allowed for.
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3.4.6 Quantum gravitational statistical mechanics

Shortly after the Hawking effect was discovered, Gibbons and Hawking proposed a formulation of quantum
gravitational statistical mechanics that enabled them to compute the black hole entropy, and they got the
right answer. Their approach was nevertheless not generally regarded as the final word, for several reasons
to be discussed below, which is why people pursued the question in the ways already described above. In
fact, Gibbons and Hawking even noted that their approach contains the thermal entropy of quantum fields
as a one-loop quantum correction. However, they did not point out that this correction is dominated by a
divergent term proportional to the area of the event horizon, which is the feature that has attracted so much
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attention by later workers in the hopes that, by itself, this might explain the proportionality of black hole
entropy and area without needing to get into the obscure issue of the quantum gravitational Hilbert space.

The Gibbons-Hawking approach will now be described. The basic idea is to imitate standard methods of
handling thermodynamic ensembles in other branches of physics. Thus, the goal is to compute the partition
function Z = Tr exp(−βH) for the system of gravitational and matter fields in thermal equilibrium at
temperature T , from which the entropy and other thermodynamic functions can be evaluated. In fact it is
better in principle to consider the microcanonical ensemble rather than the canonical one. This is because
the canonical ensemble is unstable for a gravitating system. If a black hole is in a large heat bath at the
Hawking temperature, a small fluctuation to larger mass will cause its temperature to drop, which leads
to a runaway growth of the hole. Conversely, a small fluctuation to smaller mass will lead to a runaway
evaporation of the hole.

This instability can be controlled by putting the black hole in a very small container, with radius less than
3/2 times the Schwarzschild radius (for a Schwarzschild black hole), and somehow holding the temperature
at the box fixed. The reason this eliminates the instability is interesting: although a fluctuation to (say)
larger mass causes the Hawking temperature to drop, this is more than compensated by the fact that the
horizon has moved out, so the local temperature at the box is less redshifted than before, so the hole is in fact
locally hotter than the box. Alternatively one can work with the more physical microcanonical ensemble, in
which the total energy is fixed. In the following we shall for simplicity gloss over these refinements in the
nature of the ensemble, unless explicit mention is called for.

To actually compute Z would seem to require an understanding the Hilbert space of quantum gravity,
something which we still lack. Gibbons and Hawking sidestepped this difficulty by passing to a path integral
representation for Z whose semiclassical approximation could be plausibly evaluated. Thus, one writes

Z = Tr exp(−βH) =
∫

DgDφe−I[g,φ] (3.36)

where g and φ stand for the metric and matter fields respectively and I is the Euclidean action. The
stationary point of the action is the Euclidean black hole, with mass determined by the condition that there
be no conical singularity in the r-t plane at the Euclidean horizon. The Euclidean Rindler coordinates are
just polar coordinates, ds2 = ξ2dη2 + dξ2, so this means the period of the “angular” coordinate η must be
2π. Since η = κt (cf. section 3.2.3), it follows that κ = 1/4M must be 2π/β, or M = β/8π. The zeroth
order contribution to the entropy is then obtained as

S0 = (β
∂

∂β
− 1)I[g0, φ0], (3.37)

where (g0, φ0) is the classical stationary point.
To include quantum fluctuations one could write g = g0 + g̃ and φ = φ0 + φ̃, and integrate over g̃ to

obtain an effective action Ieff [g0, φ0] = − ln Z. This effective action will contain a Ricci scalar term with a
coefficient 1/16πGren, where Gren is the renormalized Newton constant, as well as higher curvature terms,
non-local terms etc. The contribution of the fluctuations to the entropy is primarily through their effect on
the renormalization of G.

Viewed in a different way, the fluctuation contribution can be related to the thermal entropy of acceler-
ation radiation or the (formally equivalent) entanglement entropy discussed earlier. The path integral over
g̃ and φ̃ formally gives Tr exp(−βH0[g̃, φ̃]), where H0 is the evolution operator for the fluctuations in the
background (g0(β), φ0(β)). Thus, the contribution S′ of the fluctuations to the entropy

S = S0 + S′ = (β
∂

∂β
− 1)Ieff [g0, φ0] (3.38)

looks at first just like the entanglement entropy Stangle.
However, in computing the entanglement entropy only the period β of the background is varied, while

otherwise the background is fixed. By contrast, in computing S as above, one also must differentiate with
respect to the β-dependence of the background (g0(β), φ0(β)) [Frolov, 1995]. Formally, this extra variation
makes no contribution, since (g0, φ0) is chosen to be a stationary point of the effective action. Thus the
two computations might yield the same result. However, the calculation in which only the period is varied
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introduces a conical singularity at the horizon, and this can lead to some difference. For some types of fields
and couplings (e.g. free, minimally coupled scalar and spin-1/2 fields) it has been shown that there is no
difference, and in some cases (e.g. free vector field) there is a difference [Kabat, 1995]. It seems that the full
partition function approach must be the correct one in principle.
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Appendix A

General Relativity in a nutshell

A.1 Newtonian gravity

Because of the equivalence of inertial and (passive) gravitational mass, Newton’s equation for the acceleration
of a test particle in a gravitational potential ϕ reads

ai = −ϕ,i,

where “, i” denotes partial derivative w.r.t. xi. All particles fall with the same acceleration, so the accel-
erating effects of gravity can be locally eliminated by going to a freely falling reference frame, but only to
the extent that the gradient of the gravitational field can be neglected. The true gravitational field is thus
the Newtonian tidal tensor field, NΦi

j := −ϕ,ij . Newton’s equation for the gravitational field states that
∇2ϕ = 4πGρ, i.e. the trace of the tidal tensor is determined by the mass density ρ:

NΦi
i = −4πGρ.

A.2 Spacetime

In special relativity the proper time and space intervals are described by the Minkowski line element,

ds2 = dt2 − dx2 − dy2 − dz2,

given here in units where c = 1. The idea of general relativity is that, in accord with the equivalence of
inertial and gravitational mass, one can always choose coordinates at any point in spacetime so that the line
element takes the above form, and one can even arrange to have all the first derivatives of the coefficients
in the line element vanish at a given point, but in the presence of a gravitational tidal field the second
derivatives can not be made to vanish, even at a point, indicating curvature. The general line element is
written:

ds2 = gµνdxµxν ,

with µ, ν = 0, 1, 2, 3 and summation over repeated µ and ν indices understood.

A.3 Geodesic equation

The path of a test particle not acted upon by any forces is a geodesic. A geodesic path xµ(λ) is a stationary
point of an action:

S =
∫

1
2
gµν ẋµẋν dλ,

where ẋµ := dxµ/dλ. The Euler-Lagrange equations are the geodesic equation:

d

dλ
(gµαẋµ)− 1

2
gµν,αẋµẋν = 0.
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Note that in a coordinate system for which gµν,α(p) = 0 at a particular point p, the geodesic equation
merely states that the coordinate acceleration ẍµ vanishes, just as it would for a free particle in the absence
of gravity. The parameter λ can be linearly rescaled λ → aλ + b without changing the above form of the
geodesic equation. This class of parameters is called affine parameters for the geodesic. For a timelike or
spacelike geodesic the affine parameter can always be chosen to coincide with the proper time or proper
length along the curve.

A.4 Curvature and Einstein equation

The geodesics are the locally straight lines, and if these lines have relative acceleration, then the spacetime is
geometrically curved. This relative acceleration, or “curvature”, corresponds to the presence of gravitational
tidal forces. The geodesic deviation equation characterizes the relative acceleration of infinitesimally separated
geodesics in terms of the second covariant derivative of the connecting vector Cσ:

D2

dλ2
Cσ = EΦσ

τCτ ,

where the Einstein tidal tensor EΦσ
τ is certain components of the Riemann curvature tensor:

EΦσ
τ := −Rσ

µτν ẋµẋν .

Einstein’s vacuum field equation follows from the assumption that the Newtonian equation hold for all
geodesics, which implies that EΦσ

σ = 0 for all ẋµ, which implies that The Ricci tensor Rµν := Rσ
µσν

vanishes. In the presence of matter, Newton’s equation implies EΦσ
σ = −4πGρE , where ρE should be

some relativistic scalar quantity that agrees in Newtonian situations with the mass density. The simplest
possibility is to try ρE = (aTµν + (1− a)Tgµν)ẋµẋν , where Tµν is the stress-energy tensor and T = Tµνgµν

is its trace. The contracted Bianchi identity (Rµν − 1
2Rgµν);ν = 0 (where “;” denotes covariant derivative)

is then consistent with the local conservation of energy and momentum Tµν
;ν only if one chooses a = 2,

yielding the field equation

Rµν = 8πG(Tµν − 1
2
Tgµν),

or equivalently,

Rµν − 1
2
Rgµν = 8πGTµν .

A.5 Symmetries and conservation laws

If the metric components in some coordinate system are independent of a particular coordinate xα̂ then the
metric has a symmetry under translations by this coordinate holding the remaining coordinates fixed. The
vector field ξµ = (∂/∂xα̂)µ that generates the symmetry is called a Killing vector. In the original coordinates
the components of the Killing vector are simply ξµ = δµ

α̂. A coordinate-covariant characterization of a Killing
vector is ξ(µ;ν) = 0,

Each symmetry implies a conservation law. If the metric and therefore the geodesic action is independent
of the coordinate xα̂ then the conjugate momentum for a particle is conserved: pα̂ = gµα̂ẋµ = const.
In terms of the vector field ξµ that generates the symmetry the conserved quantity is the inner product
ẋµξµ := gµν ẋµξν . For fields or distributed matter, the energy-momentum tensor describes the current density
of energy-momentum four-vector. Local conservation of energy-momentum (i.e. neglecting gravitational tidal
effects) is expressed by Tµν

;ν = 0, and is implied by the Einstein equation. In the presence of a Killing vector
there is an associated conserved current, Tµνξν , the current of the ξ-component of the energy-momentum
four-vector.
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