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1.a Thermal equilibrium means that the temperature T at the box r = R is the blue-
shifted Hawking temperature TH = 1

8πM , where M is the mass of the hole. This equilibrium
condition gives a curve of solutions

T (M) =
1√

1− 2M
R

TH =
R

8πM
√

R− 2M
. (1)

Note that T (M) is positive on M ∈ (0, R/2) and diverges at the end points of this interval.
In particular, it has a minimum at ∂T/∂M = 0 which is equivalent to a maximum of the
denominator in (1)

0 =
∂

∂M

(
M
√

R− 2M
)
⇔ M = M∗ :=

R

3
. (2)

The critical value T∗ := T (M∗) at which this happens is T∗ = 3
√

3
8πR

. Since T → +∞ at
{0, R/2} and there is only one solution to (2), we conclude that T (M) is convex and that
T∗ is a minimum. It follows that for T > T∗ there are exactly two solutions M± to (1).

1.b.i This follows immediately from the previous discussion: T∗ is a global minimum on
(0, R/2) and it is the unique extremum. Hence, for M ∈ (0, R/3) the slope χ−1 := ∂T/∂M
is negative while for M ∈ (R/3, R/2), it is positive. If χ−1 is negative (positive), its inverse
(the specific heat χ) is negative (positive).

1.b.ii This also follows immediately from part a: The stable holes live on M ∈ (R/3, R/2).
In particular M > R/3.

2.a The total entropy of a universe with a black hole of mass M and radiation of energy
Eγ can be written as Stot = Sbh(M) + Sγ(Eγ). This entropy has a stationary point

0 = δStot =
∂Sbh

∂M
δM +

∂Sγ

∂Eγ

δEγ . (3)
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The total energy Etot = M + Eγ is taken to be fixed in the micro-canonical ensemble. In
other words 0 = δM + δEγ and (3) reduces to

0 =
∂Sbh

∂M
− ∂Sγ

∂Eγ

. (4)

The stationary point is a local maximum if δ2S < 0, id est

0 >
∂2Sbh

∂M2
δM2 +

∂2Sγ

∂E2
γ

δE2
γ

=

[
∂2Sbh

∂M2
+

∂2Sγ

∂E2
γ

]
δM2 . (5)

Now Sbh = 4πM2. On the other hand, the energy and entropy density of radiation as a
function of temperature go like u ∝ T 4 and s ∝ T 3, respectively. Let V denote the volume
of the box and define constants b and b′ such that we have for the total energy and entropy

Eγ = bT 4V ,
Sγ = b′T 3V . (6)

(From dE = TdS we can infer b′ = (4/3)b, but this is not needed below.) Solving the first

for T and plugging into the second gives Sγ = cE
3/4
γ V 1/4 for some c. Plugging this into (4)

and (5) respectively gives

8πM =
3c

4

(
V

Eγ

) 1
4

, (7)

and

8π <
3c

4

(
V

Eγ

) 1
4 1

4Eγ

. (8)

Dividing (7) by (8) gives Eγ < M/4.

2.b This follows immediately from (7) which we will write as V = aEγM
4 since, Eγ and

M , being only part of the total energy of the system E, are both less than E. Therefore
V < aE5. However, the maximum value of EγM

4 at fixed E occurs when Eγ = M/4, i.e.
when Eγ = E/5 and M = 4E/5. Hence we have the stronger inequality V < 445−5aEγM

4.

2.c We will call the case of pure radiation at entropy E case 1 and the case with the black
hole case 2. S1 is the entropy of radiation of energy E at volume V ; S1 = Sγ(E, V ). For case
2 we have an entropy S2 = Sbh(M) + Sγ(Eγ, V ). Temporarily parameterizing Sbh = αM2

and Sγ = βE
3/4
γ and using (4) we find that

Sbh =
3M

8Eγ

Sγ(Eγ, V ) . (9)
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Substituting M = 4Eγ we find S2 = (5/2)Sγ(Eγ, V ). Finally, we substitute Eγ = E/5 to get
for the ratio

S2

S1

=
5

2
· Sγ(E/5, V )

Sγ(E, V )
=

5

2
· β(E/5)3/4

βE3/4
=

51/4

2
≈ 3

4
. (10)

3.a The surface gravity is the horizon value of κ = |∇|ξ||, with ξ = ∂/∂t in the Schwarzschild-
like co-ordinates. Hence |ξ|2 = gαβξαξβ = gtt = f(r). Since | · | is a scalar, we get simply

κ =
√
−gαβ∂α|ξ|∂β|ξ|. Furthermore, since |ξ| =

√
f(r) is a function only of the radial

co-ordinate, κ =
√
−grr(∂r

√
f)2 =

√
f∂r

√
f = 1

2f
′. Restricting to r = r+ finally gives

κ =
r+

R2
+

r2
0

r3
+

=
2r+

R2
+

1

r+

, (11)

where in the second equality we have solved f(r+) = 0 for r2
0 = r2

+ + r4
+/R2 and made the

substitution.

3.b The temperature must be evaluated by Wick rotating the AdS-Schwarzschild solution
and finding the correct periodic identification. This proceeds the same way as it did for
the Schwarzschild black hole with the result that TH = κ/2π. However, to determine the
minimum horizon radius for which the black hole has positive specific heat, it suffices to
know simply that this calculation results in T ∝ κ. For the energy, we should compute
the charge associated with the Killing field ξ. This turns out to be proportional to r2

0, the
coefficient of the 1/r2 term in the metric, which (see 3.a) increases monotonically with r+.
Thus, the sign of the specific heat is the same as the sign of

∂κ/∂r+ =
2

R2
− 1

r+

. (12)

Hence, the specific heat is positive for r+ > R/
√

2. The temperature at r+ = R/
√

2 is given
by TH = κ/2π =

√
2/πR.
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