Homework 5

William D. Linch III and Ted Jacobson

April 27, 2005

1.a Thermal equilibrium means that the temperature T at the box r=R is the blue-shifted Hawking temperature $T_H=\frac{1}{8\pi M}$, where M is the mass of the hole. This equilibrium condition gives a curve of solutions

$$T(M) = \frac{1}{\sqrt{1 - \frac{2M}{R}}} T_H = \frac{R}{8\pi M \sqrt{R - 2M}}$$
 (1)

Note that T(M) is positive on $M \in (0, R/2)$ and diverges at the end points of this interval. In particular, it has a minimum at $\partial T/\partial M = 0$ which is equivalent to a maximum of the denominator in (1)

$$0 = \frac{\partial}{\partial M} \left(M \sqrt{R - 2M} \right) \iff M = M_* := \frac{R}{3} . \tag{2}$$

The critical value $T_* := T(M_*)$ at which this happens is $T_* = \frac{3\sqrt{3}}{8\pi R}$. Since $T \to +\infty$ at $\{0, R/2\}$ and there is only one solution to (2), we conclude that T(M) is convex and that T_* is a minimum. It follows that for $T > T_*$ there are exactly two solutions M_{\pm} to (1).

- **1.b.i** This follows immediately from the previous discussion: T_* is a global minimum on (0, R/2) and it is the unique extremum. Hence, for $M \in (0, R/3)$ the slope $\chi^{-1} := \partial T/\partial M$ is negative while for $M \in (R/3, R/2)$, it is positive. If χ^{-1} is negative (positive), its inverse (the specific heat χ) is negative (positive).
- **1.b.ii** This also follows immediately from part **a**: The stable holes live on $M \in (R/3, R/2)$. In particular M > R/3.
- **2.a** The total entropy of a universe with a black hole of mass M and radiation of energy E_{γ} can be written as $S_{\text{tot}} = S_{\text{bh}}(M) + S_{\gamma}(E_{\gamma})$. This entropy has a stationary point

$$0 = \delta S_{\text{tot}} = \frac{\partial S_{\text{bh}}}{\partial M} \delta M + \frac{\partial S_{\gamma}}{\partial E_{\gamma}} \delta E_{\gamma} . \tag{3}$$

The total energy $E_{\text{tot}} = M + E_{\gamma}$ is taken to be fixed in the micro-canonical ensemble. In other words $0 = \delta M + \delta E_{\gamma}$ and (3) reduces to

$$0 = \frac{\partial S_{\rm bh}}{\partial M} - \frac{\partial S_{\gamma}}{\partial E_{\gamma}} \,. \tag{4}$$

The stationary point is a local maximum if $\delta^2 S < 0$, id est

$$0 > \frac{\partial^{2} S_{\rm bh}}{\partial M^{2}} \delta M^{2} + \frac{\partial^{2} S_{\gamma}}{\partial E_{\gamma}^{2}} \delta E_{\gamma}^{2}$$

$$= \left[\frac{\partial^{2} S_{\rm bh}}{\partial M^{2}} + \frac{\partial^{2} S_{\gamma}}{\partial E_{\gamma}^{2}} \right] \delta M^{2} . \tag{5}$$

Now $S_{\rm bh}=4\pi M^2$. On the other hand, the energy and entropy density of radiation as a function of temperature go like $u\propto T^4$ and $s\propto T^3$, respectively. Let V denote the volume of the box and define constants b and b' such that we have for the total energy and entropy

$$E_{\gamma} = bT^{4}V,$$

$$S_{\gamma} = b'T^{3}V.$$
(6)

(From dE = TdS we can infer b' = (4/3)b, but this is not needed below.) Solving the first for T and plugging into the second gives $S_{\gamma} = cE_{\gamma}^{3/4}V^{1/4}$ for some c. Plugging this into (4) and (5) respectively gives

$$8\pi M = \frac{3c}{4} \left(\frac{V}{E_{\gamma}}\right)^{\frac{1}{4}} , \qquad (7)$$

and

$$8\pi < \frac{3c}{4} \left(\frac{V}{E_{\gamma}}\right)^{\frac{1}{4}} \frac{1}{4E_{\gamma}} . \tag{8}$$

Dividing (7) by (8) gives $E_{\gamma} < M/4$.

- **2.b** This follows immediately from (7) which we will write as $V = aE_{\gamma}M^4$ since, E_{γ} and M, being only part of the total energy of the system E, are both less than E. Therefore $V < aE^5$. However, the maximum value of $E_{\gamma}M^4$ at fixed E occurs when $E_{\gamma} = M/4$, i.e. when $E_{\gamma} = E/5$ and M = 4E/5. Hence we have the stronger inequality $V < 4^45^{-5}aE_{\gamma}M^4$.
- **2.c** We will call the case of pure radiation at entropy E case 1 and the case with the black hole case 2. S_1 is the entropy of radiation of energy E at volume V; $S_1 = S_{\gamma}(E, V)$. For case 2 we have an entropy $S_2 = S_{\rm bh}(M) + S_{\gamma}(E_{\gamma}, V)$. Temporarily parameterizing $S_{\rm bh} = \alpha M^2$ and $S_{\gamma} = \beta E_{\gamma}^{3/4}$ and using (4) we find that

$$S_{\rm bh} = \frac{3M}{8E_{\gamma}} S_{\gamma}(E_{\gamma}, V) . \tag{9}$$

Substituting $M = 4E_{\gamma}$ we find $S_2 = (5/2)S_{\gamma}(E_{\gamma}, V)$. Finally, we substitute $E_{\gamma} = E/5$ to get for the ratio

$$\frac{S_2}{S_1} = \frac{5}{2} \cdot \frac{S_{\gamma}(E/5, V)}{S_{\gamma}(E, V)} = \frac{5}{2} \cdot \frac{\beta(E/5)^{3/4}}{\beta E^{3/4}} = \frac{5^{1/4}}{2} \approx \frac{3}{4} . \tag{10}$$

3.a The surface gravity is the horizon value of $\kappa = |\nabla|\xi||$, with $\xi = \partial/\partial t$ in the Schwarzschild-like co-ordinates. Hence $|\xi|^2 = g_{\alpha\beta}\xi^{\alpha}\xi^{\beta} = g_{tt} = f(r)$. Since $|\cdot|$ is a scalar, we get simply $\kappa = \sqrt{-g^{\alpha\beta}\partial_{\alpha}|\xi|\partial_{\beta}|\xi|}$. Furthermore, since $|\xi| = \sqrt{f(r)}$ is a function only of the radial co-ordinate, $\kappa = \sqrt{-g^{rr}(\partial_r\sqrt{f})^2} = \sqrt{f}\partial_r\sqrt{f} = \frac{1}{2}f'$. Restricting to $r = r_+$ finally gives

$$\kappa = \frac{r_+}{R^2} + \frac{r_0^2}{r_+^3} = \frac{2r_+}{R^2} + \frac{1}{r_+} , \qquad (11)$$

where in the second equality we have solved $f(r_+) = 0$ for $r_0^2 = r_+^2 + r_+^4/R^2$ and made the substitution.

3.b The temperature must be evaluated by Wick rotating the AdS-Schwarzschild solution and finding the correct periodic identification. This proceeds the same way as it did for the Schwarzschild black hole with the result that $T_H = \kappa/2\pi$. However, to determine the minimum horizon radius for which the black hole has positive specific heat, it suffices to know simply that this calculation results in $T \propto \kappa$. For the energy, we should compute the charge associated with the Killing field ξ . This turns out to be proportional to r_0^2 , the coefficient of the $1/r^2$ term in the metric, which (see 3.a) increases monotonically with r_+ . Thus, the sign of the specific heat is the same as the sign of

$$\partial \kappa / \partial r_{+} = \frac{2}{R^2} - \frac{1}{r_{+}} . \tag{12}$$

Hence, the specific heat is positive for $r_+ > R/\sqrt{2}$. The temperature at $r_+ = R/\sqrt{2}$ is given by $T_H = \kappa/2\pi = \sqrt{2}/\pi R$.