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1.a The rate of change of a vector va flowing along the integral curves of ua is given by
v̇a = ub∇bv

a = vb∇bu
a = Ba

bv
b = 1

3θv
a + σa

bv
b + ωa

bv
b for Ba

b := ∇bu
a where we have used

the fact that the vector fields u and v commute. It follows from this that the length of v
changes by d

dλ |v| = 1
|v|(

1
3θv

2 + σabv
avb) = 1

3θ|v|+ σabv
avb/|v|. Now suppose that va is one of

a set of three spacial vector fields spanning the t = constant sections in a Robertson-Walker
spacetime, i. e. the co-moving frame. By isotropy, the shear for the flow of this vector must
vanish, for if it did not, a round sphere at t = t0 would evolve into a squashed sphere for
t > t0 which is certainly not invariant under rotations about its center. Hence d

dλ |v| = 1
3θ|v|.

Now the metric for a Robertson-Walker spacetime can be put in the form

ds2 = dt2 − a2(t)dΣ2 , (1)

where dΣ2 is the volume element of a unit (pseudo)sphere or Euclidean 3-space. In other
words, all lengths on Σ are determined by a(t). In particular, the spacial sections are
expanding uniformly in all directions at the rate

ȧ =
1

3
θa (2)

as we have just seen.1 Consequently, ä = 1
3(θ̇a + 1

3θ
2a). Then, by the shearless, twistless,

Raychaudhuri equation, ä/a = −1
3Rabu

aub. The “trace-reverse” of the standard Einstein
equation, Rab− 1

2gabR = 8πTab, is Rab = 8π(Tab− 1
2gabT ). Futhermore, the stress-energy of a

perfectly homogeneous and isotropic co-moving cosmological fluid is given in the coordinate
system of (1) as (Tαβ) = diag(ρ,−p,−p,−p), where ρ is the energy density and p is the
pressure. Plugging this in gives

ä

a
= −8π

3

(
ρ− 1

2
(ρ− 3p)

)
= −4π

3
(ρ + 3p) , (3)

1It is worth emphasizing here that the expansion represented by θ is that of the co-moving frame or
“cosmological fluid” (also known as the (in)famous “æther”).
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as desired.

1.b If the test particles are initially at rest with respect to each other and not rotating
about their center of mass, then for a vector v denoting the displacement between two
distinct particles, v̇a = 0. Since this must hold for any such (spacial) vector this implies
Ba

b = 0 (see 1.a) which, in turn, implies θ = σ = ω = 0. Finally, since its center is at rest
w. r. t. the cosmological fluid, then in the coordinate system of (1) u = ∂t. In this situation
the Raychaudhuri equation simplifies to θ̇ = −Rtt = −4π(ρ + 3p). Hence, for ρ + 3p < 0,
θ̇ < 0 and the ball is contracting.

This is not inconsistent with the expansion of the universe computed in 1.a. As emphasized
in the previous footnote, the expansion computed in that case was that of the cosmological
fluid while in this case the same symbol denotes the expansion of a ball of test particles. In
the latter case, for example, we took the initial condition on the Raychaudhuri equation to
be θ = 0. This is simply not a consistent initial condition for the cosmological fluid as it
would imply that ȧ = 0 by (2) and therefore a = 0 for all time.

2. Nota bene: My convention for anti-symmetrization differs from Ted’s by factors of p!.
For example, in my notation ε[abcd] = 4!εabcd and ∇[a∇b] = [∇a,∇b] as opposed to Ted’s
notational convention which would give 1 · εabcd and ∇[a∇b] = 1

2 [∇a,∇b] respectively.

2.a ∇[aVb] = ∇[a(f∇b]S) = ∇[af∇b]S+f [∇a,∇b]S. The last term vanishes. Thus, multiply-
ing and dividing by f , we obtain ∇[aVb] = (∇[af)f−1(f∇b]S) = V[aWb] for Wa := −∇a log f .

2.b Clearly ∇[aVb] = V[aWb] implies V[a∇bVc] = 0 since multiplying the first by Vc and
antisymmetrizing forces us to antisymmetrize on VaVb. Now, as in the hint, take any Xa

such that X · V 6= 0. Then

0 = XcV[a∇bVc]

= Xc
(
∇[bVc] + Vb∇[cVa] + Vc∇[aVb]

)
= Xc

(
Va∇[bVc] − Vb∇[aVc]

)
+ (X · V )∇[aVb]

=
[
Va(X

c∇[bVc])− Vb(X
c∇[aVc])

]
+ (X · V )∇[aVb] . (4)

Now define Wa := −(X · V )−1Xc∇[aVc]. Then the equation above implies that ∇[aVb] =
V[aWb], which is the desired relation.

2.c ∂t is obviously orthogonal to the dt = 0 hypersurfaces but it is instructive to see from
the relation derived in 2.b why this is so. The Minkowski metric in spherical coordinates is

ds2 = dt2 − dr2 − r2(dθ2 + sin2 θdφ2) . (5)

Let α = g(∂t, ·) be the 1-form (co-vector) gotten from the vector (∂t)
a by lowering the

index with the metric, in coordinates αγ = gtγ = δtγ. Since this co-vector has only one
non-vanishing component2 α[a∇bαc] = α[a∂bαc] ≡ 0 so that the vector ∂t is hypersurface

2Notice that for any co-vector Va, ∇[aVb] = ∂[aVb] − Γc
[ab]Vc = ∂[aVb] in the absence of torsion, i. e. the

exterior derivative is covariant.
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orthogonal by the results of 2.a and 2.b. Notice that this implies that any coordinate
vector3 is hypersurface orthogonal if the metric has no off-diagonal terms in that coordinate–
in particular, so is ∂φ. However, let us now consider the vector field generated by ∂t + Ω∂φ

and define the 1-form ν := g(∂t + Ω∂φ, ·) by lowering the index. In the coordinates of (5)
this gives (να) = (1, 0, 0,−Ωr2 sin2 θ). Now consider again the equation ν[α∇βνγ] = ν[α∂βνγ]

but for the coordinate directions α = t and γ = φ leaving β free for the moment. Then

ν[α∂βνγ] → ν[t∂βνφ]

= νt∂βνφ + νβ∂φνt + νφ∂tνβ

− νt∂φνβ − νβ∂tνφ − νφ∂βνt

= νt∂βνφ , (6)

where all the other terms vanish either because νt is constant or gαβ is independent of t and
φ. By taking β = r or β = θ we can see that the equation for hypersurface orthogonality is
not satisfied.

2.d Recall that in the case of the Kerr metric in Boyer-Lindquist coordinates gtt, gtφ and
gφφ are all non-vanishing. Therefore the co-vectors α = g(∂t, ·) and β = g(∂φ, ·) are given by

(αα) = (gtt, 0, 0, gtφ)
(βα) = (gtφ, 0, 0, gφφ) . (7)

Both co-vectors are of the form γ = (f, 0, 0, g) with f and g independent of t and φ so
considering again the equation (6) we find that

γ[t∂βγφ] = f∂βg − g∂βf . (8)

Given the explicit forms of f and g for the two cases above, we see that a miracle is required
such that this expression vanish for all β = r, θ. The miracle does not happen.

2.e Since χ is hypersurface orthogonal on the horizon, we can apply 2.a there to write the
twist ωab = ∇[aχb] = χ[avb] for some v. Notice that since χ is a Killing vector, the geodesic
equation χa∇aχb = κχb reduces to κχb = 1

2χ
a∇[aχb] = 1

2χ
aχ[avb] = −1

2(χ · v)χb since χ is a
null vector. Consequently

κ = −1

2
(χ · v) . (9)

Now square this to obtain

κ2 =
1

4
(χavb)(χ

bva)

=
1

4
(χavb)(χ

[bva])

= −1

2

(
1

2
χ[avb]

) (
1

2
χ[avb]

)
3A vector v is a coordinate vector if there exists a coordinte system {xα} in which v can be written as

va = (∂/∂xα)a.
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= −1

2

(
1

2
∇[aχb]

) (
1

2
∇[aχb]

)
= −1

2
(∇aχb)(∇aχb) , (10)

where in the second line we have used the nullity of χ and in the last we have used the
Killinginity.

2.f We take ua to be a hypersurface orthogonal

u[a∇buc] = 0 , (11)

timelike or spacelike

u2 6= 0 , (12)

affinely parameterized geodesic vector field

ua∇au
b = 0 , (13)

and simply compute

0
(11)
= ua

(
uaωbc +

[
ub∇[cua] − (b ↔ c)

])
= u2ωbc +

[
1
2ub∇cu

2 − ubu
a∇auc − (b ↔ c)

]
(13)
= u2ωbc + 1

2u[b∇c]u
2 . (14)

Since we can choose an affine parameterization such that u2 is constant over the entire
congruence, the second term can be made to vanish. Equation (12) then implies that the
twist vanishes.

2.g From the condition that ka generates an affinely parameterized geodesic, 0 = kb∇bka.
Subtracting the condition that k is null, 0 = 1

2∇ak
2 = kb∇akb, we find that 0 = kb∇bka −

kb∇akb = kbωba. If ka is hypersurface orthogonal then by 2.a ωab = ∇[avb] = k[avb] for
some vb and we find that 0 = kb(kavb − kbva) = ka(k · v). Since this must hold for all null
k, we find that v must be orthogonal to k. Given this form of ω it follows that ωabω

ab =
2(kavb − kbva)k

avb = 2k2v2 − 2(k · v)2 = 0.
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